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Abstract

We construct unitary, stable, and interacting conformal boundary conditions for a free
massless scalar in four dimensions by coupling it to edge modes living on a boundary.
The boundary theories we consider are bosonic and fermionic QED3 with N f flavors
and a Chern-Simons term at level k, in the large-N f limit with fixed k/N f . We find that
interacting boundary conditions only exist when k ̸= 0. To obtain this result we compute
the β functions of the classically marginal couplings at the first non-vanishing order in
the large-N f expansion, and to all orders in k/N f and in the couplings. To check vacuum
stability we also compute the large-N f effective potential. We compare our results with
the the known conformal bootstrap bounds.
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1 Introduction

What are the possible conformal boundary conditions, or BCFTs, for a given bulk conformal
field theory (CFT)? It is not known how to constructively answer this question when the bulk
dimension d is larger than two.1 Besides the interest from the point of view of the formal
aspects of quantum field theory, it is also a question of practical relevance, e.g. to give predic-
tions for the possible “surface transitions” of a given second-order phase transition when it is
realized in an enclosed region of space. On first thought, this problem might seem as hard as
the classification of one-lower dimensional CFTs. Indeed, starting with any given conformal
boundary condition and any conformal “edge modes” localized on the boundary, the latter
can be coupled to the bulk via some relevant deformation. By then allowing the boundary
Renormalization Group (RG) flow to settle in an IR fixed point, this construction seemingly
produces a plethora of new BCFTs. However this formal argument does not rule out the possi-
bility that many of these RG flows actually settle in the same IR fixed point, or that at such IR
fixed point the bulk-boundary coupling vanishes, making the set of boundary conditions much
more restricted.

A possible approach to shed some light on the original question is to restrict to a bulk CFT
that is as simple as possible. Even for a single free massless scalar, the problem reveals many
curious surprises, suggesting that we are just scratching the surface of the matter. In this case,
the argument above can be phrased by starting with free boundary conditions, i.e. Neumann
or Dirichlet, and by coupling the boundary mode of the scalar to local CFTs on the boundary.
Here “free” or “interacting” boundary condition refers to whether correlation functions of local
boundary operators are products of two point functions. The non-trivial problem is then to
find examples in which the IR fixed point is not again of the form of a free boundary condition
with a decoupled local sector. The purpose of this note is precisely to exhibit examples of such
interacting conformal boundary conditions in the case of a four-dimensional bulk.2

A numerical bootstrap study of BCFTs for a single free massless scalar in three and four
dimensions was carried out in references [6, 9], which have shown that the space of possible
such theories is highly constrained.3 In particular, figure 2 of [9] shows a prominent kink
close to the Neumann boundary condition and a very small spin-two gap elsewhere. While
the nature of that kink remains somewhat mysterious, the very small spin-two gap suggests

1In 2d a classification is known for boundary conditions of rational CFTs that preserve the chiral algebra (see
[1–4] for reviews), and a partial classification exits for the free compact boson or fermion [5].

2For a 3d bulk, an example was found in [6]. Other interesting examples of perturbative constructions of
boundary conditions for a free scalar field can be found in [7,8].

3Systematic studies of the space of higher co-dimension conformal defects for free theories can be found in [10]
(for the free massless scalar) and in [11] for the 4d Maxwell field.
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in particular that, if they exist, unitary, local (in the sense of [9]) and interacting conformal
boundary conditions near the Dirichlet end should be almost decoupled from the bulk. It is
then reasonable to expect that points in this portion of the allowed region should be within
reach of perturbative techniques.

Motivated by this observation, in this note we look for perturbative BCFTs fixed points
for a free massless scalar in four dimensions. As boundary degrees of freedom we choose
three-dimensional quantum electrodynamics (QEDs) with many flavors – either bosonic or
fermionic. In addition to our goal, this type of boundary conditions can also be applied to the
long-distance physics of the edge states of a three-dimensional symmetry-protected topological
phase at the four-dimensional order-disorder quantum critical point (see e.g. [12] and refer-
ences therein). We write down all possible classically marginal interactions between the bulk
and the boundary, assuming that all the relevant ones are tuned to zero. The possible marginal
couplings depend on whether we fix Neumann or Dirichlet condition for the bulk field, and
whether or not the matter degrees of freedom on the boundary have quartic self-interactions.
Moreover as it will become clear, in order to find interacting conformal boundary conditions
we need to include a Chern-Simons (CS) term k for the boundary U(1) gauge field.

Given that we are localizing these gauge theories on a boundary of spacetime, we can
equivalently realize them as decoupling limits of the boundary matter fields interacting with
a bulk Maxwell gauge field [13–16]. This invites to consider a slightly more general setup, in
which the matter fields localized on the 3d boundary interact with both a bulk scalar field Φ
and a bulk Maxwell field Aµ, i.e.

Sbulk =

∫

y≥0

d3 xd y
�

1
2
(∂µΦ)

2 +
N f

4λ

�

FµνFµν + i
γ

2
εµνρσFµνFρσ

�

�

. (1)

Here N f /2 is the number of complex boundary scalars or Dirac fermions, whose actions (along
with the boundary conditions for Φ and Aµ) will be specified below. In the formula above
the (flat) boundary sits at xµ = (y = 0, xa) and we have chosen an orientation of the half-
space such that εabc y = εabc , with latin indices labeling parallel directions with respect to the
boundary. Unlike the boundary interactions, the bulk parameters λ and γ are exactly marginal.
The parameter γ is related to the bulk θ -angle as λθ = 4π2N f γ.

We compute the β functions for the boundary couplings, at the leading order in the 1/N f
expansion but exactly in the couplings, and with arbitrary γ and λ. We find RG fixed points
that correspond to unitary BCFTs. At the end of the calculation we decouple the bulk Maxwell
field by taking the limit of large λ, in such a way that by electric-magnetic duality the setup is
equivalent to QED3 coupled to the bulk scalar. The value of γ/λ in this limit determines the
ratio k/N f . In particular we find that only when k/N f lies in certain ranges the interacting
BCFTs for the scalar field are unitary, that is they correspond to real values of the fixed points
for the marginal couplings.

After finding non-trivial and real fixed points we address the question of the stability of
their vacuum. We do this by computing the effective potentials as functions of the bound-
ary couplings at leading order at large N f , both for bosonic and fermionic matter fields. The
stability condition constrains the allowed values of the couplings, and comparing with their
values at the fixed points we find further restrictions on the possible values of the free param-
eter k/N f . The results of our analysis are summarized in figures 4 (for bosons) and 9 (for
fermions). One immediate conclusion is that the interacting boundary conditions only exist
for k ̸= 0: restricting to k = 0 one would find that in the fixed points the bulk scalar always de-
couples from the boundary. This demonstrates that finding interacting BCFTs is not as simple
as the naive argument above seemed to suggest.

Finally, we compare the results with the numerical bootstrap bounds. As a consistency
check, we find that our perturbative results lie inside the allowed regions. We provide at least

3
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three checks that this is the case, by computing the anomalous dimensions of the first two
lowest-lying singlet-scalar operators in the boundary spectrum at order 1/N f , by computing
the anomalous dimension of the leading spin-two operator on the boundary at order 1/N f ,
and by computing the two-point function of the displacement operator when N f =∞.

2 Bosons on the boundary

We consider a 4d bulk scalar field Φ and bulk Maxwell field Aµ, with Dirichlet and Neu-
mann boundary condition (respectively), coupled to N f /2 boundary complex scalars zm, with
m= 1, . . . , N f /2. The action is given by

S = Sbulk +

∫

y=0

d3 x

�

(Dazm)†(Dazm) +
2g
Æ

N f
∂yΦ z†mzm +

8h
N2

f

(z†mzm)3
�

. (2)

In the formula above Da ≡ ∂a + iAa is the covariant derivative, and Sbulk is given in (1).
For generic values of the couplings, the continuous part of the boundary global symmetry is
SU(N f /2)×U(1)2, where the first factor is a flavor symmetry and the second one comes from
the currents εabc F bc and Fya. Note that the free Neumann boundary condition sets Fya = 0,
but with boundary degrees of freedom one instead has a “modified Neumann” condition, that
identifies Fya with the U(1) current of the boundary matter, so that indeed there is an addi-
tional conserved current. For γ= 0 the theory further enjoys parity symmetry.

In the large-N f limit, with g, h, λ, γ held fixed, the theory (2) interpolates between dif-
ferent bulk/boundary decoupling limits that correspond to different 3d local CFT sectors. The
bulk gauge field decouples when the complex gauge coupling τ = 2πi

λ/N f
+ 2πγ
λ/N f

is i∞ or, by

applying a bulk SL(2,Z) transformation, whenever it attains rational values. At these rational
values, the boundary U(1) current to which the bulk gauge field couples is gauged by emer-
gent 3d gauge fields [13,16]. This is true even at finite N f , since τ and τ̄ do not run. The bulk
scalar field decouples when either g = 0 or g =∞, and in the latter case the scalar sector in
the action (2) admits a dual description as a large-N f critical vector model [17]. Combining
these results we obtain the following decoupling limits (see fig. 1):

I. N f real scalars for g = 0 and λ= 0, with a sextic interaction h.

II. The critical O(N f ) model for g =∞ and λ= 0.

III. Critical bosonic QED3 with CS level k and N f /2 flavors of complex scalars, for g =∞
and λ= γ=∞, with k/N f = 2πγ/λ fixed.

IV. Tricritical bosonic QED3 with CS level k and N f /2 flavors of complex scalars, for g = 0
and λ= γ=∞, with k/N f = 2πγ/λ fixed, and a sextic interaction h.

Here “tricritical” refers to the relevant quartic interaction between the complex scalars tuned
to zero. While λ and γ are always exactly marginal couplings, g and h are exactly marginal
when N f =∞, and the decoupling limits mentioned are just special points within a family
of conformal boundary conditions. At order 1/N f , both g and h develop non-trivial, λ- and
γ-dependent β functions, and the decoupling limits will be generically connected by RG flows.

2.1 Stability of marginal couplings

In this section we derive the stability bounds on the marginal couplings in the theory (2). At
the classical level we clearly need h > 0, while g is unconstrained.4 At the quantum level we

4The sign of g can be reabsorbed by a sign flip of Φ, which is a global symmetry of the bulk theory.
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Figure 1: The four 3d scalar CFTs connected via the interactions to the bulk scalar
(vertical lines) and the bulk gauge field (horizontal lines).

have to compute the large-N f effective potential. To this end we shall rewrite the boundary
Lagrangian in (2) as

L =
1
2
(∂aϕ

i)(∂aϕ
i) +

g
Æ

N f
∂yΦϕ

iϕi +σ

�

ϕiϕi

Æ

N f
−ρ

�

+
h

Æ

N f
ρ3 , (3)

where now ϕi are N f reals scalars, and σ is a Lagrange multiplier which identifies the field
ρ with the composite operator ϕiϕi/

Æ

N f . Note that we can neglect the gauge field, as its
contribution to the effective potential is subleading in the large-N f expansion.

Let us now turn on vacuum expectation values (vevs) for the fields that appear in eq. (3).
As for the bulk scalar, as a consequence of the bulk equations of motion this is a harmonic
function of the transverse coordinate, which should stay finite as y →∞. Hence:

〈Φ(xa, y)〉=
Æ

N f U , 〈∂yΦ(x
a, y)〉= 0 , (4)

where U scales as O(N0
f ). For the remaining fields we let

ϕi =
Æ

N f v i + ϕ̂i , σ =
Æ

N f Σ+δσ , ρ =
Æ

N f η+δρ , (5)

where v i , Σ, and η are vevs that scale as O(N0
f ). Upon plugging into (3) and performing the

Gaussian integral over the N f fields ϕ̂i we get for the effective potential

Veff = N f

�

Σ(v i v i −η) + hη3
�

+
N f

2
tr log (−□+ 2Σ) +O(N0

f ) . (6)

The trace in the expression above can be performed in dimensional regularization to find

Veff = N f

�

Σ(v i v i −η) + hη3 −
1

12π
(2Σ)3/2

�

+O(N0
f ) , (7)

which is real if Σ ≥ 0. We can take derivative of Veff with respect to v i , Σ, and η to find the
gap equations

Σv i = 0 , v i v i −η−
(2Σ)1/2

4π
= 0 , −Σ+ 3hη2 = 0 . (8)

Hence there are two classes of solutions, namely

v i = 0 , Σ≥ 0 , η= −
(2Σ)1/2

4π
≤ 0 , unHiggsed,

v i ̸= 0 , Σ= 0 , η= v i v i > 0 , Higgsed.
(9)
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We can further integrate out the auxiliary field σ, i.e. we plug the second of (8) back into the
effective potential to get

Veff = N f

�

8π2

3
(v i v i −η)3 + hη3

�

+O(N0
f ) , (10)

which shows that the unique solution to the gap equations (v i ,η) = (0,0) corresponds to a
stable vacuum (i.e. to a global minimum of the effective potential) if

0< h<
8π2

3
. (11)

The classical stability region is therefore restricted by quantum effects. Intuitively, this has to
be the case since bosonic self-interactions are repulsive and tend to destabilize the vacuum.

Note that the bound (11) does not depend on g and holds for any finite g. In the
limit where g = 0 it matches the bound derived in [18], once we implement the relation
hthere = 2hhere. In the limit g →∞ the bulk scalar field decouples and the resulting 3d the-
ories are the ones where the quartic coupling flows to criticality. In such models the sextic
coupling is not allowed, since the equations of motion for the Hubbard-Stratonovich field im-
ply that ϕiϕi = 0. As a consequence, there is no stability bound on h and the theory is always
stable at the leading order in the large-N f expansion, see [18].

2.2 RG analysis

In this section we present the β functions for the marginal couplings, as well as the anomalous
dimensions for a few operators of the theory in eq. (2). We work at leading non-trivial order
in the 1/N f expansion. We recall that in our large-N f limit the couplings g, h,λ,γ are held
fixed (hence the θ -term is large and scales as N f ). Feynman rules are collected in appendix A.

2.2.1 Exact propagators at large N f

The first quantities that we shall compute are the large-N f boundary propagators of ∂yΦ and
Aa. These are obtained by resumming the geometric series of the 1PI bubbles connected by
tree-level propagators, as depicted in fig. 2.

Figure 2: Diagrams that contribute to the boundary propagator of ∂yΦ and Aa in the
large-N f limit with g, h,λ,γ fixed.
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The tree-level boundary propagators are (we work in a generic ξ gauge)

〈∂yΦ(p)∂yΦ(−p)〉(tree) = −|p| ,

〈Aa(p)Ab(−p)〉(tree) =
λ/N f

1+ γ2

1
|p|

�

δab − (1− ξ)
papb

|p|2
+ γεabc

pc

|p|

�

.
(12)

The bubble of N f /2 complex scalars with two scalar insertions is g2

4|p| and the one with two

photon insertions is −N f |p|
32

�

δab − pa pb

p2

�

. The result for the resummed boundary propagators

at leading order at large N f is [17]

〈∂yΦ(p)∂yΦ(−p)〉=
−|p|

1+ g2

4

,

〈Aa(p)Ab(−p)〉=
λ/N f

γ2 +
�

1+ λ
32

�2

1
|p|

��

1+
λ

32

��

δab −
papb

|p|2

�

+ γεabc
pc

|p|

�

+
ξλ/N f

1+ γ2

papb

|p|3
.

(13)

Note that in the limit g →∞, the field g∂yΦ is identified with the Hubbard-Stratonovich field
of the critical O(N f ) model and, consistently, its propagator is finite in this limit and given by
−4|p|. In the limit γ,λ →∞ with fixed γ

λ =
κ

2π (being κ ≡ k/N f ), the photon propagator
becomes the IR propagator of a 3d Abelian CS gauge field a at level k, coupled to N f /2 complex
scalars which is

〈aa(p)ab(−p)〉=
32
N f

1

1+
�16κ
π

�2

1
|p|

�

δab +
16κ
π
εabc

pc

|p|

�

+O(N−2
f ) , (14)

where we have chosen the gauge where there is no papb term in the tree-level propagator.
As expected, if κ = 0 we recover the result for bosonic SU(N f /2) QED3 with no CS level,
whereas if κ=∞ we have the ungauged vector models where the gauge propagator vanishes
(the leading term being proportional to 1/κ).

2.2.2 Beta functions and anomalous dimensions

The determination of β functions and anomalous dimensions at order 1/N f is a standard
calculation in large-N f perturbation theory. We shall recall that bulk quantities do not get
renormalized, as UV divergences are local and the bulk is non-interacting.

Following [17]we will adopt a Wilsonian approach and use a hard cutoffΛ on the boundary
momenta running in loops. In particular, after an RG step in which we integrate out a shell of
momenta between Λ and Λ′ < Λ, the quantities in the UV theory (with cutoff Λ) and those in
the theory with cutoff Λ′ are related as follows

zm
Λ′ = Z1/2

z zm
Λ , gΛ′ = Z−1

z Zg gΛ , hΛ′ = Z−3
z ZhhΛ . (15)

The diagrams that contribute to the wave function renormalization of zm and to the renormal-
ization of the vertices are depicted in fig. 3.
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(a) (b) (c) (d)

(e)

(f)

Figure 3: Contribution to the renormalization constants at order 1/N f . (a,b) gives
the wavefunction renormalization of zm, (c,d) the renormalization of the g vertex,
and (e,f) the renormalization of the h vertex (permutations of external legs are omit-
ted).

Writing Z(·) = 1+δZ(·), the result is

δZz =
1

6π2N f

 

4g2

1+ g2

4

−
5λ(1+ λ

32)

γ2 + (1+ λ
32)2

!

log
�

Λ

Λ′

�

,

δZg =
1

2π2N f

 

−
4g2

1+ g2

4

+
λ(1+ λ

32)

γ2 + (1+ λ
32)2

+
λ2
�

γ2 − (1+ λ
32)

2
�

4
�

γ2 + (1+ λ
32)2

�2

!

log
�

Λ

Λ′

�

,

δZh =
1

π2N f





3λ2

8

γ2 −
�

1+ λ
32

�2

�

γ2 +
�

1+ λ
32

�2�2 +
3λ
2

λ
�

1+ λ
32

�

γ2 +
�

1+ λ
32

�2 +
18h2 − 576h− 1536g2

64
�

1+ g2

4

�3

−
6g2

1+ g2

4

−
g4

�

1+ g2

4

�3
h





�

1+ g2

4

�

λ
�

1+ λ
32

�

γ2 +
�

1+ λ
32

�2 −
16g2

3





+

�

1+ λ
32

�

λ3
�

�

1+ λ
32

�2
− 3γ2

�

6h
�

γ2 +
�

1+ λ
32

�2�3



 log
�

Λ

Λ′

�

,

(16)
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up to O(N−2
f ) corrections. The β functions of g and h are given by

βg = −
d

d logΛ

�

Z−1
z Zg g

�

, βh = −
d

d logΛ
(Z−3

z Zh h) , (17)

from which we get, up to O(N−2
f ) corrections:

βg =
1

π2N f

 

8g2

3(1+ g2

4 )
−

4λ(1+ λ
32)

3
�

γ2 + (1+ λ
32)2

� +
λ2
�

(1+ λ
32)

2 − γ2
�

8
�

γ2 + (1+ λ
32)2

�2

!

g ,

βh =
1

π2N f



−
9h3

32(1+ g2

4 )3
+

9h2

(1+ g2

4 )3

+

 

(g4 + 8g2 + 64)g2

2(1+ g2

4 )3
−

4λ(1+ λ
32)

γ2 + (1+ λ
32)2

+
3λ2((1+ λ

32)
2 − γ2)

8(γ2 + (1+ λ
32)2)2

!

h

−
16g6

3(1+ g2

4 )3
+

λ(1+ λ
32)

γ2 + (1+ λ
32)2

 

g4

(1+ g2

4 )2
−
λ2((1+ λ

32)
2 − 3γ2)

6(γ2 + (1+ λ
32)2)2

!



 .

(18)

From the β functions above we can compute the anomalous dimension of z†z at the leading
order in 1/N f and to all orders in the couplings.5 It is given by (see [17] for a derivation of
the relation between the anomalous dimension of singlets and the β function of g)

γz†z =
βg

g
=

1
π2N f

 

8g2

3(1+ g2

4 )
−

4λ(1+ λ
32)

3
�

γ2 + (1+ λ
32)2

� +
λ2
�

(1+ λ
32)

2 − γ2
�

8
�

γ2 + (1+ λ
32)2

�2

!

+O(N−2
f ) , (19)

which does not depend on h at this order of the large-N f expansion. Some comments are in
order. From eq. (19), in the limit γ,λ→∞ with fixed γ

λ =
κ

2π and g = 0 (tricritical CS QED3)
we get

γz†z =
256(π2 − 512κ2)
3N f (π2 + 256κ2)2

+O(N−2
f ) . (20)

In particular, for κ= 0 we recover the results of [19] for tricritical QED3, while for κ→∞
the anomalous dimension vanishes, as it should since also the gauge field decouples and the
theory is free. In the opposite limit, i.e.γ,λ→∞ with fixed γ

λ =
κ

2π and g =∞ (critical CS
QED3) we get

γσ = −
βg

g
= −

32(9π4 − 3584π2κ2 + 65536κ4)
3π2N f (π2 + 256κ2)2

+O(N−2
f ) . (21)

For κ = 0 we recover the results of ref. [20], while for κ → ∞ we recover the results of
refs. [21,22] for the critical O(N f ) model.

Concerning the β function of h, if g →∞ the dual critical model has a decoupled bulk
scalar eΦ with a Neumann boundary condition. The sextic deformation in (2) corresponds to
a cubic deformation eΦ3/

Æ

N f on the boundary, with coupling h′ = −h/g3. We can easily use
this map to find

βh′ = −
18
π2N f

h′3 , (22)

5Note that the boundary condition identifies
p

Nf Φ with gz†z at the boundary. Therefore, except for g = 0 or
g =∞ when the bulk scalar is decoupled, z†z should not be considered as an independent boundary operator.
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for any λ, as expected. If instead g = λ= 0, βh reduces to the β function of the sextic coupling
for N f real scalars computed in [23]. Finally, in the limit where g = 0 and γ,λ→∞ with κ
fixed, it gives the β function of the sextic coupling in CS tricritical QED3, which we thoroughly
discussed in [18].

2.3 Conformal window for bosons

With the β functions given in the previous section, the natural step forward is to investigate
on the existence of conformal boundary conditions for the theory (2). We therefore look for
the real zeros of βg and βh, subjected to the condition that the stability bound is satisfied.

The case with no bulk scalar field (so either g = 0 or g = ∞) was analyzed in [16],
where it was shown that under general circumstances such conformal boundary conditions
are parametrized by the complex gauge coupling. What happens in the opposite situation,
i.e. when the bulk gauge field decouples? If we take λ = 0 then it is clear from βg in eq. (18)
that only for g = 0 or g =∞ conformal boundary conditions are possible.6 These are the
familiar Dirichlet and Neumann boundary conditions, which are free.

We are then left to consider λ,γ→∞ with γ/λ constant. By our previous arguments, this
limit is bosonic QED3 with N f /2 complex fermions and with CS level k, at large N f and large
k with κ = k/N f fixed, coupled to a bulk free scalar with Dirichlet boundary conditions. It is
convenient to introduce the variable

fg =
g2/4

1+ g2/4
∈ [0, 1] , (23)

so that in this limit the β function for fg from (18) reads

β fg
=

64
3π2N f

fg(1− fg)

�

fg −
8π2(512κ2 −π2)
(π2 + 256κ2)2

�

+O(N−2
f ) . (24)

Looking for the zeros of β fg
, beside the ones at fg = 0,1 where the bulk decouples,7 we find

a family of zeros parametrized by κ as

fg =
8π2(512κ2 −π2)
(π2 + 256κ2)2

, (25)

where β ′fg
> 0 and hence g is marginally irrelevant at these fixed points. A necessary condition

for unitary and interacting boundary conditions is that fg ∈ (0,1), which restricts the allowed
values of κ to be (we take κ≥ 0 without loss of generality)

π

16
p

2
< κ <

π

16
(
p

5−
p

2) ∨ κ >
π

16
(
p

5+
p

2) . (26)

These intervals define unitarity regions which are depicted in orange in fig. 4(a) and 4(b),
respectively. At the boundaries of these intervals either fg = 0 or fg = 1.

We also need to analyze the β function of h from (18), which in the limit we are considering
reads

βh =
1

π2N f

�

−
9h3

32(1+ g2/4)3
+

9h2

(1+ g2/4)3
+

�

(g4 + 8g2 + 64)g2

2(1+ g2/4)3
+

256π2(π2 − 512κ2)
(π2 + 256κ2)2

�

h

−
16g6

3(1+ g2/4)3
+

32π2

π2 + 256κ2

�

g4

(1+ g2/4)2
−

512π2(π2 − 768κ2)
3(π2 + 256κ2)2

��

+O(N−2
f ) . (27)

6Of course if Nf is strictly infinite all β functions vanish, and the space of conformal boundary conditions for
(2) is spanned by four real parameters: g, h, λ, γ.

7If fg = 0 ( fg = 1) the theory is given by a bulk photon with Neumann and a bulk scalar with Dirichlet
(Neumann) boundary conditions, which are decoupled from CS tricritical (critical) QED3 at the boundary. For a
detailed study of the zeros when fg = 0, 1 as a function of κ, see ref. [18].
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Figure 4: Interacting, unitary, and stable conformal boundary conditions for the free
massless scalar. Different colors correspond to different solutions of βh = 0. The uni-
tarity regions of eq. (26), corresponding to real fixed points, are depicted in orange.
The fixed points corresponding to stable vacua must lie inside the gray region given
by 0< h< 8π2/3. The black dots correspond to (κ−, 8π2/3) and (κ+, 0).

Within the region of eq. (26) we find three families of real zeros of βh, which are depicted
in red, blue, and green in fig. 4. The red and blue families correspond to fixed points of βh
where β ′h < 0 and the sextic operator is marginally relevant, whereas for the green family
β ′h > 0 and hence the sextic operator is marginally irrelevant. Once we combine this with the
constraint from vacuum stability (11), depicted in gray in figures 4, we find that unitary and
stable interacting conformal boundary conditions for the free massless scalar are possible if

κ− ≃ 0.8283< κ < κ+ ≃ 1.6764 . (28)

In this interval, both values of the fixed points of g2 and h are monotonically decreasing func-
tion of κ, ranging from (g2, h) ≃ (14.456, 8π2/3) at κ = κ− to (g2, h) ≃ (1.077,0) at κ = κ+.
Since the interacting boundary condition only exists for a finite range of g2, we see that the
decoupling limits with critical and tricritical bosonic QED3 on the boundary are not limit points
of the family of interacting boundary conditions.

The eigenvalues of the matrix of derivatives of the β functions with respect to g and h,
evaluated at the fixed points, give the anomalous dimensions γ± of the classically marginal
operators. The result is shown in fig. 5, where we plot N f γ± as a function of κ in the conformal
window (28). Both anomalous dimensions are strictly positive in this interval, showing that
the classically marginal operators are actually marginally irrelevant. Of course there are also
strongly relevant singlet boundary primaries in theory, which need to be tuned to zero in order
to reach the conformal point. These are: Φwhich has dimension 1, ∂yΦwhich has dimension 2,
and the quartic interaction (z†z)2 which has dimension 2. Recall that z†z is not an independent
boundary operator, see footnote 5. Let us finally observe that the two curves in fig. 5 intersect
at (κ, N f γ) = (0.8350,0.3799), so for the scaling dimensions of the marginal operators we
have that, at that point

ε≡∆+ −∆− =O(N−2
f ) . (29)

As a first sight this result might look suspicious since we might expect the von Neumann-
Wigner non-crossing rule [24] to apply to our system, once we regard the dilatation operator
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Figure 5: Anomalous dimensions of the classically marginal operators in the confor-
mal window. The dashed black lines denote the boundaries of the interval in eq. (28).
The two curves intersect at (κ, N f γ)≃ (0.8350,0.3799).

as an Hamiltonian on the cylinder [25]. A possible way out is that there is an emergent
discrete symmetry at the crossing point. Alternatively, and more likely, the level crossing is an
artifact of the large-N f expansion, signaling that in order to correctly capture the behavior of
the spectrum near that point one needs a resummation of the 1/N f expansion. Examples of
this phenomenon were considered in [25], in the context of N = 4 SYM with large number of
colors and in the extremal spectra of some 3d CFTs. See also [26] for a conformal perturbation
theory proof of the non-crossing rule in the context of one-dimensional conformal manifolds.
Recent numerical bootstrap investigations of the non-crossing rules can be found in [27] in
the context of the Ising CFT in the 4− ϵ expansion, and in [28] in the context of N = 4 SYM
with finite number of colors.

More BCFT data in the conformal window

We conclude this section by computing a few additional observables in the conformal window
of section 2.3, and compare with the results from the bootstrap analysis of ref. [9].

The first observable that we shall consider is the anomalous dimension of the leading sin-
glet scalar on the boundary, ϵ̂ = z†z. It follows from eq. (19) that such anomalous dimension
vanishes exactly along the non-trivial solutions of (25). This is of course just a consequence
of the “modified Dirichlet” boundary condition, which away from g = 0 and g =∞ identi-
fies ϵ with Φ at the boundary. The scaling dimension of ϵ̂ equals exactly one. This is nicely
compatible with fig. 1 of [9].

Next, we compute the anomalous dimension of the leading spin-two primary on the bound-
ary, namely the “pseudo stress-tensor” bτab. We recall that the latter is a symmetric and traceless
tensor of spin 2, but it fails to be conserved due to bulk-boundary interactions. In other words
its scaling dimension reads

∆
bτ = 3+ γ

bτ = 3+
1

N f
γ
(1)
bτ
+O(N−2

f ) , (30)

and γ(1)
bτ
≥ 0 by unitarity. It is not difficult to compute this anomalous dimension using con-
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formal multiplet recombination to find8

γ
(1)
bτ
=
∆gϕ2(3−∆gϕ2)

5

C∂yΦ
Cgϕ2

C
bτ

=
8

15π2

g2

(1+ g2

4 )2

= −
π2

512 − κ
2

491520
�

κ2 + π2

256

�4

�

65536κ4 − 3584π2κ2 + 9π4
�

,

(31)

where κ takes values in the interval (28), CΦ and C∂yΦ
are the coefficients of the resummed two-

point correlation functions of Φ and ∂yΦ in position space, Cgϕ2 = N f CΦ, ∆gϕ2 = 1+O(N−1
f )

and

C
bτ =

3N f

32π2
+O(N0

f ) , (32)

is the central charge of N f free scalars. We used that that [17]

C∂yΦ
=

1
π2

1

1+ g2

4

+O(N−1
f ) =

65536κ4 − 3584π2κ2 + 9π4

2562π2
�

κ2 + π2

256

�2 +O(N−1
f ) , (33)

CΦ =
1

2π2

g2

4

1+ g2

4

+O(N−1
f ) = −

π2

512 − κ
2

32
�

κ2 + π2

256

�2 +O(N−1
f ) . (34)

Notice that the anomalous dimension (31) is always positive within the conformal window
(28), and it vanishes only at the decoupling points for which g = 0 and g =∞. Furthermore,
it lies well inside the region allowed by the numerical bootstrap bounds for all N f ≥ 1, as
shown in fig. 6. For the sake of this comparison, we report here the relation between g and
the parameter aΦ2 , i.e. the bulk one-point function of Φ2 with a generic conformal boundary
condition

aΦ2 = −
1
4
+

g2

8

1+ g2

4

+O(N−1
f ) = −

1
4
+
π2

32

κ2 − π2

512
�

κ2 + π2

256

�2 +O(N−1
f ) . (35)

Finally, we shall compute the two-point function of the displacement operator D. We recall
that this is a universal boundary primary operator in any BCFTd that features a bulk stress-
energy tensor Tµν, as dictated by the (broken) conformal Ward identity [29,30]

∂µTµy(x , 0) = −δ(y)D(x) , (36)

which fixes the scaling dimension of D to be d. For a theory of a massless free scalar Φ, the
displacement operator has the following expression

D=
�

1
2
(∂yΦ)

2 −
1
2
(∂aΦ)

2 +
1
6
∂ 2

a Φ
2
�

�

�

�

�

y=0
. (37)

This computation is rather technical, and we content ourselves with looking at the leading term
in the large-N f expansion (i.e. when N f = ∞), leaving higher-order corrections for future
work. The two-point function of D is therefore simply given by Wick’s contractions and reads

〈D(x)D(0)〉=
CD

|x |8
=

1
2

�

C2
∂yΦ
+ 4C2

Φ

�

+O(N−1
f )

|x |8
, (38)

8This can be obtained from the formulae of section 3.2.1 of [9] after observing that we are doing conformal
perturbation theory around N f free scalars in the coupling 1/

p

N f by the marginal operator g ∂yΦϕ
Iϕ I .
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Figure 6: Comparison with figures 2 and 4 of [9]. In (a) the different lines correspond
to different choices of N f . As in [9], the dashed line is the maximum possible value for
∆̂τ from leading-order conformal perturbation theory, if we assume the Ising model
to be the 3d CFT with the lowest central charge.

where CΦ and C∂yΦ
are the coefficient of the resummed two-point correlation functions of Φ

and ∂yΦ, in position space.9 Putting all together we get

CD =
1

2π4

1+ g4

16

(1+ g2

4 )2
+O(N−1

f )

=
1

�

κ2 + π2

256

�4

�

κ8

2π4
−

7κ6

128π2
+

235κ4

65536
−

127π2κ2

8388608
+

145π4

8589934592

�

+O(N−1
f ) .

(39)

Notice that CD interpolates between Dirichlet and Neumann boundary conditions, for which
CD =

1
2π4 [29, 30]. All values in between (in particular those corresponding to the conformal

window (28)) happen to lie inside the region allowed by the numerical bootstrap, and in
particular close to the lower bound on CD, as shown in fig. 6. As noted in [6], there is a
universal prediction for CD as a function of aΦ2 coming from the coupling to mean-field theory
on the boundary [17, 31, 32], and our calculation at the leading order at large N f simply
reproduces this universal curve as we vary κ.

3 Fermions on the boundary

We consider a 4d bulk scalar field Φ and bulk Maxwell field Aµ, both with Neumann boundary
condition, coupled to N f /2 flavors of 3d Dirac fermions χm, where m = 1, . . . , N f /2. The
action is

S = Sbulk +

∫

y=0

d3 x

�

χ̄m /Dχm +
g

Æ

N f
Φ χ̄mχm +

h
Æ

N f
Φ3

�

, (40)

being Da ≡ ∂a + iAa the covariant derivative, /D ≡ γaDa with {γa,γb} = 2δab and Sbulk is
given in (1). For generic values of the couplings, the continuous part of the boundary global
symmetry is SU(N f /2) × U(1)2, where again the first factor is a flavor symmetry and the
second one comes from the currents εabc F bc and Fya. For γ = 0 the theory further enjoys
parity symmetry, taking N f /2 to be even.

9We should not worry about the off-diagonal piece, as in the definition of CD we are holding the operator
insertions at separated point.
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Figure 7: The four 3d fermionic CFTs connected via the interactions to the bulk scalar
(vertical lines) and the bulk gauge field (horizontal lines).

As for the bosonic theories discussed earlier, in the large-N f limit, with g, h, λ, γ held
fixed, the theory (40) interpolates between different bulk/boundary decoupling limits that
correspond to different 3d local CFT sectors (see fig. 7):

I. N f free Majorana fermions for g = 0 and λ= 0.

II. The O(N f ) Gross-Neveu model for g =∞ and λ = 0, with a cubic interaction h/g3 in
the Hubbard-Stratonovich field.

III. Gross-Neveu (GN) QED3 with CS level k and N f /2 flavors of Dirac fermions, for g =∞
and λ= γ=∞, with k/N f = 2πγ/λ fixed, and a cubic interaction h/g3 in the Hubbard-
Stratonovich field.

IV. Fermionic QED3 with CS level k and N f /2 flavors of Dirac fermions, for g = 0 and
λ= γ=∞, with k/N f = 2πγ/λ fixed.

Here by the Gross-Neveu QED3 we mean the CFT obtained from the O(N f ) Gross-Neveu model
by gauging a U(1) subgroup of the O(N f ) symmetry and flowing to the IR, or equivalently a
UV fixed point of fermionic QED3 with N f /2 Dirac fermions deformed by an irrelevant quartic
interaction.

As in the bosonic case, λ and γ are always exactly marginal couplings, whereas both g and
h develop non-trivial, λ- and γ-dependent β functions at the subleading order in the large-N f
expansion, and the decoupling limits will be generically connected by RG flows.

3.1 Stability of marginal couplings

Next, we discuss the stability bounds on the cubic coupling h in (40). At the classical level
we must set h = 0 in order for the vacuum to be stable, since the cubic potential would be
unbounded from below otherwise. At the quantum level this condition is relaxed, as we now
explain. The key ingredient is again the large-N f effective potential, which at the leading order
can be computed by considering the boundary Lagrangian in (40) neglecting the contribution
of the gauge field, which is subleading in this limit. We then have

L = χ̄m /∂ χm +
g

Æ

N f
Φ χ̄mχm +

h
Æ

N f
Φ3 . (41)

The only fundamental field that can take a vev is the bulk scalar Φ, hence we let

〈Φ(xa, y)〉=
Æ

N f U , (42)

15

https://scipost.org
https://scipost.org/SciPostPhys.16.4.090


SciPost Phys. 16, 090 (2024)

where U is a vev the scales as O(N0
f ). Upon plugging into (41) and performing the Gaussian

integral over the N f fields we get

Veff(U) = N f hU3 −
N f

2
tr log

�

/∂ + gU
�

+O(N0
f ) . (43)

The trace can be computed in dimensional regularization to find

Veff = N f

�

hU3 +
|g|3

12π
|U |3

�

+O(N0
f ) . (44)

The gap equation for U is given by

3hU2 +
|g|3

4π
U |U |= 0 . (45)

The unique solution to the gap equation, U = 0, corresponds a global minimum of the effective
potential if

|h|<
|g|3

12π
. (46)

In the fermionic case the classical stability region is enlarged by quantum effects. This has to
be expected, since fermionic self-interactions are attractive and tend to stabilize the vacuum.

Note that this bound holds for any finite g. In particular, for g = 0 it is never satisfied,
meaning that the cubic boundary interaction has to vanish in order for the theory to be stable.
In the limit g → ∞, the bulk scalar field decouples and the resulting 3d theories are the
ones where the quartic coupling flows to criticality. Such Gross-Neveu models include a cubic
coupling in the Hubbard-Stratonovich field which is given by y = 2h/g3. In that case the
bound (46) reads

|y|<
1

6π
, (47)

in agreement with the stability condition found in [18].

3.2 RG analysis

In this section we present the β functions for the marginal couplings, as well as the anomalous
dimensions for a few operators of the theory in eq. (41), extending the results of [17] to a non-
zero θ term. Feynman rules are collected in appendix A.

3.2.1 Exact propagators at large N f

We shall compute the large-N f boundary propagators of Φ and Aa by resumming the geometric
series of the 1PI bubbles connected by tree-level propagators, as depicted in fig. 2. While
the bubble of N f /2 Dirac fermions with two photon insertions has the same expression with
respect to the bosonic case, the one with two Φ insertions is −g2|p|/16. At the leading order
the resummed propagators in a generic ξ gauge read

〈Φ(p)Φ(−p)〉=
1

1+ g2

16

1
|p|

, (48)

〈Aa(p)Ab(−p)〉=
λ/N f

γ2 +
�

1+ λ
32

�2

1
|p|

��

1+
λ

32

��

δab −
papb

|p|2

�

+ γεabc
pc

|p|

�

+
ξλ/N f

1+ γ2

papb

|p|3
.

(49)
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(a) (b) (c) (d)

(e)

(f)

Figure 8: Contribution to the renormalization constants at order 1/N f . (a,b) gives
the wavefunction renormalization of χm, (c,d) the renormalization of the g vertex,
and (e,f) the renormalization of the h vertex (permutations of external legs are omit-
ted).

Note that in the limit g →∞, the field gΦ is identified with the Hubbard-Stratonovich field of
the O(N f ) Gross-Neveu model and, consistently, its propagator is finite in this limit and given
by 16/|p|. In the limit γ,λ→∞with fixed γ

λ =
κ

2π , one gets the IR propagator of a 3d Abelian
CS gauge field a at level k coupled to N f /2 Dirac fermions

〈aa(p)ab(−p)〉3d =
32
N f

1

1+
�16κ
π

�2

1
|p|

�

δab +
16κ
π
εabc

pc

|p|

�

+O(N−2
f ) , (50)

in the gauge where there is no term proportional to papb. As expected, if κ = 0 we recover
the result for fermionic QED3 with N f /2 flavors and no CS level, whereas if κ =∞ we have
the ungauged vector models where the gauge propagator vanishes (the leading term being
proportional to 1/κ).

3.2.2 Beta functions and anomalous dimensions

We will again adopt the Wilsonian approach of section 2 and use a hard cutoff Λ on the bound-
ary momenta running in loops. The quantities in the UV theory (with cutoff Λ) and those in
the theory with cutoff Λ′ < Λ are related as follows

χm
Λ′ = Z1/2

χ χm
Λ , gΛ′ = Z−1

χ Zg gΛ , hΛ′ = ZhhΛ . (51)

The diagrams that contribute to the wave function renormalization of χm and to At the leading
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order in the large-N f expansion, writing Z(·) = 1+δZ(·), we find (up to O(N−2
f ) corrections)

δZψ =
1

6π2N f

�

g2

1+ g2

16

+
λ(1+ λ

32)

γ2 + (1+ λ
32)2

�

log
�

Λ

Λ′

�

,

δZg =
1

2π2N f

 

−
g2

1+ g2

16

+
3λ(1+ λ

32)

γ2 + (1+ λ
32)2

+
λ2
�

γ2 − (1+ λ
32)

2
�

4
�

γ2 + (1+ λ
32)2

�2

!

log
�

Λ

Λ′

�

,

δZh =
1

π2N f

�

18h2

(1+ g2

16)3
−

3g4

8(1+ g2

16)2
+

g3

64

λ2γ(1+ λ
32)

h(γ2 + (1+ λ
32)2)2

−
g3

6 · 83

λ3γ(3(1+ λ
32)

2 − γ2)

h(γ2 + (1+ λ
32)2)3

�

log
�

Λ

Λ′

�

.

(52)

The β functions of g and h are given by

βg = −
d

d logΛ

�

Z−1
χ Zg g

�

, βh = −
d

d logΛ
Zhh , (53)

from which we get

βg =
1

π2N f

 

2g2

3(1+ g2

16)
−

4λ(1+ λ
32)

3
�

γ2 + (1+ λ
32)2

� +
λ2
�

(1+ λ
32)

2 − γ2
�

8
�

γ2 + (1+ λ
32)2

�2

!

g , (54)

βh =
1

π2N f

�

−
18h3

(1+ g2

16)3
+

3g4h

8(1+ g2

16)2
−

g3

64

λ2γ(1+ λ
32)

(γ2 + (1+ λ
32)2)2

+
g3

6 · 83

λ3γ(3(1+ λ
32)

2 − γ2)

(γ2 + (1+ λ
32)2)3

�

,

up to O(N−2
f ) corrections. From the β functions above we can compute the anomalous di-

mension of χ̄χ at the leading order in 1/N f and to all orders in κ.10 It is given by

γχ̄χ =
βg

g
=

1
π2N f

 

2g2

3(1+ g2

16)
−

4λ(1+ λ
32)

3
�

γ2 + (1+ λ
32)2

� +
λ2
�

(1+ λ
32)

2 − γ2
�

8
�

γ2 + (1+ λ
32)2

�2

!

+O(N−2
f ) , (55)

and it does not depend on h at this order of the large-N f expansion. From this result, in the
limit γ,λ→∞ with fixed γ

λ =
κ

2π and g = 0 (fermionic CS QED3) we get

γχ̄χ =
256(π2 − 512κ2)
3N f (π2 + 256κ2)2

+O(N−2
f ) . (56)

This result equals the anomalous dimension for z†z in bosonic tricritical CS QED3, see eq. (20).
Note that γχ̄χ = 0 for κ →∞ as it should, while we recover the result of refs. [33, 34] for
κ = 0. In the opposite limit, i.e.γ,λ→∞ with fixed γ

λ =
κ

2π and g =∞ (Gross-Neveu CS
QED3) we get

γσ = −
βg

g
= −

32(9π4 − 3584π2κ2 + 65536κ4)
3π2N f (π2 + 256κ2)2

+O(N−2
f ) , (57)

10Similarly to the discussion in foonote 5 regarding the scalar case, the boundary condition identifies ∂yΦ with
gp
N f
χ̄χ + 3hp

N f
Φ2, and as a result χ̄χ is not an independent boundary operator except in the limits g = 0 and

g = ∞ in which the bulk scalar is decoupled. Differently from the scalar case, however, there are now two
operators of classical dimension 2 on the right-hand side, so the scaling dimensions at the coupled fixed points
involve the possibility of operator mixing. This will be discussed below.
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which equals the anomalous dimension of the Hubbard-Stratonovich field in critical bosonic
CS QED3, see eq. (21). Note that we recover the anomalous dimension for the Hubbard-
Stratonovich field of the O(N f ) Gross-Neveu model [35] for κ = ∞, while for κ = 0 we
recover the results of refs. [19,36].

Concerning the β function of h, for g = 0 (and any λ) it reduces to the correct β function
of the cubic deformation Φ3 for a bulk scalar with Neumann boundary conditions, see (22).
In the limit where g → ∞ the β function that stays finite is the one of y = 2h/g3, which
corresponds to the cubic coupling in the Hubbard-Stratonovich field for Gross-Neveu models.
If we further consider λ = 0, this matches βy of the ungauged O(N f ) Gross-Neveu model
computed in [37]. Instead, if γ,λ → ∞ with κ fixed, it gives the β function of the cubic
coupling in Gross-Neveu CS QED3, which we thoroughly discussed in [18].

3.3 Conformal window for fermions

We are looking for conformal boundary conditions for the massless free scalar Φ alone. As in
the bosonic case, choosing λ= 0 leaves us with either Neumann or Dirichlet boundary condi-
tion for Φ, and no interesting dynamics. We shall instead consider the limit where λ,γ→∞
with κ constant, corresponding to coupling the bulk free scalar Φ with Neumann boundary
condition to fermionic QED3 with N f /2 Dirac fermions and with CS level k, at large N f and
large k (with κ= k/N f fixed). We introduce again the compactified variable

fg =
g2/16

1+ g2/16
∈ [0,1] , (58)

so that the β function for fg reads

β fg
=

64
3π2N f

fg(1− fg)

�

fg −
8π2(512κ2 −π2)
(π2 + 256κ2)2

�

+O(N−2
f ) . (59)

Note that the β fg
above equals the β fg

for the bosonic case, see eq. (24). We conclude that,
beside the free conformal boundary conditions at fg = 0,1, where the bulk decouples, we find
again a family of zeros of β fg

parametrized by κ as

fg =
8π2(512κ2 −π2)
(π2 + 256κ2)2

, (60)

where β ′fg
> 0 and hence g is marginally irrelevant at these fixed points. The unitarity regions

corresponding to fg ∈ (0,1), depicted in orange in fig. 9(a) and 9(b), respectively, are again

π

16
p

2
< κ <

π

16
(
p

5−
p

2) ∨ κ >
π

16
(
p

5+
p

2) , (61)

where we take κ ≥ 0 without loss of generality. We also need to analyze the β function of h
from (54), which in the limit we are considering reads

βh =
1

π2N f

�

−
18h3

(1+ g2/16)3
+

3g4h
8(1+ g2/16)2

+
256π3 g3(3π2 − 1280κ2)κ

3(π2 + 256κ2)3

�

+O(N−2
f ) . (62)

Within the region of eq. (61) we find three families of real zeros for βh, which are depicted in
red, blue, and green in fig. 9. The red and blue family correspond to fixed point where β ′h < 0
and the cubic operator is marginally relevant, whereas for the green family β ′h > 0 and the
cubic operator is marginally irrelevant. Combining with the constraint from vacuum stability
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Figure 9: Interacting, unitary, and stable conformal boundary conditions for the free
massless scalar. Different colors correspond to different solutions of βh = 0. The fixed
points corresponding to stable vacua must lie inside the gray region |h| < g3/12π,
which itself is contained into the unitarity region of eq. (61), corresponding to real
fixed points and depicted in orange. In (a), the black dot is at (κ−,−0.6654). In (b),
the black dot is at (κ+, 0.0081).

(46),11 depicted in gray in fig. 9, only one of these solutions corresponds to unitary and stable
interacting conformal boundary conditions. They happen when:

κ− ≃ 0.1460< κ <
π

16
(
p

5−
p

2)≃ 0.1614 ∨
π

16
(
p

5+
p

2)≃ 0.7167< κ < κ+ ≃ 4.7170 . (63)

In the first interval, both values of the fixed points of g2 and h are monotonically increas-
ing function of κ, ranging from (g2, h) ≃ (8.569,−0.6654) at κ = κ− to (g2, h) = (∞,∞)
at κ = π(

p
5 −
p

2)/16. In the second interval, both values of the fixed points of g2 and
h are instead monotonically decreasing function of κ, ranging from (g2, h) = (∞,∞) at
κ= π(

p
5+
p

2)/16 to (g2, h)≃ (0.4542, 0.0081) at κ= κ+. Hence, the decoupling limit with
Gross-Neveu QED3 (but not fermionic QED3) on the boundary is reachable from a limit of the
family of interacting boundary conditions, following the green curves of fig. 10.

The eigenvalues of the matrix of derivatives of the β functions with respect to g and h,
evaluated at the fixed points, give the anomalous dimensions γ± of the classically marginal
operators. The result is shown in fig. 10, where we plot N f γ± as a function of κ in the
conformal window (63). Both anomalous dimensions are strictly positive in these regions,
showing that the the classically marginal operator are actually marginally irrelevant. At either
κ= π(

p
5∓
p

2)/16 (right endpoint in fig. 10(a) and left endpoint in fig. 10(b), respectively)
one operator becomes marginal and h→∞, but correspondingly the bulk scalar decouples.
As for bosons, also here we observe level crossing at a specific value of κ, given by κ≃ 1.7806,
where N f γ+ = N f γ− ≃ 0.3310. Again, there are also strongly relevant singlet boundary pri-
maries in theory, which need to be tuned to zero in order to reach the conformal point. These
are: Φ which has protected dimension 1, ∂yΦ which has dimension 2, and a linear combina-
tion of Φ2 and χ̄χ, independent from the one which is fixed by the boundary condition, i.e.
∂yΦ=

gp
N f
χ̄χ + 3hp

N f
Φ2. To determine the linear combination, and its scaling dimension, we

11We have to plug in (46) the value of g at the fixed point as a function of κ, computed in (60).

20

https://scipost.org
https://scipost.org/SciPostPhys.16.4.090


SciPost Phys. 16, 090 (2024)

0.150 0.155 0.160

0

2

4

6

8

(a)

1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

(b)

Figure 10: Anomalous dimensions of the classically marginal operators in the con-
formal window. The dashed black lines denote the boundaries of the intervals in
eq. (63). In (a), at κ = κ− the two operators are non-degenerate, with small and
positive anomalous dimensions, while at κ= π(

p
5−
p

2)/16 one operator becomes
marginal. In (b), one operator becomes marginal at κ = π(

p
5+
p

2)/16, while at
κ = κ+ the two operators are non-degenerate, with small and positive anomalous
dimensions. The two curves intersect at (κ, N f γ)≃ (1.7806,0.3310).

can adapt the argument used in [17] to determine the anomalous dimension of the operator
appearing in the boundary condition. In this case the renormalized operators at scale Λ′ are
defined in terms of those at scale Λ as

(χ̄χ)Λ′ = Z11(χ̄χ)Λ + Z21(Φ
2)Λ ,

(Φ2)Λ′ = Z12(χ̄χ)Λ + Z22(Φ
2)Λ .

(64)

Plugging these equations in the boundary condition

∂yΦ= (Z11 gΛ′ + Z123hΛ′)
1

Æ

N f
(χ̄χ)Λ + (Z21 gΛ′ + Z223hΛ′)

1
Æ

N f
(Φ2)Λ , (65)

and imposing that ∂yΦ does not renormalize, one obtains
�

Z11 Z12
Z21 Z22

��

gΛ′
3hΛ′

�

=

�

gΛ
3hΛ

�

. (66)

Calling γi j = (
d

logΛZik)Z−1
k j , we get

�

γ11 γ12
γ21 γ22

��

g
3h

�

=

�

βg
3βh

�

. (67)

These are the two linear relations for the four entries of the anomalous dimension matrix
γi j , which come from the non-renormalization of ∂yΦ. Even though they constrain γi j , they
are not sufficient to determine the two eigenvectors and eigenvalues in terms of the known
functions βg and βh. However, if we specialize to the case of our interest of the leading non-
trivial order O(1/N f ), the situation simplifies because there are no diagrams contributing to
the off-diagonal mixings Z12 and Z21. As a result up to O(1/N f ) the matrix γi j is diagonal and
we simply get

γχ̄χ = γ11 =
βg

g
,

γΦ2 = γ22 =
βh

h
.

(68)
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In particular, working at this order, both anomalous dimensions vanish at the fixed point, and
both Φ2 and χ̄χ have scaling dimension 2. In particular also the linear combination which is
not fixed to be ∂yΦ has dimension 2.

More BCFT data in the conformal window

Finally, we can compute a few observables along the conformal window for fermions: CD,
a2
Φ, γ(1)

bτ
. Proceeding as in section 2.3 we find that the leading singlet boundary scalar has

scaling dimension ∆̂χ̄χ = 2 (as expected from the “modified Neumann” boundary conditions).
Furthermore, using that

C∂yΦ
=

1
π2

1

1+ g2

16

+O(N−1
f ) =

65536κ4 − 3584π2κ2 + 9π4

2562π2
�

κ2 + π2

256

�2 +O(N−1
f ) ,

CΦ =
1

2π2

g2

16

1+ g2

16

+O(N−1
f ) = −

π2

512 − κ
2

32
�

κ2 + π2

256

�2 +O(N−1
f ) ,

aΦ2 =
1
4
−

g2

32

1+ g2

16

+O(N−1
f ) =

1
4
−
π2

32

κ2 − π2

512
�

κ2 + π2

256

�2 +O(N−1
f ) ,

(69)

as well as

Cgχ̄χ = N f C∂yΦ
, ∆gχ̄χ = 2+O(N−1

f ) , C
bτ =

3N f

32π2
+O(N0

f ) , (70)

where the latter is the central charge of N f /2 free Dirac fermions, we find

CD =
1
2

�

C2
∂yΦ
+ 4C2

Φ

�

+O(N−1
f ) =

1
2π4

1+ g4

256

(1+ g2

16)2
+O(N−1

f )

=
1

�

κ2 + π2

256

�4

�

κ8

2π4
−

7κ6

128π2
+

235κ4

65536
−

127π2κ2

8388608
+

145π4

8589934592

�

+O(N−1
f ) , (71)

and

γ
(1)
bτ
=
∆gχ̄χ(3−∆gχ̄χ)

5

CΦCgψ̄ψ

C
bτ

=
8

15π2

g2

(1+ g2

4 )2

= −
π2

512 − κ
2

491520
�

κ2 + π2

256

�4

�

65536κ4 − 3584π2κ2 + 9π4
�

. (72)

These are the same functions of κ that we have found for bosons, however here κ is restricted
to lie in the interval (63). The anomalous dimensions of the classically marginal operators
differ in the two theories.

4 Conclusions

In this paper, we have constructed a family of interacting conformal boundary conditions for
a four-dimensional free scalar CFT. These conformal boundary conditions are consistent with
the currently available bootstrap bounds of [9]. Some of our leading-order predictions, for
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example those for CD, while being allowed are also close to saturating the bootstrap bounds.
A nice consistency check would be to see that the 1/N f corrections have the correct sign to fit
within the bound.

Some interesting common features of the two families of interacting boundary conditions
we have constructed are: they both break the Z2 symmetry that flips the scalar field, they
both break the reflection symmetry on the boundary, and they both feature three relevant
operators singlet under the boundary global symmetry, i.e. that need to be tuned to reach
the BCFT. It is natural to wonder whether any of these is a necessary condition in order for
an interacting boundary condition of the free scalar to exist. In particular, even though the
free scalar CFT in 4d is expected to describe generic Z2-breaking second-order transitions, the
presence of three relevant boundary deformations makes it hard to find models that realize
these boundary transitions, and it would be nice to find examples with less relevant operators.
See [12] for condensed matter inspired setups that realize boundary transitions similar to the
ones we studied here.

The setup with bulk gauge fields that we studied in this paper provides a way to realize
conformal 3d abelian gauge theories, through the decoupling limit, as also emphasized in [16].
An important class of operators that characterizes this theories are the monopole operators,
whose scaling dimensions have been studied using various methods, see e.g. [38, 39] and
references therein. An interesting direction for the future is to realize the monopole operators
in this boundary setup, as boundary endpoints of bulk ’t Hooft lines, and compute their scaling
dimensions through a new perturbative expansion in the bulk gauge coupling g. It remains
to be seen whether sensible extrapolations to g →∞ can be performed and used to estimate
these scaling dimensions.

On the more formal side, it is natural to investigate more broadly the space of possible
conformal boundary conditions for free CFTs. In the case of the free Maxwell CFT, it is easy
to build examples of interacting boundary conditions, and recently they were also studied
systematically with the conformal bootstrap in [40]. Some interesting results for the case
of free fermions were obtained in [41], and it would be interesting to perform a conformal
bootstrap study in that case as well.
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A Feynman rules

A.1 Dirichlet scalar + Neumann gauge field + N f /2 complex scalars

A.1.1 Propagators

Figure 11: Large-N f propagators of ∂yΦ, zm, and Aa for the Lagrangian (2).

A.1.2 Vertices

Figure 12: Vertices for the Lagrangian (2). The sextic vertex is completely symmetric
in the indices m, n, l and r, s, t.

A.2 Neumann scalar + Neumann gauge field + N f /2 Dirac fermions

A.2.1 Propagators

Figure 13: Large-N f propagators of Φ, χm, and Aa for the Lagrangian (40).
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A.2.2 Vertices

Figure 14: Vertices for the Lagrangian (40).
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