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Abstract

The transduction of free energy in metabolic networks represents
a thermodynamic mechanism by which the free energy derived from nu-
trients is converted to drive non-spontaneous, energy-requiring metabolic
reactions. This transduction is typically observed in processes that
generate energy-rich molecules such as ATP and NAD(P)H, which,
in turn, power specific reactions particularly biosynthetic reactions.
This property establishes a pivotal connection between the intricate
topology of metabolic network and their ability to reroute energy for
functional purposes. The present study proposes a dedicated frame-
work aimed at exploring the relationship between free-energy dissipa-
tion, network topology, and metabolic objectives. The starting point is
that, regardless of the network topology, nonequilibrium chemostatting
conditions impose stringent thermodynamic constraints on the feasible
flux steady states to satisfy energy and entropy balance. An analysis of
randomly-sampled reaction networks shows that the network topology
imposes additional constraints that restrict the accessible flux solution
space, depending on key structural features such as reaction’s molecu-
larity, reaction cycles and conservation laws. Notably, topologies fea-
turing multimolecular reactions that implement free-energy transduc-
tion mechanisms tend to extend the accessible flux domains, facili-
tating the achievement of metabolic objectives such as anabolic flux
maximization or flux rerouting capacity. This approach is applied to
a coarse-grained model of carbohydrate metabolism, highlighting the
structural requirement for optimal biomass yield.
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Introduction

Cellular metabolism is a nonequilibrium process in which the free energy
derived from the environment is converted into chemical work that sustains
many cellular processes [Hill, 1983, Qian, 2007]. The nature and availability
of free energy sources therefore impose fundamental energetic constraints
that require efficient partitioning and allocation of such limited resources
[Yang et al., 2021]. The landscape of free-energy dissipation throughout
the metabolic network tends to be inhomogeneous and context-dependent
[De Martino et al., 2012, Park et al., 2016, 2019, Niebel et al., 2019]. On
the one hand, metabolic reactions operating far from equilibrium enable
an efficient enzyme usage with a high chemical motive force per enzyme
and flexible flux control via enzyme regulation [Park et al., 2016, Dai and
Locasale, 2018]. On the other hand, reactions operating near equilibrium
enable a flexible flux control by substrate and product concentrations, for
instance along the glycolytic pathway [Park et al., 2019, Britt et al., 2022].
Free energies of reaction are therefore expected to subtly contribute to objec-
tive tradeoffs involving metabolic and enzyme efficiencies and determining
metabolic fluxes in various conditions [Fendt et al., 2010, Schuetz et al.,
2012, Maarleveld et al., 2015, Wortel et al., 2018]. Network topology itself
plays an important role in determining free energies over reactions, particu-
larly through the key roles of energy and electron/proton carriers [Reich and
Selkov, 1981, Xiao et al., 2018, Rigoulet et al., 2020, Zerfaß et al., 2019, West
et al., 2023] in coupling favorable and unfavorable reactions such as those
in catabolic and anabolic pathways. The intricate interplay between net-
work topology, flux objectives, and thermodynamic constraints in metabolic
pathways necessitates dedicated modeling frameworks.

From a purely thermodynamic perspective, metabolic networks can be
described as open chemical reaction networks (CRN) where reactions are
reversible and driven by chemical motive forces [Alberty, 2005, Beard and
Qian, 2007] and where nutrient sources and solvents can be considered as
chemostat reservoirs, imposing nonequilibrium boundary conditions [Polet-
tini and Esposito, 2014]. Chemical reaction network theory has been de-
veloped to explore the link between the nonequilibrium properties of flux
and concentration states and the structural properties of reaction pathways
[Polettini and Esposito, 2014, Rao and Esposito, 2016]. Some general rela-
tions can be established based on the breakage of conservation laws through
chemostatting, or the decomposition of steady-state entropy production in
terms of reaction cycles [Polettini and Esposito, 2014]. This framework is
thus valuable for specifically addressing both the mechanisms and the roles
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of free-energy transduction in metabolic networks. This issue can be ap-
proached at the level of specific reaction pathways [Qian and Beard, 2006,
Wachtel et al., 2022] as well as through a more systematic sampling approach
of chemical reaction networks. The solution spaces of dynamic models are
often sampled by varying enzyme kinetic parameters, assuming implicitly
regulation of enzyme activities [Schellenberger and Palsson, 2009, Machado
et al., 2012, Pfeuty et al., 2023], but the topologies of metabolic reaction
networks can also be sampled to capture the qualitative differences between
distinct classes of topologies [Fischer et al., 2015].

The present study aims to unveil the relationships between the topol-
ogy, nonequilibrium thermodynamics, and functional objectives in metabolic
networks. The methods section first outlines the general framework of
chemostatted chemical reaction networks, describing nonequilibrium flux
states in terms of the free energy dissipation rate across reactions, and high-
lighting the importance of reaction cycles and conservation laws. These
core thermodynamic and topological properties motivate a comprehensive
approach to computing the feasible flux space, constrained primarily by
chemostatting boundary conditions and subsequently by network topology.
Random and systematic sampling of both kinetic and topological proper-
ties of CRNs is employed to comprehensively characterize the metabolic
state space under various chemostatting conditions, addressing the signif-
icance of several topological features. First, a systematic comparison of
the flux solution domains in chemical reaction networks composed of uni-
molecular versus bimolecular reactions highlights qualitative differences in
the accessible repertoire of nonequilibrium flux states and the fulfillment of
metabolic objectives related to anabolic or adaptive functions. Secondly,
the minimal topologies of bimolecular CRNs that reach these metabolic
objectives are identified, emphasizing the key role of free-energy transduc-
tion mechanisms and other topological requirements. Finally, the rela-
tionship between free-energy transduction mechanisms, metabolic solution
space, and biomass yield objective is investigated in coarse-grained and
thermodynamics-informed models of carbohydrate metabolism.

Methods

Nonequilibrium steady states in open chemical reaction net-
works

We consider an open chemical reaction network (CRN) comprising ns in-
ternal species, and nc chemostatted external species (also termed chemostat
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species) whose concentrations are fixed, following a framework developed by
Esposito and colleagues [Polettini and Esposito, 2014, Rao and Esposito,
2016] (Fig. 1A). The species interact through nr reversible chemical reac-
tions, including a set of exchange reactions with the chemostat reservoirs.
The topology of the CRN is represented by the stoichiometric matrix S,
which contains the stoichiometric coefficient for the molecular species i in-
volved in the reactions j. This matrix can be decomposed in various ways
to analyze different aspects of network’s structure:

S ≡
(
Sx
Sy
)

≡ S− − S+ , (1)

where Sx,y contains, respectively, the stoichiometric coefficients for inter-
nal versus chemostat species, with concentrations denoted by x⃗ and y⃗,
while S+,− contains, respectively, the non-negative coefficients for forward
versus backward reactions. Similarly, the net flux of a reversible reac-
tion can be decomposed into directed forward and backward fluxes, Jr =
J+
r −J−

r , whose ratio is determined by the local detailed balance, J+
r /J−

r =
exp (−∆Gr/RT ) [Beard and Qian, 2007]. The chemical potential per mole
of internal and chemostat species is given by µi = µ◦

i + RT ln (xi/Z) and
µy
i = µ◦,y

i +RT ln (yi/Z) where R denotes the gas constant (RT ≈ 2.5 kJ/mol
at T = 300K) and Z the standard state concentration set to 1M. The Gibbs

free energy of reaction r is given by ∆G
(◦)
r = µ⃗(◦) · S:,r. The directed fluxes

following the mass-action law are given by J
+/−
r = k

+/−
r

∏
i x

S+/−
i,r

i . Using a
single overall rate constant kr = k+r e

∆G◦
r/2RT = k−r e

−∆G◦
r/2RT , the net flux

can be expressed as a combination of thermodynamic and kinetic parame-
ters:

Jr = kr

(∏
i

x
S+i,r
i e−∆G◦

r/2RT −
∏
i

x
S−i,r
i e∆G◦

r/2RT

)
. (2)

Accordingly, the steady-state flux pattern J⃗ and chemical potential pattern
µ⃗ of a CRN satisfies:

Sx J⃗(µ⃗) = 0 . (3)

The nonequilibrium nature of the steady-state solution of Eq. 3 is enforced
by the chemostatting condition where both the extracellular environment
and the intracellular solvent can be treated as chemostat reservoirs [Polettini
and Esposito, 2014]. Specifically, it is assumed that nc internal species are
exchanged with reservoirs using Fick’s law of diffusion of exchanged fluxes:

Jr = k̃r

(
eµ

y
r/RT − eµr/RT

)
for r = 1, ., nc , (4)
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where k̃r = kr Z e−µ◦
r/RT and µr=1,.,nc denotes the chemical potential of ex-

changed internal species. To maintain fixed the concentrations of chemostat
species, chemostat fluxes must satisfy J⃗y = −SyJ⃗ and are thus equal to ex-
change fluxes Jy

r = Jr for r = 1, ., nc. An important macroscopic observable
of the steady state is the overall dissipation rate of free energy, that is the
sum of dissipation rate for all reactions, and can be thus decomposed into
the contributions of exchange versus internal reactions:

Tσ =

TσE︷ ︸︸ ︷
−

nc∑
r=1

Jr∆Gr

TσI︷ ︸︸ ︷
−

nr∑
r=nc+1

Jr∆Gr , (5)

where σ is the (molar) entropy production rate. It has been demonstrated
that the steady dissipation rate of a chemostatted CRN can be conveniently
expressed as a function of chemostat fluxes and potentials as Tσ = −µ⃗y · J⃗y

[Polettini and Esposito, 2014]. By treating exchanged internal species as
effectively chemostatted species, a similar expression can be used for the
internal dissipation rate:

TσI = −
∑

i=1,nc

µiJi . (6)

The role of chemostatting in shaping the steady-state dissipation pattern
is influenced by the topological properties related to reaction cycles and
conservation laws [Polettini and Esposito, 2014]. The basis vectors of the
right null space (kernel) of the internal stoichiometric matrix Sx define a
set of reaction cycles j⃗, which are similar to elementary flux vectors [Klamt
et al., 2017]. Following the terminology proposed in [Polettini and Esposito,
2014], these cycles are termed emergent cycles (jec), as they emerge from
chemostatting some species as they do not belong to the reaction cycles
of the entire non-chemostatted CRN (S⃗jec ̸= 0). Reaction cycles of both
the internal CRN and the entire non-chemostatted CRN are termed closed
cycles (S⃗jcc = Sxj⃗cc = 0), as they do not involve exchange reactions with
chemostats. A key functional distinction is that only emergent cycles carry
a flux that dissipates chemostat free energy. The basis vectors of the left null
space (cokernel) of S define conservation vectors denoted ℓ⃗ = (ℓ⃗x, ℓ⃗y), where
ℓ⃗x.x⃗+ ℓ⃗y.y⃗ remains conserved over time. Chemostatting some species leads
to broken conservation laws when ℓ⃗y ̸= 0 meaning that conserved quantities,
such as mass or atom nuclei, are exchanged with reservoirs, thereby imposing
a linear constraint on chemostat fluxes (see Supporting Material for details):

ℓ⃗y.J⃗y = 0 (7)
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Importantly, the respective numbers of boundary conservation vectors nbc

and emergent cycles nec are linked and bounded by the relation nbc + nec =
nc. Another topological feature of interest is the molecularity of a reaction
nm, i.e., number of reactants involved in an elementary reaction. Two main
classes of network topologies can be distinguished based on whether internal
reactions are exclusively unimolecular nm = 1 or bimolecular nm = 2, both
characterized with the same mass conservation vector ℓ⃗ = 1⃗.

Feasible flux space constrained by chemostatting and network
topology

A steady chemostat flux state J⃗y is considered thermodynamically feasible
when it satisfies the weak criterion of non-negative internal entropy pro-
duction σI ≥ 0 (Fig. 1B). The values J⃗y that correspond to the boundary
σI = 0 of this thermodynamically feasible flux space can be determined by
combining Eqs. 4 and 6, in addition to the conservation constraint given by
Eq. 7: ∑

i=1,nc

Jy
i log

(
eµ

y
i /RT − Jy

i /k̃i

)
= 0 (8a)

ℓ⃗y,i.J⃗y = 0 for i = 1, nbc . (8b)

The boundary manifold is of dimension nc−nbc−1 ≡ nec−1 and fully deter-
mined by the chemostatting condition: the chemical potentials of chemostat
species µ⃗y, the exchange rate constants with chemostat reservoirs kr=1,nc

and the chemostat part of broken conservation laws ℓ⃗y,i=1,nbc . The largest
feasible flux space is thus obtained when there is a single broken conservation
vector associated with mass conservation. Adding conservation constraints
associated for instance to atomic composition of chemosttated species would
restrict the feasible flux space to a subspace of lowest dimensionality.

A CRN of given topological and thermodynamic structure (defined by
Sx and µ⃗◦) covers a subdomain of such feasible space, but can approach
the boundary manifold in some asymptotic limit in the kinetic space, such
that ∆Gi=nc+1,nr → 0 and σI → 0. For such quasi-equilibrium state, species
chemical potentials are a linear combination of conservation vectors [Rao and
Esposito, 2016] with µi=1,nc =

∑
j=1,nbc

αjℓ
y,j
i given that ℓxi = ℓyi . Eq. 8a

can be rewritten as a function of µi=1,nc instead of Jy
i to finally obtain:

∑
i=1,nc

k̃i

 ∑
j=1,nbc

αjℓ
y,j
i

eµ
y
i /RT −

∏
j=1,nbc

eαjℓ
y,j
i /RT

 = 0 (9)
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For a general class of chemostatted CRNs with a single broken mass con-
servation vector (nbc = 1 and ℓ⃗ = 1⃗), µ⃗ = µ∗1⃗ is incorporated into Eq. 9 to
obtain: ∑

i=1,nc

k̃i

(
eµ

y
i /RT − eµ

∗/RT
)
= 0 . (10)

The unique solution µ∗ of Eq. 10 is replaced into Eq. 4 to obtain the chemo-
stat flux solutions J⃗y and the overall dissipation rate given by Eq. 5:

Tσ∗ =
∑

i=1,nc

µy
i k̃i

(
eµ

y
i /RT −

∑
i k̃ie

µy
i /RT∑

i k̃i

)
. (11)

For nbc = 1 and ℓ⃗ = 1⃗, the only nonequilibrium steady state of vanishing in-
ternal entropy production is featured with homogeneous chemical potentials
µi = µ∗ and maximum entropy production rate σ = σ∗. This state can be
naively illustrated in the simplest chemostatted CRN y1 ↔ x1 ↔ x2 ↔ y2.
In the limit k3 ≫ k1,2, the steady-state concentrations of x1 and x2 are dom-
inated by the backward and forward fluxes through r3, resutling in quasi-
equilibrium (∆G3 → 0 and µ1 ≈ µ2) and maximal entropy production rate
σ → σ∗ (Eq. 11). In the opposite limit k3 ≪ k1,2, the exchange reactions
are in quasi-equilibrium (µ1 ≈ µy

1 and µ2 ≈ µy
2) such that J1,2,3 ≈ 0 and

σ → 0. TσI = −J3∆G3 therefore vanishes in these two limits and reaches a
maximum between.

Sampling approach

A sampling approach is designed to investigate how the solution domain in
the space of exchanged fluxes depends on the network topology (Fig. 1C).
It involves computing solutions to the steady-state equation Eq. 3 while
randomly sampling the rate constant parameters k⃗r, the standard chemical
potentials µ⃗◦ and the stoichiometric matrices S associated with a given class
of topology. The sampling procedure is detailed in the section 1.2 and Table
S1 of the Supporting Material and summarized below. The sample size
ranges between 104 and 106, which is set on a case-by-case basis to avoid both
undersampling and oversampling. The sampled range of thermodynamic
parameters is µ◦

i=1,ns
∈ [−6, 6] kJ/mol (unless otherwise specified). The

sampled range of kinetic rate constants is kr=nc+1,nr ∈ [10−2, 10] in units
of s−1 or s−1.M−1, respectively for unimolecular or bimolecular reaction,
given a normalized time unit with kr=1,nc = 1 s−1. Random stoichiometric
matrices Sx are generated by randomly choosing substrates and products for
all reactions with certain restrictions: (i) an equal number of reactants and
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products, (ii) the same species cannot be both a substrate and a product
(excluding autocatalytic reactions), (iii) the exclusion of duplicated reaction
schemes. Some topological hyperparameters are fixed, such as the size of the
CRN set to ns = 8 and nr = 12 (unless otherwise specified), and the same
molecularity for all internal reactions set to nm = 1 or nm = 2. This specific
sampling approach is complemented by control simulations to ensure that
the qualitative results are not sensitive to network size or sampled parameter
ranges (Figs. S2-S3). The volume of the sampled solution space relative to
the volume of the feasible flux space is quantified by:

V =

∫ +∞
−∞ f2(J⃗

y, S, µ⃗◦) dJy
1 · · · dJy

nc−1∫ +∞
−∞ f1(J⃗y) dJy

1 · · · dJy
nc−1

(12)

where f1(J⃗
y) = 1 when the criteria of thermodynamic feasibility (Eq. 8) is

met and 0 otherwise, and f2(J⃗
y, .) = 1 when a steady-state solution of Eq. 3

can be found by sampling k values in a CRN of given topology.

Results

Nonequilibrium patterns of free-energy dissipation in random
chemical reaction networks

A CRN coupled to two chemostats is the most basic framework for perform-
ing a random sampling analysis of nonequilibrium properties, such as the
overall versus the internal dissipation rates (Eqs. 5 and 6; Fig. 2A). First, the
overall dissipation rates across a large set of CRNs with random topologies
and kinetic rates (see Methods) are broadly distributed between 0 and the
maximum value σ∗ computed with Eq. 11 (upper panel of Fig. 2B). Charac-
teristics of the distribution weakly depend on the network size and reaction
molecularity (middle panel of Fig. 2B), while it significantly depends on the
averaged kinetic constant of internal reactions kr=nc+1,nr (lower panel of
Fig. 2B). Faster (resp. slower) internal reactions are correlated with higher
dissipation rates, consistent with the predicted asymptotic behaviors where
σI → 0 and σ → σ∗ for kr=nc+1,nr ≫ kr=1,nc . In this limit, the internal
concentration states of the CRN are dominated by internal reaction fluxes
such that the system converges to a quasi-equilibrium state.

In these random CRNs, the pattern of free energy, flux and entropy
production over reactions exhibits a typical dependency on the overall dissi-
pation rate Tσ (Fig. 2C). Regardless whether reactions are unimolecular or
bimolecular, the sampled states of maximum entropy production rate σ ≲ σ∗
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are characterized with ∆G → 0 (near-equilibrium internal reactions) and
µi → µ∗ given by Eq. 10 (homogeneous chemical potentials). More interest-
ingly, an increased dissipation rate in random CRNs coincides with increased
maximum reaction fluxes and decreased maximum reaction free energies or
species chemical energies. Such opposing trends manifest themselves with
a maximal value of internal dissipation rate TσI for a non-maxium level of
total dissipation rate Tσ, highlighting a tradeoff where the free-energy dis-
sipation through internal reactions necessitates the dissipation of chemostat
free energy to power some internal flux but also dissipate chemostat free
energy which is no longer available to power fluxes through exchanged re-
actions. The quantitative characteristics of such tradeoff, however, depends
on the chemostatting parameters such as their chemical potentials (Fig. S4).

The main difference between unimolecular and bimolecular reaction net-
works lies in the strict bounding of thermodynamic quantities (compare left
and right panels of Fig. 2C). In unimolecular CRNs, the chemical poten-
tials of internals species range between the chemical potentials of the two
exchanged internal species with µy

2 ≤ µ2 ≤ µi ≤ µ1 ≤ µy
1, imposing an upper

bound on the free energies of all reactions with |∆Gr| ≤ µ1 − µ2 ≤ µy
1 − µy

2.
In contrast, bimolecular CRNs exhibit a much broader range of nonequi-
librium thermodynamic states, often violating the aforementioned bounds.
This behavior can be attributed to both the increased free energy from ad-
ditional metabolites involved in the reactions and the greater degrees of
freedom resulting from the multivariate dependencies of the reaction rates.
Such broader steady-state solution domain in the space of chemical poten-
tials and free energies can lead to qualitative functional differences in the
high-dimensional flux state space, an issue that is explored in the following
sections.

Requirement for multimolecular reactions and free-energy trans-
duction to achieve anabolic function

To investigate more thoroughly how the accessible flux space is determined
by the network topology, we consider CRNs coupled to a third chemostat
reservoir with a chemical potential hierarchy µy

3 > µy
1 > µy

2 (Fig. 3A). A
negative exchange flux J3 < 0 thus mimics an anabolic or biosynthetic pro-
cess that produces energy-rich compounds, here assumed to be exported
from the CRN. Given such chemostatting conditions, the two-dimensional
feasible flux space can be computed using Eq. 8, showing that maximum
entropy production σ = σ∗ would coincide with the maximum influx of
energy-rich compounds (J3 > 0), whereas maximum efflux of energy-rich
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species −J3 = J∗ occurs for a much lower entropy production rate (black
lines and violet circles in Fig. 3B,C). The capacity of CRNs to achieve neg-
ative J3 values is investigated by computing the steady flux solutions of
Eq 3 for a large set of CRNs of randomly-varied topologies and kinetics,
distinguishing two main classes of topologies: unimolecular and bimolecu-
lar reaction networks. Unimolecular reaction networks fail to achieve an
anabolic flux mode with J3 < 0 (Fig. 3B), which can be naively explained
by the allowed range of chemical potentials (µy)min < µi < (µy)max pre-
cluding J3 < 0 as µ3 cannot be larger than the highest chemostat potential
µy
3. Relieved from this constraint, bimolecular reaction networks cover the

entire feasible flux domain, including the anabolic mode where J3 < 0 and
approaching the maximum feasible value −J3 = J∗ (Fig. 3C).

Given that bimolecular reaction networks can virtually cover the entire
feasible flux domain, the subsequent inquiry revolves around characterizing
the topological features required to reach the anabolic objective of maximiz-
ing −J3. The flux solution domain of diverse bimolecular CRN topologies
can be kinetically sampled and shows a very distinct capacity of maximiz-
ing −J3, ranging from (−J3)

max being positive, slightly negative, or close
to J∗ (Fig. 3D). The distribution of the maximum anabolic flux (−J3)

max

across randomly-sampled CRN topologies demonstrates indeed that only a
small fraction of multimolecular network topologies can display an anabolic
flux, where the small subset having two broken conservation laws (nbc = 2)
is more prone to achieving the maximum anabolic flux as depicted by the
shape of the sampled distribution (Fig. 3E). The key topological features
required for reaching anabolic objectives can be identified by seeking the re-
action network of minimal topological complexity that achieves −J3 ≃ J∗.
The minimal CRN with optimal anabolic capacity comprises a simple set
of nr = 5 reactions involving ns = 5 species, including two non-exchanged
internal species whose interconversions are coupled to the reactions inter-
converting exchanged internal species (Fig. 3F). The substantial chemical
energy difference between these two non-exchanged internal species, where
µ4 ≫ µ5, drives the transduction of free energy released in the conversion
from the nutrient species µ1 into the waste species µ2, to power the con-
version from nutrient species to anabolic species µ3. This free-energy trans-
duction process supporting anabolic function is implemented at the level
of the stoichiometric matrix through the existence of one emergent cycle,
and importantly also, two broken and one unbroken conservation vectors
(mass conservation: ℓ⃗x,1 = 1⃗; structural conservation: ℓ⃗x,2 = [2, 0, 4, 1,−1];
energy-carrier conservation: ℓ⃗x,3 = [0, 0, 0, 1, 1]). Accordingly, the kineti-
cally sampled flux solution domain of this minimal model coincides with
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a line along a single elementary flux vector approaching the optimal state
J3 = J∗ for fast enough internal reaction constants k4 and k5 (Fig. 3G). In
relation to Eq. 9, this quasiequilibrium state is indeed decomposable into
conservation laws µ⃗ =

∑
i=1,3 αiℓ⃗

x,i where α⃗ ≈ [−4.2, 2.84, 2.84]. Fig. 3G
also shows that this one-dimensional flux domain associated with maximum
−J3 is one of many flux line domains associated with CRNs containing two
nontrivial conservation laws. It is remarkable that those CRNs cover only
domains that are inaccessible to unimolecular networks (compare Figs. 3G
and 3B). Although two broken conservation laws are neither sufficient nor
necessary to exhibit states associated with J3 < 0, the role of this topo-
logical feature in maximizing −J3, regardless of network size, demonstrates
the requirement for specific structural constraints to optimally redirect free
energy for anabolic purposes.

Requirement for closed cycles and free-energy transduction
to achieve metabolic flexibility

In addition to biosynthetic objectives, the ability to flexibly reroute fluxes
through regulated kinetics is a crucial aspect of metabolic function. To
address this issue, we consider a slightly different chemostatting protocol
involving two nutrient species, with equally high chemical potential, and
one waste species with much lower chemical potential (Fig. 4A). The goal
is to explore whether certain topologies exhibit a greater capacity to man-
ifest a broad range of functional flux states, such as co-consumption, se-
lective consumption, or export of nutrient species. Similar to the previous
chemostatting condition investigated in Fig. 3, only bimolecular reaction
networks demonstrate the ability to fully access the whole thermodynami-
cally feasible flux space, including flux states characterized with the export
of nutrient-like species J1,2 < 0 (compare Figs. 4B and C).

The subsequent question is whether and which specific CRN topologies
are more prone to display the broadest flux solution domain including states
that maximize exchange fluxes. Again, the flux solution domains of diverse
bimolecular CRN topologies can be kinetically sampled and show very dis-
tinct flux domain size quantified by a normalized volume V using Eq. 12
(Fig. 4D). Distribution of V across a random set of CRN topologies broadly
ranges between 0 and 1, but different topologies are more or less prone to
display a broad flux solution space. Unimolecular reaction networks show
two peaks, around 0.6 associated with the capacity to fill the whole sam-
pled space shown in Fig. 4B, and half this value associated with topologies
prone to import preferentially one of the two nutrient species. In contrast,
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bimolecular reaction networks shown a broader range of flux domain size
including smaller and larger flux domains than unimolecular reaction net-
works. Interestingly, only bimolecular reaction networks involving closed
reaction cycles are statistically much more prone to display highest values
for V approaching one (Fig. 4E). It is worth noting that, for the same number
of species, the number of closed cycles increases with the number of reactions
or the number of unbroken conservation laws. The key topological features
required for displaying the broadest flux solution domain can be again identi-
fied by seeking for the CRN of minimal complexity that maximizes V. Such
minimal topology is shown to comprise nr = 7 reactions between ns = 5
species, including one unbroken conservation law where x4 + x5 = L and
one closed cycle involving all internal reactions (Fig. 4F). Kinetic sampling
of this minimal CRN highlights that steady-state flux solutions cover nearly
the entire feasible space, including the possibility of reaching the boundary
of the feasible flux space at several locations corresponding to the modes of
co-consumption, selective consumption and selective export of each nutrient
(Fig. 4G). The presence of a closed cycle confers the possibility to imple-
ment various simple CRN topologies capable of achieving a given optimal
flux configuration. For instance, k4,5 = 0 or k6,7 = 0 would generate mini-
mal network topologies similar to the one depicted in Fig. 3F: each of these
topologies is characterized by two broken conservation laws and the ability
to maximize the export flux of either nutrient species. It is also worth not-
ing that the sampled flux states are all associated with µ4 > µ5, indicating
that the same energy-carrier species is exploited to transduce free energy to
sustain a diversity of functional flux modes.

In summary, the functional capacity to exhibit a very diverse range of
flux states is enhanced in network topologies comprising closed cycles, which
provide flexibility, and multimolecular reactions implementing free-energy
transduction mechanisms, enabling an expanded coverage of the thermody-
namically feasible flux space.

Case study of a coarse-grained model of carbohydrate metabolism

Multimolecular reactions and free-energy transduction mechanisms are com-
mon in cellular metabolic pathways, notably through reaction coupling in-
volving energy carriers such as ATP or NAD(P)H. The aim of this section
is to apply the proposed framework to a coarse-grained model of carbohy-
drate metabolism and investigate whether the relations between free-energy
transduction mechanisms and the geometry of the metabolic solution space
hold true. Consistent with the assumption of a chemostatted CRN, some
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internal species are exchanged with chemostat reservoirs (i.e., glucose, ac-
etate, water, carbon dioxide, oxygen, protons, biomass), while others are not
(Acetyl-CoA, ADP and ATP). Besides ATP, other important energy carriers,
such as NAD(P)H, are implicitly considered for through conversion factors,
although strict conservation laws for associated moieties are not enforced.
The metabolic pathways that interconvert exchanged species with internal
species (glycolysis, fermentation, aerobic respiration, biomass synthesis, and
basal ATP consumption) are described as single effective reactions (Fig. 5A).
The set of simplifying assumptions and thermodynamic properties of this
coarse-grained model are detailed in the Supporting Material and Table S2.

The assumption of steady chemostatting conditions allows for a strict
application of the framework designed to depict and compare the thermo-
dynamically feasible and kinetically sampled flux spaces (Fig. 5B). On the
one hand, the chemostatting properties and the conservation laws associated
with atom and other moieties (see Table S2) define the thermodynamically
feasible domain in the space of exchange fluxes using Eq. 8. On the other
hand, kinetic sampling of the steady-state flux solutions using Eqs 2 and 3
determines the accessible flux subdomain, highlighting whether the topol-
ogy is well-suited for maximizing a given flux objective. This comparative
approach can be applied to any chemostatting condition of interest, here as-
sociated with glucose and oxygen availability and lack of acetate, providing
several insights into the anabolic state of highest biomass yield (Fig. 5C).
Firstly, the sampled flux solution domain is polyhedron-shaped with ver-
tices corresponding to elementary flux modes (Table S2) or their combi-
nations, associated with a full fermentation mode, full aerobic respiration
mode and maximal biomass production through either fermentation only or
respiration only. Similar solution polyhedra and their vertices are obtained
with a constraint-based stoichiometric modeling approach, with the addi-
tional constraint imposed by the steady solutions in the chemical potential
(or concentration) space. Secondly, the sampled flux solution domain cov-
ers a broad, but not complete, part of the thermodynamically feasible flux
space, revealing topological constraints on thermodynamic efficiency. Ac-
cordingly, the optimal biomass yield obtained from kinetic sampling is lower
that the maximum biomass yield constrained by conservation laws and ther-
modynamics, and much lower than the maximum biomass yield considering
carbon conservation only, where all glycolytic carbons are converted into
biomass carbons (dashed lines in Fig. 5C). Lastly, the paradoxical result
shown in Fig. 3 where maximum anabolic flux coincides with non-maximum
nutrient import is still valid, but not observable as Jgex ≲ Jmax

gex (left panel
of Fig. 5C), due to higher chemical potential difference between chemostat
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species.
An important result obtained from the thermodynamic and sampling

analysis of random CRN is that free-energy transduction mechanisms, im-
plemented by a specific topologies, are crucial for efficient anabolic functions
and biomass yield. In the carbohydrate metabolism model, the sampled so-
lution domain in the space of biomass flux versus total dissipation rates
shows that a higher optimal biomass yield correlates with lower dissipation
rates (i.e., Tσopt ≪ Tσ∗ ≈ 60kJ/l/h) (Fig. 6A). The characteristics βmax,
βopt or Tσopt of these optimal biomass-yield states depend on model pa-
rameters (Fig. S5), such as the standard chemical potentiel of the effective
biomass species, chemostatting parameters like oxygen availability, and net-
work topological properties such as ATP demand and yield per reaction. It
is noteworthy that solutions seem to approach the feasible space boundary
where σI = 0, but a closer examination reveals that asymptotically reach-
ing this quasi-equilibrium state is challenging due to the high standard free
energies of many reactions (Fig. S4). The role of free energy transduction
in determining βopt is investigated by modulating the ATP yield of both
glycolytic and respiratory reactions (SATP,gly/ares). A higher ATP yield in
both reactions results in a broader flux solution domain and an increased
optimal biomass yield (Fig. 6B). This effect is mediated by changes in free-
energy efficiency through ATP-producing reactions, defined as the ratio of
the output over the input of free energy in a coupled process [Wachtel et al.,
2022]:

ηj = −
SATP,j(µATP + µH2O − µADP ′)

µprod,j − µsubs,j
. (13)

This efficiency varies between 0 (uncoupling) and 1 (maximum efficiency
at equilibrium of the coupled reaction). For a given topology, free-energy
transduction efficiencies can significantly vary depending on kinetically sam-
pled flux states, but they also increase strongly in stoichiometric matrices
with higher ATP yield per reactions (Fig. 6C). A more systematic compu-
tation of optimal biomass yield βopt as a function of ATP yield per reaction
SATP,gly/ares shows that biomass yield can approach its maximum feasible
value βmax (Fig. 6D). Interestingly, the optimal biomass yield drops af-
ter a certain level of ATP yield due to the thermodynamically unfavorable
glycolytic and respiratory reactions, given constraints on ADP and ATP
concentrations. In summary, the structural properties and feasible space ge-
ometry of the carbohydrate metabolic model coincide with those of the small
subset of sampled random multimolecular CRNs that achieves anabolic ob-
jectives, though there are notable differences related to higher standard free
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energies in the coarse-grained metabolic pathways.

Discussion

Feasibility constraints and optimality principles offer a powerful explana-
tory framework for the observed metabolic phenotypes with respect to high-
dimensional metabolic solution space [Schuetz et al., 2012, Maarleveld et al.,
2015]. Such framework suitably matches with a nonequilibrium thermody-
namics characterization of metabolic phenotypes, particularly in terms of
their entropy production rates, or equivalently free energy dissipation rates,
at both the reaction and system levels [Unrean and Srienc, 2011, Himeoka
and Kaneko, 2014, Niebel et al., 2019]. Nonequilibrium chemostatting con-
ditions are sufficient to draw a thermodynamically feasible domain in the
space of exchanged fluxes bounded by a manifold of vanishing internal en-
tropy production. The geometry of this feasible space is shaped by concen-
trations, standard chemical potential and exchange rates, and conservation
laws of the chemostat species. This space also displays few singular states,
characterized by null or maximum total entropy production, and those asso-
ciated with maximum internal entropy production. Of particular interest is
a subdomain within the feasible space that is accessible only through mul-
timolecular networks that implement free-energy transduction mechanisms.
This includes flux states associated with export of energy-rich species, sim-
ilar to biomass production fueled by the free energy derived from nutrients
and transduced by energy carriers. Based on this analogy, the theory sug-
gests that achieving the highest biomass yield necessitates maximizing free-
energy transduction efficiencies through near-equilibrium reactions, which
turns out to be challenged by experimental data. Free-energy transduction
in the energy-producing pathways such as glycolysis, fermentation, TCA,
and ETC is far from reaching the maximum efficiency of 1, with estimates
ranging between 0.3 and 0.6 [Wachtel et al., 2022]. This aligns with the
observation of significant dissipation of free energy in specific reactions such
as PFK, PK, ATP synthase reactions [Canelas et al., 2011, Park et al., 2016,
Niebel et al., 2019]. A plausible hypothesis for this discrepancy is that dissi-
pative, far-from-equilibrium reactions facilitate more efficient enzyme usage
and are therefore more effective targets for regulating pathway flux [Park
et al., 2016, Noor et al., 2016]. It would be intriguing to address whether an
optimal level for free-energy transduction efficiency could emerge from com-
bining constraints about enzyme utilization, flux controllability, and ther-
modynamic efficiency. This issue intersects with the search for cellular-scale
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constraints, such as those associated with overflow metabolism [De Groot
et al., 2020], including limits on free energy dissipation rate [Niebel et al.,
2019], constraints on protein allocation [Basan et al., 2015], or considerations
of macromolecular crowding effects [Beg et al., 2007].

In constraint-based stoichiometric modeling approaches, feasible flux so-
lution spaces generally correspond to flux polyhedra resulting from the inter-
section of the null space and a region defined by a set of inhomogeneous linear
constraints, such as bounded flux capacity or thermodynamically unfeasible
directionalities [Schellenberger et al., 2011, Klamt et al., 2017]. In particular,
thermodynamics-based metabolic flux analysis integrates constraints based
on experimental ranges of metabolite concentrations to restrict the solution
flux space and facilitate flux analysis [Henry et al., 2007]. Although related
through the concept of thermodynamically feasible extreme pathways, the
present approach provides a different perspective based on network topol-
ogy rather than on flux estimation or flux prediction. In this respect, two
distinct types of constraints are here considered: exchange fluxes are con-
strained by nonequilibrium chemostatting conditions, and internal fluxes
are constrained by thermodynamic forces imposed by steady-state concen-
trations. Distinguishing between external and internal constraints allows
for the definition of chemostatting-dependent flux solution space and subse-
quent determination of how much this space is occupied by flux solutions of
a given network topology. This approach identifies topological features that
contribute to the efficient utilization of thermodynamic forces to achieve
metabolic objectives such as flux maximization or flux rerouting. In other
words, optimal states, coinciding in constraint-based stoichiometric model-
ing with the vertices of the flux polyhedron [Maarleveld et al., 2015, Klamt
et al., 2017], can potentially be improved or impaired by specific modifica-
tions of the network topology, be it through regulation [Nikerel et al., 2012]
or truncation [Court et al., 2015, Long et al., 2018].

A key topological feature is the multimolecularity of chemical reactions,
common in metabolic networks due to the chemical interactions between
molecules of heterogeneous atomic composition [Haraldsdóttir and Fleming,
2016] and between multiple reactants among them energy and electron car-
riers [Zerfaß et al., 2019]. The ability of multimolecular reaction networks
to effectively achieve diverse metabolic objectives can be interpreted from
several related features that distinguish them from unimolecular reaction
networks. Firstly, multimolecular mass-action reactions introduce nonlin-
earities that generate a greater variability in species chemical potentials
and, consequently, a broader range of nonequilibrium concentration states
[Fischer et al., 2015]. Secondly, multimolecular reactions structurally im-
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plement energy coupling and free-energy transduction mechanisms [Wachtel
et al., 2022], not only between pathways but also more generally between
elementary flux modes. Lastly, the complex stoichiometries of multimolec-
ular networks commonly exhibit non-trivial conservation laws [Dal Cengio
et al., 2023], enabling a variety of optimal flux configurations beyond those
maximizing the entropy production rates. This particular property of mul-
timolecular networks relates to their hypergraph structure, which has mo-
tivated graph-theoretical and geometrical approaches to nonequilibrium re-
action networks [Dal Cengio et al., 2023].

The relevance of a nonequilibrium thermodynamic framework is particu-
larly valuable for studying metabolic shifts associated with diverse chemostat-
ting conditions, such as changes in nutrient sources [Wang et al., 2019,
Millard et al., 2023] or the division of labor and metabolite exchanges in
microbial communities [Perrin et al., 2020, Kost et al., 2023]. Nonequilib-
rium models do not necessarily strive for the scalability of constraint-based
stoichiometric modeling approaches, given the challenges in providing a
self-consistent thermodynamic description of genome-scale models. Coarse-
grained or modular models [Avanzini et al., 2023, Mori et al., 2023] are
better suited for including the main pathways involved in metabolic flexibil-
ity. Notably, pathway motifs such as cycles, bypasses, and shunts, are likely
to increase the number of reactions relative to species and to provide flexi-
ble flux rerouting in a regulation-dependent or chemostat-dependent manner
[Flamholz et al., 2013, Long et al., 2018, Schink et al., 2022]. In such models,
considering various moieties (e.g., phosphate, nicotinamide, CoA) is crucial
for exploring the role of conservation constraints in energy and biosynthetic
metabolism. Besides investigating the design logic of cellular metabolic net-
works, it is also appealing to refine the theoretical framework concerning the
restrictive assumptions of steady state and reversible mass-action kinetics.
The analysis of stability, fluctuations, or responses to driven time-dependent
chemostat conditions [Rao and Esposito, 2016] would enable understanding
dynamic behaviors such as metabolic shifts [Schink et al., 2022], jamming
and flux limits due to conserved moieties [Hatakeyama and Furusawa, 2017,
West et al., 2023] or instabilities arising from autocatalytic cycles [Barenholz
et al., 2017]. Furthermore, integrating saturated reaction kinetics, which
also relies on thermodynamic considerations [Ooka et al., 2023, Sahin et al.,
2023], represents a natural continuation in exploring the interplay between
thermodynamic and concentration-dependent contributions in shaping the
flux space of a metabolic network.
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Figure 1: Feasible and restricted flux spaces in chemostatted
chemical reaction networks. (A) Schematic representation of an open
chemostatted chemical reaction network involving nc chemostat species
(bold red-outlined circle) and ns internal species (circles) of standard chem-
ical potential µ◦. The network includes internal and exchanged reactions
(lines) with kinetic rate constants kr, and is described by a stoichiometric
matrix S. Steady-state variables of interest include the species’ chemical
potentials µi, chemostat fluxes Jy and total entropy production rate σ or,
equivalently, chemostat free-energy dissipation rate Tσ, which can be decom-
posed into contributions from exchanged and internal reactions: σ = σE+σI .
(B) The chemostatting conditions (µ⃗y, kr=1,nc) and the conservation laws

(ℓ⃗) define a thermodynamically feasible flux solution domain in the space
of exchange fluxes bounded by a manifold where σI = 0 (Eq. 8). (C) The
stoichiometric matrices of diverse network topologies exhibit different kinet-
ically sampled chemostat flux solution domain (Eq. 3).
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Figure 2: Distribution and bounds of thermodynamic variables in
random CRNs. (A) CRN coupled to two chemostats (µ⃗y = [5,−5], y⃗ =
1⃗ and k1,2 = 1) characterized by a maximum dissipation rate of Tσ∗ ≈
9.64 computed using Eq. 11. (B) Probability distribution functions of Tσ
(Eq. 5) for a set of 105 random CRNs with random Sx, kr=nc+1,nr and µ◦

i .
Upper panel: default values for ns, nr and nm. Middle panel: Example of
varied values for nm or ns and nr. Lower panel: same as upper panel, but
with fixed kinetic rate constants kr=nc+1,nr = 0.01, 0.1, 1, or 10 instead of
randomly sampled. (C) Distribution of thermodynamic variables associated
with reactions and species as a function of the total free-energy dissipation
rate Tσ in the CRN, for a set of 104 random CRNs with unimolecular (left
panels) or bimolecular (right panels) reactions. The violet line represents
TσI computed from Eq. 7, and the blue line represents µ1 − µ2, bounding
the reaction free energy only for nm = 1. All quantities are expressed in
units listed in Table S1.

26



Figure 3: Anabolic capacity in bimolecular reaction networks. (A)
CRN coupled to three chemostats (µ⃗y = [5,−5, 5.77], y⃗ = [1, 1, 0.5] and
k1,.,nc = 1), focusing on the maximization of an anabolic-like flux −J3. (B)
Thermodynamically feasible solution domains (black line computed by solv-
ing Eq. 8) and sampled solutions of 104 random unimolecular CRNs (dots
where color denotes the internal contribution to entropy production σI/σ)
plotted in the space the exchange flux J3 and the normalized entropy produc-
tion rate σ/σ∗. (C) Similar to (B), but for 5×104 random bimolecular CRNs
(nm = 2). (D) Examples of three CRN topologies of specific stoichiometric
matrix Sx (red=+1; blue:−1; white:0) and their corresponding kinetically
sampled solution domains (gray dots in lower panels). These topologies differ
qualitatively in their maximum (−J3)

max values. (E) Probability distribu-
tion of (−J3)

max for a set of 2 103 random network topologies (each sampled
with 103 random kinetic parameters). Topologies are sampled based on a
defined topological class characterized by the number broken conservation
law nbc and the reaction molecularity nm. (F) CRN of minimal topological
complexity (ns = 5, nr = 5, nbc = 2) characterized by a maximum anabolic
exchange flux −J3 ≃ J∗ (for k4,5 = 102). (G) Flux solution domain of
the minimal CRN sampled with 103 random kinetic parameters (red), with
respect to flux solution domain of 105 random CRNs with nbc = 2 and non-
zero fluxes (grey). All quantities are expressed in units listed in Table S1.
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Figure 4: Metabolic flexibility in bimolecular reaction networks.
(A) CRN coupled to three chemostats (µ⃗y = [2.5, 2.5,−2.5], y⃗ = 1⃗ and
k1,.,nc = 1), focusing on the flexible utilization of two nutrient sources. (B,C)
Thermodynamically feasible flux domain (black line computed using Eq. 8)
and sampled solutions of 104 random unimolecular reaction networks (dots,
with color denoting the internal contribution to entropy production σI/σ),
plotted in the space of exchange fluxes J1 and J2. (C) Similar to (B), but
for 5× 104 random bimolecular reaction networks (nm = 2). (D) Examples
of three CRN topologies with specific stoichiometric matrices Sx (red=+1;
blue:−1; white:0) and their corresponding kinetically sampled solution do-
mains (gray dots in lower panels). These topologies differ qualitatively in
their flux domain size V (gray area normalized to the bounded area). (E)
Probability density of V for a set of 2×103 random topologies (each sampled
with 103 random kinetic parameters). Topologies are sampled based on a
defined topological class characterized by the number of closed cycles ncc

and the reaction molecularity nm. (F) CRN of minimal topological com-
plexity (ns = 5, nr = 7, nec = 2, nuc = 1, nbc = 1, ncc = 1) characterized
with maximum domain size V ≈ 0.82. (G) Flux solution domain of the min-
imal CRN, with color codes representing the energy charge µ4 − µ5 as an
indication of free-energy transduction. All quantities are expressed in units
listed in Table S1.
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Figure 5: Framework applied to a coarse-grained carbohydrate
metabolic model. (A) A coarse-grained metabolic network model in-
volving nc = 7 chemostat species, ns = 10 internal species and nr = 12
reactions (the H+ species is not shown for readability). (B) Workflow to
compare feasible and sampled spaces for a chemostatted metabolic network
model. (C) Feasible solution domains and (grey lines computed by solv-
ing Eq.8) and kinetically sampled solutions of 2 × 104 reaction networks,
plotted in the 2D spaces of biomass exchange flux as a function of other
exchange fluxes. The sampled flux solution polyhedron displays vertices
(black geometrical shapes) representing elementary flux modes. Maximum
carbon-based biomass yield β = −Jbex/Jglu is represented for the sampled
solution space (β ≈ 0.5), for the feasible space (β ≈ 0.66) and for the case
where all glycolytic carbons are converted into biomass carbons (β = 1).
Chemostatting parameters are yGlu = 0.02M, yBio = yCO2 = yAce = 0.001M
and yO2 = yH2O = yH+ = 1M, and thermodynamic and structural parame-
ters are given in Table S2.
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Figure 6: Relation between biomass yield and free-energy trans-
duction. (A) Jbex as a function of the total dissipation rate, highlighting
that maximum feasible β = βmax and optimal sampled β = betaopt occurs
for low dissipation rates. (B) Effect of ATP yield of glycolytic and aero-
bic respiratory reactions on the sampled flux solution space (bottom/red:
SATP,gly = SATP,ares = 1; center/orange: SATP,gly = SATP,ares = 10;
top/blue: SATP,gly = 15, SATP,ares = 20). Circles represent the states of
optimal biomass yield βopt for each case. (C) Representation of the sampled
solutions in (B) as a function of free-energy transduction efficiencies in gly-
colytic and respiratory reactions. (D) Effect of SATP,gly and SATP,ares on
the optimal biomass yield βopt. Circles represent parameters used in panels
B. Dashed line represents the limit case where βopt = βmax. Chemostat-
ting parameters are yGlu = 0.02M, yBio = yCO2 = yAce = 0.001M and
yO2 = yH2O = yH+ = 1M, and thermodynamic and structural parameters
are given in Table S2.
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