
HAL Id: hal-04772789
https://hal.science/hal-04772789v1

Submitted on 18 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SUPPORTING HUMAN ACTIVITIES The Meta-Level
Issue

Grégory Bourguin, Xavier Lepallec

To cite this version:
Grégory Bourguin, Xavier Lepallec. SUPPORTING HUMAN ACTIVITIES The Meta-Level Issue.
International Conference on Enterprise Information Systems, ICEIS 2001, Jul 2001, Setubal (Portu-
gal), Portugal. pp.793-798. �hal-04772789�

https://hal.science/hal-04772789v1
https://hal.archives-ouvertes.fr

SUPPORTING HUMAN ACTIVITIES
The Meta-Level Issue

Grégory Bourguin, Xavier Le Pallec
Laboratoire TRIGONE, Université des Sciences et Technologies de Lille 59655 Villeneuve d’Ascq, France.

Email: gregory.bourguin@univ-lille1.fr , xavier.le-pallec@univ-lille1.fr

Key words: CSCW, tailorability, interoperability, meta-level, framework, reflection, Activity Theory.

Abstract: Because we have been involved for many years in both the Computer Supported Cooperative Work
(CSCW) and the Computer Supported Cooperative Learning (CSCL) research domains, we take particular
interests in the results coming both from the human and the computer sciences. Thanks to this cross-
disciplinary culture, we have understood that computer systems aim at supporting human activities and that
these activities need systems better supporting their emergence. In other words, the systems we traditionally
design lack in supporting the inevitable users emerging needs. This paper presents our new approach
founded on the human science framework called the Activity Theory and some advanced software design
techniques. It shows the results and promises we have found in intensively using the meta-level of the
systems we design, thus better taking into account of the expansiveness property of the human activities we
want to support.

1. INTRODUCTION

For the last five years, we have been involved in
the particular Computer Supported Cooperative
Work (CSCW) research domain. CSCW aims at
offering computer systems supporting cooperative
activities, usually distributed in time or space.
Unfortunately, this research area is still trying to
understand why the CSCW (or groupware) systems
are generally not accepted by their potential users.
Studies show that these systems do not seem to fit
the users needs. Facing this problem, we have tried
to understand its roots by analysing what is the
human activity, which concepts we can use for
designing our systems, and which mechanisms have
to be supported.

For this purpose, we have been studying the
Activity Theory (AT) and we have learned that our
systems should support well-known users activities
as well as the users emerging needs. Unfortunately,
the design of a system supporting unpredictable
needs is not a simple problem. We strongly believe
that a response can be found considering the meta-
level of the computer systems we design. We have
applied and concretised these ideas in the realisation
of the DARE system.

This paper presents why and how we have
introduced a meta-level architecture for CSCW
inside the DARE environment. The first part
summarizes our understanding of the AT and briefly

shows the importance of supporting the users
emerging needs. The second part presents two
different issues we have identified for supporting
these needs. The third part describes the DARE
system, particularly underlining how we use meta-
modelling as a promise for better supporting human
activities.

2. THE ACTIVITY THEORY

Activity Theory (AT) is a strong contribution of
human science that has a wide audience in the fields
of Human Computer Interactions (HCI) and CSCW,
due to contributions from (Engeström 1997), (Kuutti
1991) or (Bodker 1991).

From our point of view, one of the main results
from AT is the identification of the expansiveness
property of human activity. Human activity is
expansive in the sense that it transforms its own
context while its execution. Particularly, if a
computer tool does not fit the users needs, they will
try to understand its foundations and adapt it to their
needs. If they are not able to do this, the tool will
certainly be abandoned, may be for another one.
However, studies (Suchman 1987) have shown that
the activity is influenced by its context. Then,
activity is always influenced by a context it
continually transforms in a reflective way. This
explains why it seems impossible to exactly

predetermine the users needs towards a computer
system because these needs are emerging during the
realisation of the activity where the system is used.

We see that expansiveness is closely linked to
the reflective property of human activity. Any
activity involves a meta-activity. The activity level
corresponds to the realisation of a task. The task
describes elements creating the context of the
activity. The meta-activity level is a reflection about
and a transformation of the activity’s context, i.e.
transformation of the task and its elements. A
computer tool helps but also influences the users
trying to reach the task’s object. If there is a
breakdown in the activity (inability to reach the
object), the user goes to the meta-activity level, for
example questioning the computer tool foundations
for understanding what matters. Once the problem
has been identified, they try to create a solution by
adapting the computer tool, if possible…

Usually, computer systems are designed to
support the activity level. We believe that a ‘better’
computer tool has to support adaptations during its
use too, thus supporting the important meta-activity
level.

3. TWO DIFFERENT ISSUES

Our main idea inspired by the work of (Kuutti
1991) is to allow the users to co-construct or co-
evolve their working environment. We want to
propose a system supporting its own redefinition.
The CSCW domain is a particularly interesting
research area for this purpose because the
(re)definition of a system is actually a cooperative
activity. Thus, following the above approach, we
want to create a CSCW system supporting any
cooperative activity, including its own redefinition
activity. The question is “how to design and
implement such a system?”. We have identified two
different issues to do so.

3.1 Tailorability

The first answer mainly addresses the
tailorability research domain. As it as been defined
by Morch, “End-user tailoring is the term […] to
describe the activity of adapting generic computer
applications to local work practices and user needs”
(Morch 1997). However, the creation of a tailorable
system is not a simple problem. As underlined by
Morch “The price of tailoring flexibility is paid at
the expense of having to master an increased amount
of computational complexity ” (Morch 1997, p 76]).
One can notice that end-users are generally not

computer scientists. We then believe that an
equilibrium has to exist between the users
motivation for realising their task, and the effort to
be furnished for understanding and adapting the
system. Our work is to identify the meanings
facilitating the existence of this equilibrium. We
need to create a system with understandable
foundations from the users point of view. The
components framework approach is an interesting
technique to do so (e.g. Hummes 1999). However,
we believe that this technique alone is not sufficient
to reach our goals in supporting the end-users
emerging needs.

3.2 Interoperability

As we just mentioned, tailorability is generally
achieved following a component approach.
However, sometimes users may need to evolve their
working environment by integrating a new system in
their working context. Today for example, many
researchers in the CSCW research domain argue that
groupware systems like shared workspaces should
better care about the regulation of the users activities
supported by the system. At the opposite, the
workflow research domain tries to find a way to be
less prescriptive and somewhere a little bit more
cooperative, thus better supporting adaptations in
case of breakdown during the workflow execution.
If a user needs a groupware system articulated with a
workflow one, he should be able to integrate the two
systems in its working environment. This cannot be
realised following a component approach because
none of the two systems will integrate the other.
They have to interoperate for creating a global
environment fulfilling the users needs. Thus
supporting such evolutions of the working
environment involves considering the systems
interoperability research domain.

4. DARE

Following the above approach, we have designed
a groupware system supporting these human activity
properties. The system we have built is called DARE
that signifies “Distributed Activities in a Reflective
Environment”. Its goal is to propose a global
platform, creating some distributed user
environments facilitating and creating a context for
the use of many different computer tools. Then
DARE aims at offering specific contexts, designed
for particular distributed activities, and used by
particular communities of users. A particular context
is called an activity-support. Trying to support the

expansiveness property of human activity, DARE
allows its own users to co-construct and evolve their
activity-supports during their execution.

4.1 A Tailorable System

4.1.1 The Framework/OI Approach

One of our main goals is to allow users to adapt
themselves their computer system to their emerging
needs, and thus addresses the tailorability research
domain (cf. 3.1). We have already mentioned that
many researchers have recently proposed different
tailorable systems founded on a components
framework approach. A framework allows reusing a
full software architecture dedicated to a generic task,
thus facilitating further development or adaptations
by domain specialists (Pree 1997).

The definition of a framework contains a generic
model that can be specialised for particular
purposes. In DARE, our goal is to support any
distributed cooperative activity. We then have
created the DARE generic model of an activity-
support that specifies what is an activity-support in a
generic way. This model is represented in Figure 1.

An activity-support contains a set of subjects that
are users involved in a corresponding activity. Each
subject plays a particular role and uses particular
tools including shared tools.

Figure 1. DARE generic model of an activity-
support (UML notation).

Thus, adopting a framework helps in creating
high abstraction levels for system adaptations.
However, this approach is not sufficient for allowing
end-users to adapt themselves their computer system
during its use. From the end-user viewpoint, the
application built over a framework still remains a
black box. We have to open the black box, thus
allowing end-users to access to the framework level
of their application. An answer can be found in the
open implementation approach.

The Open Implementation (OI) approach
described by (Kiczales 1996) discusses the limits of
the black-box abstraction broadly used in software
engineering domain. Kiczales argues that the black
box has to be opened to allow users to understand
the implementation strategy that relies under the
system and/or to allow them to chose the strategy
that better fits their needs. For us, the black box is an
activity-support and the strategy is the underlying
task. OI is characterised by considering well-defined
and separated base level and meta-level. This is
achieved by providing a base interface and a meta-
interface on the black box. The base interface
specifies what can be done with the black box in the
normal use. The meta-interface specifies what can
be done for understanding and/or modifying the
implementation of the black box. Our idea is to
adapt OI by merging it to the framework approach
described before.

Our application is built over a framework
defining a generic model dedicated to the application
domain. The base interface allows the users to work
with the application without knowing or taking care
about the underlying framework. However, an
associated meta-interface allows accessing to the
meta-application level where the users can discover,
understand and transform the application structure
by rearranging, adding or removing components
inside the framework. Moreover, as any component
can itself be built following the OI approach, it can
propose a base interface allowing its normal use, and
a meta-interface allowing its extension.

Figure 2. DARE : a tailorable groupware.

We have applied this technique to DARE. Figure

2 shows that a subject uses a base interface to
interact in the distributed environment
corresponding to an activity-support. The subject
uses some tools, plays a role and may have to

(sub)
task

activity-support

task

roles

base
interface

meta-interface

subject

tool
(sub)

task

object

components
modification

role tool

meta-
activity-support

task’s structure
modification

CorbaObje ct

an objec t in the dis tributed
execution environnem ent

Us er

nam e : S tring
pas sword : S tring

Mem ber 1..* 1..11..*
{1/ac tivivty -s upport}

1..1

A c tivityS upport : Tas k

ac tivity Nam e : S tring

1..1

1..*

1..1

1..*

0..*

0..*

0..*

s ub act ivity

0..*

RoleTy pe : Role

0..*

1..1

0..*

1..1
ToolTy pe : Tool

resource : CorbaObject

{operati ons} ()

0..*

1..*

0..*

1..*

1..*1..* 1..*1..*

perform subtasks. These components appear in the
activity-support because the corresponding task
specifies their use. At the activity-support level, the
subject only uses these components and does not
really care about their definition. The meta-activity
level is reached thanks to a meta-interface
corresponding to the meta-activity-support in which
the subjects can (re)define their activity-support.

An existing technique for OI is computational
reflection (Maes 1987) that helps in providing
system interfaces for examination and modification,
in other words, providing a meta-interface. Maes
defines a reflective system as a “causally-connected
meta-system that has as object system itself”. In
DARE, the task contains a representation of the
activity-support, and the meta-activity support
allows accessing to the task. Then, we have defined
a causal relationship between any activity-support
and its task. A modification of a task involves direct
repercussion on its instances, i.e. its corresponding
activity-supports. We have used the Meta Object
Protocol (Kiczales 1991) technique to implement
this.

Meta Object Protocol (MOP) defines a meta-
level description of the system allowing examination
and manipulation of the system during its own
execution while maintaining a causal connection
between them. MOP implements the OI using
object-oriented programming techniques. In
languages implementing MOP like Smalltalk or
Java, the meta-level corresponds to the classes, and
the execution to their instances. In MOP, any class is
itself considered as an instance of a meta-class. As
meta-classes are themselves classes, everything is an
object offering methods that can be invoked at the
run time. It is then possible to “browse” or transform
a class from its instances, thus changing the
behaviour of the system from the system’s
execution. So, thanks to computational reflection
and the MOP approach, it is possible to implement
DARE as a reflective groupware allowing its own
users to co-construct their working environment
during their use.

4.1.2 Meta-modelling

The OI and MOP approach has already been
used in CSCW by (Dourish 1998) in Prospero, a
toolkit for CSCW designers. The main difference
between Prospero and our system is that Prospero
addresses computer scientists. In DARE, we want to
adapt OI to directly address end-users. For this, there
are more things to be done. Particularly, we have to
define the meta-interface allowing our users to
access to the task and its components definition. In
traditional OI approach, the meta-interface uses a

programming language paradigm. Unfortunately and
using MOP, even if our framework is made
accessible to the end-users, the generic model still
corresponds to a set of abstract classes that have to
be specialised for particular purposes. Such a
specialisation is usually performed thanks to an
object-oriented language. Class, attribute, method,
and inheritance concepts have to be mastered to do
so. These concepts are generally not understood by
end-users. As we want to support expansiveness and
users co-construction of the environment, we have to
make our generic model understandable and
manageable from the user viewpoint. We have to
find a meaning for opening the framework in an
understandable way, and to provide a meta-interface
founded on concepts that are not object-oriented but
domain-oriented. This has been realised thanks to
meta-modelling.

A meta-model is the model of a model.
Computer scientists are used to work with different
meta-models (Frankel 1998). For example, UML is a
meta-model that defines entities and relations for
describing object models. The role of our meta-
model is similar to the UML one. The difference is
that the concepts it defines are oriented towards our
domain of interest.

The elements constituting a meta-model are
called meta-types. For example, the UML meta-
types are the Class, the Operation, the Attribute or
the Association. Meta-types instances are used to
create models. In a reflective system, meta-types are
implemented and offer a meta-interface. In MOP,
the Class meta-type is implemented as a meta-class.

In DARE, we aim at creating a new meta-model
defining concepts close to our domain abstraction
level for creating our meta-interface. The DARE
meta-model defines the basis of a language for
understanding and describing activity-supports. The
description of a particular activity-support is a
particular activity-support model. We have already
shown that an activity-support is an instance of a
task. In other words, the model of a particular
activity-support is a particular task. Then, the DARE
meta-model reifies what is a task, i.e. what are its
components and its structure. The specification of a
task contains a set of role types, tool types and
(sub)tasks. These entities and their relations are
described in Figure 3. Thanks to this meta-model,
the modification of the elements involved in the
activity-supports is not performed in terms of class,
method or attribute, but in more domain dependent
terms like task, tool, role, action, etc., thus allowing
and facilitating the creation and management of
some particular activity-supports by their own users.
The kernel part of DARE has been realised in
Smalltalk that implements the MOP.

Figure 3. The DARE meta-model (UML notation).

4.2 The Interoperability

4.2.1 Interoperability Context

As argued in part 3.2, making information
systems interoperate seems to be necessary for
extending the users working environment. The
interoperability problem has been studied for more
than 20 years. It is a complex problem that has not
perfect solution. In fact, various solutions about
interoperability exist which focus on one or more
aspects of interoperability (autonomy, ease of
use…). With regard to these solutions, (Paepcke
1998) counts five approaches : strong standards,
family of standards, external mediation,
specification-based interaction and mobile
functionality.

For our objective, specification-based interaction
and mobile functionality solutions are not adapted.
Specification-based interaction solutions, like
ontology, are powerful, but the description
languages used in such solutions, like KIF
(Weinstein 1998), are complex. Current solutions of
mobile functionality, like Java applets, require a
common execution environment. This constraint
cannot be respected in context of interoperability
between information systems. In addition, such
solutions do not really provide a way to create
bridges between systems. So we choose external
mediation and standards.

External mediation consists in creating
translation component between others components.
Its main problem is that interoperability between two
specific types of components requires a specific
mediator. So it is necessary to provide an
environment to accelerate the translation
components creation. The use of metadata is very
helpful in such environment. It allows working at a
more abstract level (meta-level), which means to
define translation operations for types of data. So

meta-data will still be a key element of our
proposition. We are convinced that interoperating
systems will be constrained to provide metadata
about their data. However, such constraint is not a
matter due to trend in creating and using new
metadata standards, like RDF (Swick 1999) or the
Meta-Object Facility (MOF) we use and describe in
next part.

4.2.2 The Meta-Object Facility

Our choice of metadata standard between
existing ones is based on two reflections :
1. DARE can interoperate with all sorts of

systems. It means that specialized metadata
standards like Dublin Core or PICS (Manola
1998) do not suit.

2. In our interoperability context, the problem is
not only sharing information, like in database
federation (Hull 1997), but also sharing
functionalities. This implies two statements :

� As functionalities of a system will be used and
system metadata are parts of the system
framework, metadata have to include these
functionalities. So metadata must be objects.

� Information, functionalities and so metadata
have to be accessible through a standard
protocol.

The Meta-Object Facility (OMG) is the only one
to provide such qualities. Its process of metadata
creation is based on meta-modelling which enables
creating any type of metadata. Its meta-modelling
process is object oriented and created metadata are
CORBA objects. In addition, as it manipulates meta-
models, the MOF works at a more abstract level than
common metadata level. So it is more generic and
thus, the MOF is the base of our proposition.

As the metadata standard is selected, the next
step is to find MOF tool(s) that is adapted to our
goal. Requirements of such tools are to provide a
saving of time and an easy use in constructing
bridges between systems. In (Le Pallec 2001), we
show that minimal requirements for such tools are to
score high in prototyping and to enable working
simultaneous on different meta-models (i.e. different
MOF metadata servers). Unfortunately, no existing
MOF tool has these characteristics.

To go further in our interoperability problem for
supporting emerging needs, we have developed
RAM3 that is a MOF tool prototype meeting
previous requirements. We aim at using RAM3 to
quickly develop two tools : a graphic link editor
between MOF metadata, and a facility to easily
make links between metadata and data. These two
tools will achieve our bridge creation environment.

DAREM ethod

name : String
description : String
sc ri pt : String

Operation Ac tion

Operation

Task

nam e : String
objec t : S tring

spe ciali se(nam e : St ring) : Task

<<metac lass>>

0. .*

0..*

0. .*

sub task

0..*

Ac tionreleases

Role

nom : S tring

specialise(nam e : S tring) : Role
execute(a : Ac tion)

<<met ac lass>>

1..1

1..*

1..1

1..*

1 ..1

0. .*

1 ..1

0. .*

Tool

nam e : S tring
url : S tring

specialise(nam e : S tring) : Tool
execute(op : Operation)

<<metac lass>>

1..1

1..*

1..1

1..*

1..1
0..*
1..1
0..*

1. .*1. .* 1. .*1. .*

Our first construction using them will have to unite
DARE and a workflow system.

5. CONCLUSION

Drawing from the fact that the systems we
traditionally design lack in supporting the inevitable
users emerging needs, we have presented our new
approach founded on the Activity Theory and some
advanced software design techniques. AT teaches us
that a computer system should support both the
activity it has been designed for and its closely
linked meta-activity. We strongly believe that this
can be achieved by allowing the users to access and
manipulate the meta-level of their computer systems
in the context of their use. Our main focus here has
been to show that meta-level architectures, meta-
modelling or even meta-data are fruitful approaches
in future software design. The DARE system applies
and implements these principles, thus proposing a
reflective groupware supporting its own redefinition
activity. Actually, our main results are about
tailorability and there is more work to be done for
interoperability, even if our advances in meta-
modelling, MOF and RAM3 seem promising.

More generally, our work tries to understand
software design techniques from the human activity
viewpoint and we aim at identifying how they can be
developed in order to help better design software
architectures supporting end-users activities. Human
sciences teach us that the best persons to develop a
computer system are those that are using it. Today,
systems users are generally domain specific
specialists but are not computer scientists. Our
assumption is that we have to further understand the
essence of human activity and to propose software
better supporting its expansiveness and reflectivity
properties, because computer scientists are the only
ones that are able to use computer technologies to do
so.

REFERENCES

Bodker S., 1991, Activity Theory as a challenge to system
design, dans “Information systems Research:
Contemporary Approaches and Emergent Traditions”,
Nissen H., Klein H., Hirschheim R. (eds), Elesevier
Science Publishers, BV (North Holland), pp. 551-564.

Dourish P., 1998, Using Metalevel Techniques in a
Flexible Toolkit for CSCW Applications, ACM
Transaction on Computer-Human Interaction, vol. 5,
n°2, pp 109-155.

Engeström Y., Brown K., Christopher L., Gregory J.,
1997, Coordination, cooperation and communication in
the courts, dans Cole M., Engeström Y., Vasquez O.
(eds), Mind, Culture and Activity. Cambridge
University Press, Cambridge, UK.

Frankel D., 1998, Technology-independent business object
– the concept of a meta-model, Java Report, pp 71 –78.

Hull R., 1997, Managing Semantic Heterogeneity in
Databases : A Theoretical Perspective, PODS 97,
Tucson Arizona USA, p51-61

Hummes J., Merialdo B., 1999, Design of extensible
component-based groupware, soumis pour être publié
par Kluwer dans le Journal of CSCW.
http://www.eurocom.fr/~hummes/docs/JCSC
W/JCSCW.html .

Kiczales G., 1996, Beyond the black box: open
implementation, IEEE Software.

Kiczales G., Bobrow D.G., Des Rivieres J., 1991, The Art
of the Metaobject Protocol, MIT Press, 335 p.

Kuutti K., 1991, The concept of activity as a basic unit of
analysis for CSCW research, Proceeding of the second
ECSCW’91 conference, Kluwers Academics
Publishers, pp 249-264.

Le Pallec X., Bourguin G., 2001, RAM3 : un outil
dynamique pour le Meta-Object Facility, proceedings
of LMO'01, Le Croisic, FRANCE, L'Objet, Hermes,
vol. 7 - n°1-2/2001, pp 79-94.

Maes P., 1987, Computational Reflection, Ph.D. Thesis,
V.U.B, Brussels.

Manola F., 1998, Towards a Web Object Model,
http://www.objs.com/wom.html

Morch A. , 1997, Method and Tools for Tailoring of
Object-oriented Applications: An Evolving Artifacts
Approach, part 1, Dr. Scient. Thesis Research Report
241, University of OSLO, Department of Informatics.

Paepcke A., Chang C-C K., Garcia-Molina H & Winograd
T., 1998, Interoperability for Digital Libraries
Worldwide, Communications of the ACM, vol 41 n°4,
p33-43.

Pree W., 1997, Component-based software Development –
A new paradigm in software engineering ?, Software-
Concepts and Tools, Springer-Verlag, n° 18, pp 169-
174.

Suchman L. , 1987, Plans and Situated Actions,
Cambridge University Press, Cambridge, UK.

Swick R., 1999 Putting it together: RDF: weaving the web
of discovery, netWorker: The Craft of Network
Computing, Volume 3 , Issue 2, pp 21-25.

Weinstein P. C. , 1998, Ontology-based metadata:
transforming the MARC legacy, International
Conference on Digital Libraries, June 23 - 26,
Pittsburgh, PA USA, pp 254-263.

