
HAL Id: hal-04772744
https://hal.science/hal-04772744v1

Submitted on 8 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating the CSCL Activities into Virtual Campuses:
Foundations of a new Infrastructure for Distributed

Collective Activities
Grégory Bourguin, Alain Derycke

To cite this version:
Grégory Bourguin, Alain Derycke. Integrating the CSCL Activities into Virtual Campuses: Founda-
tions of a new Infrastructure for Distributed Collective Activities. European Conference on Computer
Supported Collaborative Learning, Euro-CSCL 2001, 2001, Maastricht (Netherland), Netherlands.
pp.123-130. �hal-04772744�

https://hal.science/hal-04772744v1
https://hal.archives-ouvertes.fr

Integrating the CSCL Activities into Virtual Campuses: Foundations of a new
Infrastructure for Distributed Collective Activities

Grégory Bourguin, Alain Derycke

Laboratoire TRIGONE, Institut CUEEP, Université des Sciences et Technologies de Lille
59655 Villeneuve d’Ascq, France.

Email : { gregory.bourguin ; alain.derycke }@univ-lille1.fr

Abstract.
The integration of CSCL tools inside larger platforms like Virtual Campuses is often impossible. To
overcome this problem, our general assumption is that they need a common theoretical framework for
their design. In this context and turning our interest into the Activity Theory, we aim at providing new
systems foundations supporting large varieties of learning modes, trying to capture the contributions of
the human sciences. This has been concretised in the DARE system. DARE supports the co-
constructive, expansive and experience crystallization properties of human activity. It introduces a
meta-level architecture supporting Distributed Collective Activities and featuring a generic activity-
support model, its meta-model, a component approach, and a distributed architecture. This provides a
distributed environment where the supports for learning activities and their associated meta-activities
are cohabiting, thus aiming at facilitating the development of meta-cognitive skills.

Keywords. Meta-design, integration, Activity Theory, component, distributed architecture.

Introduction
The integration of Computer Supported Collaborative Learning Activities (CSCL-A) into the broader
framework of the Distributed Learning approach [16] [12] is a difficult challenge. This is not only due
to the difficulty of articulating these CSCL-A with other learning practices but also to the nature of
most of the CSCL tools that are mostly designed to be used as standalone. The interoperability is poor
and the integration of these CSCL tools inside larger platforms like Virtual Learning Environments or
Virtual Campuses is often impossible. This is partly due to the weakness of their technological
openness and to their lack of clear standardised interfaces such as promoted by some standardisation
bodies (see IEEE 1484 workgroups or IMS proposals). However, this technological viewpoint is only
one face of the problem. At a higher level, the integration is prevented by the incompatibility between
the involved conceptual models and design foundations.
CSCL tools are generally oriented towards a more or less open collaboration space, putting the learner
in the centre and giving an important place to the communication processes and to the negotiation (a
mediated co-ordination) of the flow of actions to do. At the opposite, most of the Virtual Campuses
(e.g. Learning Space from Lotus) are more process centred because they emphasise the management of
the curriculum and the prescribed flow of individual or collective activities assigned to the learner.
Even if this analysis is probably too coarse, it seems that this apparent opposition is similar to the one
existing between the Computer Supported Co-operative Work (CSCW) approach versus the Workflow
Management1 approach for supporting the collective human activities inside the organisations. The
reconciliation of these two approaches is actually a hot issue in the CSCW and Workflow research
domains. Because we are active in both the education and human work in the organisations application
domains, we see the convergence between CSCW and Workflow Management [18] as a source of
inspiration in solving the problem for integrating CSCL tools into the next Virtual Campuses
generation.
Our general assumption is that we need a common theoretical framework for designing CSCL tools and
Virtual Campus platforms. In the last years, we have been involved in several learning research
projects where we have designed either some CSCL tools or Virtual Campuses technological platforms
[9] [10] [21]. From our research activities and since the beginning, an Activity Centred Design [8] has
emerged as a solution for overcoming the integration problem. Progressively, by integrating reflections
coming from the CSCW research field we have turned our interest into the Activity Theory (AT)
[13][15] to support our attempt in providing new foundations and in reframing the way we design
information infrastructure supporting large varieties of learning modes. Our evolution is close to those
of some others researchers in the CSCL domain. For example, Gifford and Enyedy [11] have proposed
an alternative theoretical framework for CSCL that is also based on the AT. However, our work is quite
different because of our involvement in the CSCW field that gives us other inputs. It also differs in the

objectives because we aim at providing new foundations for the design, trying to capture the
contributions of the human sciences in order to integrate them as first class objects in the software
design. This is a contribution for going “toward the application of the insights of the AT to the design
of CSCL environments” [12].
An exhaustive presentation of our re-foundation in designing new infrastructures for Distributed
Collective Activities is out of scope in this paper. A deeper view can be found in [3][4][5]. We will
mainly focus here on our general meta-level architecture, showing how it is a solution, not only for
integration, but also in providing a general framework for the design of future CSCL tools.

Our requirements for a new Infrastructure to support Distributed Collectives
Activities
There are some general properties that are required for the design of these infrastructures [5]. We
present here those appearing as more important and related to the AT theoretical framework. Our non-
exhaustive list is inspired by recent contribution about the re-framing of the CSCW design approach
like [18] and [19]. These properties can be classified following the viewpoints used for their analysis.
We distinguish four viewpoints:
• The life cycle: it is important that our infrastructure supports a new kind of life cycle for the

applications. This is based on the assumption that the responsibilities concerning the design of the
applications will be shared between the software designers and the community of users, according
to their respective roles in the organisation. This implies a co-construction of the computer
environment. The infrastructure plays the role of an inter-mediation system between the designer
providing an environment for the bootstrapping process of the attended activities, and the end-
users, learners, instructors or tutors, allowed to transform this environment in respect to their goals,
attitudes and skills… This is in accordance with the AT [1];

• The learning process: the computer environment has to support reflectivity inside activities. This
is achieved using a system architecture allowing transformations of the nature of the activity
support during its enactment. This property seems essential for supporting true Distributed
Learning modes where learner’s reflections about contents, process, tools and resources are
considered as mandatory [11]. In the CSCL research field, the role of reflection over the learning
process has been identified as essential [19]. This reflective nature of the human activity is also
emphasized by the AT [3];

• The evolution: the CSCW community has recognised that most of the Groupwares fail due to their
rigidity and their inability to support the evolution of the collective activities through continuous
changes in the actors roles, choices of mediation tools, organisation of the activities… The
requirement for more evolving CSCW systems seems implying a re-foundation of their design
based on contributions from the human sciences, especially ethnomethodology, structuration
theory and AT. Our analysis is that the property of continuous changes is in relation with the co-
construction and reflectivity requirements. However, from the Human-Computer Interaction level,
this can be decomposed into two properties: the expansiveness and the tailorability. Expansiveness
is the possibility for the users to develop themselves the potential of their working environment, as
it is developed in AT [13]. Tailorability is the activity of adapting generic computer applications to
local work practices and user needs [14];

• The engineering: this represents the economical constraints and needs for open software
architecture and the pressure for adopting world standards as HTTP protocols, XML, etc. The
openness is achieved by adhering to those standard and also by choosing a software components
approach [20]. This also answers to the re-use needs emerging into the fields of learning
technologies accompanied by a movement towards an educational components economy [17].

The design of these new infrastructures has been concretised in the realisation of the DARE system that
provides an environment for supporting co-operative activities. “DARE” signifies Distributed
Activities in a Reflective Environment and has been designed to support multiple activities in an
organizational context. It can be defined as a reflective-groupware, trying to fill in the “great divide”
[6] between social and computer sciences by taking elements coming from these two domains for its
design. We will mainly focus here on how it helps supporting the co-construction [1] and
expansiveness [13] properties of human activity.

Meta-level architecture supporting Distributed Collective Activities
The general DARE architecture can be decomposed into three levels reflecting the specialisation from
a generic collective activity framework to the specific applications dedicated to a particular learning

environment. This breakdown is presented in Figure 1. The three levels can be characterised by: the
foundation level, the composition level, and the user level.

Figure 1. The three DARE levels.

Foundation level
The foundation level introduces the concepts and mechanisms that will influence the composition level
and the user level. Our goal is to propose an integrative platform, creating some user environments
facilitating and contextualizing the use of many different tools. More precisely, DARE aims at offering
specific contexts, designed for particular purposes, and used by particular communities of users. A
particular context is called an activity-support. Each activity-support corresponds to the specific
computer support offered by DARE to the users involved in a specific activity.
An activity-support contains a set of elements corresponding to different concepts. For many reasons
we have already explained in [3] and [4] we have chosen to use the concepts coming from the AT
[2][15], and to support the human activity properties like expansiveness [13] and co-construction [1].
As it is presented in Figure 2, DARE introduces more concepts than those usually represented in the
famous Engeström’s basic structure of an activity. It is not our aim to explain here all the relations
existing between the DARE concepts and the traditional AT’s ones. Further explanations can be found
in [5], [3] and [4].

Figure 2. The DARE concepts (inspired from the Engeström’s basic structure of an activity).

DARE has to support many different types of learning activities and then many different types of
activity-supports can be created in the system. This is why the foundation level specifies a generic
activity-support model that can be specialised for creating a particular one. Using the concepts
summarized in Figure 2 we have created an object model describing an activity-support in a generic
way (cf. Figure 3). An activity-support contains a set of subjects that are users involved in a
corresponding activity. Each subject plays a particular role and uses particular tools including shared
tools. Broadly defined, a role is composed by a set of micro-roles allowing a subject to perform some
operations on the activity-support tools. For example, a mathematics course activity-support can be
created as a specialisation of this generic model: one of the tools may be a whiteboard, the subjects
involved may be a teacher and some students. The rules and the division of labour in this activity may
define that the user playing a teacher role has to (and is then allowed to) put some demonstrations on
the whiteboard, as the students have to look at the whiteboard but cannot write on it.
The reader can notice that this generic model is directly inspired by the DARE concepts, themselves
inspired by the AT. Figure 3 shows that the specification of an activity-support like the mathematics
course is defined as an instance of the task concept. In the same way, a role type like a Teacher or a

rules division of labor

micro-role subtask

represents

object

role

represents
1..* 1..* 1..* 1..*

specifies

tool
1..1

1..*

1..1

1..*
is linked to

subject

1..1

0..*

1..1

0..*

plays

1..*

0..*

1..*

0..*

uses task

0..* 0..*
specifies

1..1 1..1

defines
1..* 1..*

specifies

1..1
1..*

1..1
1..*
realises

1..* 1..*

specifies

community

1..*

1..*

1..*

1..*
contains

1..1
1..1

1..1
1..1

Activity-support model
task model (or activity-support meta-model)

used components
repository (and associated services)

task performance (activity-support) environment
task management (access to reflectivity)

foundation level

composition level

user level

Student is an instance of the role concept, a tool type like a Whiteboard is an instance of the tool
concept, etc.

Figure 3. DARE generic model of an activity-support (UML notation).

One of our most important issues is to allow the users to co-construct or evolve their activity-support,
during its execution, by rearranging or modifying the involved components (tools, roles, etc.). In
traditional design, the generic activity-support model would only be known by some computer
scientists, developing specific activity-supports for specific communities. From the computer scientist
viewpoint, this generic model is a set of abstract classes that have to be specialised using an object-
oriented language. Class, attributes, methods and inheritance concepts have to be mastered to do so. As
we want to support expansiveness and co-construction of the learning environment, the question is how
to make our generic model understandable and manageable from the user viewpoint? This is
accomplished introducing the DARE meta-model.
A meta-model is the model of a model. Computer scientists are used to work with different meta-
models. For example, UML is a meta-model that defines entities and relations for describing object
models. The role of our meta-model is similar to the UML one. The difference is that the language it
defines is oriented towards our domain of interest. The DARE meta-model defines a language for
understanding and describing activity-supports. The description of an activity-support is an activity-
support model. We have already shown that an activity-support is an instance of a task. In other words,
the model of a particular activity-support is a particular task. Then, the DARE meta-model reifies what
is a task, i.e. what are its components and its structure. The specification of a task contains a set of role
and micro-role types, tool types and (sub)tasks. These entities and their relations are described in
Figure 4.

Figure 4. DARE meta-model (UML notation).

In order to support the activity-supports evolution during their own execution, a causally connected
relationship exists between each task and its instances and then any modification in a task has direct
repercussions on its corresponding activity-supports. For example, adding a new tool type like a chat in
a task definition has the direct effect of instantiating a chat tool in each corresponding activity-support.

DA RE M ethod
nam e : S tring
des c rip tion : S tring
s c rip t : S tring

O perat ion A c t ion

Tas k
nam e : S tring
objec t : S tring

s pec ia lis es (nam e : S t ring) : Tas k

< < m etac las s > >

0. .*

0. .*

0 . .*

s ub tas k
0. .*

Role
nam e : S tring

s pec ia lis e(nam e : S tring) : Role

< < m etac las s > >

1. .1

1. .*

1 . .1

1. .*

Tool
nam e : S tring
url : S tring

s pec ia lis e(nam e : S tring) : Tool
ex ec ute(op : O peration)

< < m etac las s > >

1. .1

1. .*

1 . .1

1. .*

M ic roRole
nam e : S tring

s pec ia lis e(nam e : S tring) : M ic roRole
ex ec ute(a : A c tion)

< < m etac las s > >

1. .11. .* 1 . .11. .*1 . .*1 . .1 1. .*1 . .1

O perat ion

1. .1
0. .*
1 . .1
0. .*

A c t ion

1. .1

0. .*

1 . .1

0. .*
re leas es

MicroRoleType:MicroRole
{actions}()

CorbaObject

an object in the distributed
execution environnement

User
name : String
password : String

RoleType:Role
0..* 1..* 0..* 1..*

ToolType:Tool
resource : CorbaObject
{operations}() 1..* 1..1 1..* 1..1

Subject 1..* 1..1 1..*
{1/activity support }

1..1
0..*

1..1

0..*

1..1

0..*

1..*

0..*

1..*

ActivitySupport :Task
activityName : String

1..1
1..*
1..1
1..*

0..*

0..*

0..*

subtask
0..*

At a lower level, modifying the available actions defined in a particular role type has direct
repercussions for the users playing this role.
Thus, the DARE foundation level uses concepts and mechanisms inspired by AT in order to create a
generic activity-support model that can be specialised to create particular ones for particular
communities. As we want to allow the DARE users to specialize the generic activity-support model, or
to adapt a particular one to their emerging needs, these concepts are also used in the DARE meta-
model. This meta-model poses the basis of a language for understanding and/or specifying tasks. This
way, the modification of the elements involved in the activity-supports is not performed in terms of
class, method or attribute, but in more domain dependent terms like task, tool, role, action, etc. More
generally, the foundation level offers a sort of generic run-time environment allowing and facilitating
the creation and management of some particular activity-supports by their own users. Of course, even if
these foundations are important to support the desired properties of DARE, we know that there are
more steps to be done before a user like a learner can effectively use the system. In particular, we have
to create some well-defined user interfaces based on the foundations we have proposed. This problem
will be developed later and we now would like to focus on the intermediate level existing between the
user level and the foundation level: the composition level.

Composition level
As the foundation level defines how the elements like roles or tools can be combines and recombined
together to create and evolve some particular activity-supports, the composition level more specifically
addresses the elements themselves. In our approach, each element is a component and the entities
described in the DARE meta-model are defining different component types.
The precedent part has shown the importance of the task concept. A task specifies and contains tool
components, role components, micro-role components and subtask components. One can notice that a
subtask is itself a task. Then a task is a component and any task may be or become a subtask of another.
For example, consider the task corresponding to a mathematics exercise. The object of this task may be
to calculate the surface of a disk. One of the tools used to perform this task is a calculator. Such a task
is something commonly reused by teachers in the specification of a more general mathematics course
task. The mathematics exercise task is typically a component that can be reused by a tierce person. It is
not our aim to describe each component type defined by the DARE meta-model but one can notice that
these components are DARE-specific or DARE-aware components. However, one of our main
objectives is the integration of different external resources in a unified context. This is achieved
through the tool component type.
An activity-support usually involves some tools. For this purpose, DARE has been built as an open
system allowing the integration of external resources in the environment. These external resources are
themselves software components like Java Beans and are often built from lower abstraction level
components. Their nature can be very different. Some of them may represent generic services like
group notification support, others may be groupware systems like a shared whiteboard. For us, the
matter is that these components are only software components and not activity components. Their
interfaces are expressed in terms of public methods, etc. Our experimentations have revealed that it is
hard to understand what a software component does and can offer in an activity-support. Thus, it is
hard for end users to compose them for particular needs. Our first answer to this problem only
considers high abstraction level components (e.g. a whiteboard). The approach we have developed is to
encapsulate these components inside DARE tool components. For example, in the actual version of
DARE each tool is linked to a Java applet component. End users can perform a rough integration only
by specifying the URL of the applet. The system automatically creates a link between the DARE tool
component and the specified software resource. What is more interesting is that a finer integration can
be done by translating the software component available methods in terms of operations that may be
performed with the tool by the users. This fine encapsulation transforms a software component in an
activity-aware component, changing the underlying paradigm from object modelling to activity-support
modelling. Unfortunately, only specialists understanding both activity and software component
approach concepts can achieve this. However, any DARE tool component, more or less finely defined,
is ready to be used at the task abstraction level and can be brought in or removed from a task
component by end-users thus evolving the specification of their activity-supports.
One more important point is that the evolution of an activity-support is realised by the users according
to their emergent needs. Components are then crystallising the user’s experience that has been
developed during the use of the system. This way and thanks to its reflectivity, DARE offers a support
for the important property of experience crystallisation inside the activity’s artefacts, as it is underlined
and developed in AT. It also offers the possibility to benefit from this experience by reusing these
artefacts in other activities.

Following this open and reuse approach, DARE is linked to a components repository. The idea is that
each component created or transformed is itself stored in the repository and available for reuse. Using
DARE, the users will continually fill in the repository with their own components that are crystallising
their experience. In order to help finding needed components, the repository offers some services like a
criteria-search at the task abstraction level. This is only possible because the components are now
activity-aware components.
Finally, it seems to be easier to compose or modify components rather than to create them from scratch.
This is why DARE has also to provide some bootstrap components created in collaboration between
DARE designers and domain specific specialists. For example, in the CSCL field that is our main
domain of interest for using and testing DARE’s properties, these bootstrap components may be some
exercises (tasks), a set of roles (teacher, student, expert…) and tools (shared whiteboard, editor, audio
conference...). These components will be used to start pre-defined activity-supports, but will be
transformed by users in order to specialize them for their particular needs.

User level
A user accesses to an activity-support through a
standard Web browser thanks to a particular
applet called activity applet (cf. Figure 5). This
applet offers a representation of an activity-
support according to the user’s role. This
representation contains the set of available tools,
a representation of the community (the subjects
and their respective role) and mechanisms
supporting some awareness properties. Each tool
can be started in the user’s environment from the
activity applet and is automatically configured
for the subject according to its role. However,
we would like to underline that this applet does
not correspond to the final version we will use in
DARE because we are still working with HCI
specialists to create more usable versions. Figure 5. An Activity applet.
The user environment reposes on a distributed architecture that is depicted in Figure 6. An activity
applet is connected through the network to an activity server holding the global representation of each
activity-support. Each component involved in the users environment has a corresponding instance in
the server. For example, in Figure 6, we find a user named greg playing the Teacher role. The object
:Teacher associated to the user greg is an instance of the Teacher role in which the behaviour of a
teacher is specified.

Figure 6. DARE distributed architecture.

Our reflective approach introduces new problem to be held at the user level. We have to create a user
environment where the support for activities and their associated meta-activities are cohabiting. The activity

corresponds to the performance of the task. At this level, the focus is on the realisation of object. The meta-
activity corresponds to another but closely linked activity where users reflect about what are the task and its
elements. The activity and the meta-activity respectively correspond to the active and expansive levels of
activity described by Kuutti in [13].
For supporting these properties, part of each activity-support is a meta-activity-support used to access to the
task definition level. This level is reached thanks to meta-level tools. The TaskTool linked to the Task applet
represented in Figure 6 is a meta-level tool allowing the users to edit the meta-level of the activity-support,
i.e. the type of the involved components. DARE makes no difference between meta-level tools and the other
tools. Thus, the role played by a user also affects the way he will use a meta-level tool. In our example, only
the Teacher role allows a user to use the TaskTool. This explains why greg has started a Task applet in its
environment, and zave has not.
Moreover, as the roles and tools are specified at the meta-level, they are specified thanks to meta-level tools.
Here we can feel the reflective properties of any activity-support offered by DARE: the meta-level tools are
used to specify their own definition and use modalities. Figure 7 represents the Task applet that allows
modifying the tools and roles specified in the task corresponding to the activity-support where it is used.
This example shows how the Task applet corresponding to the client side of the TaskTool can be used to
edit itself: the user asks for editing the TaskTool he’s actually using. One can notice that one of the other
available actions for this user is the remove action. If the user removes the TaskTool from its task, its
community will not be able to evolve the activity-support anymore.
Thus, it is possible to create a task that does not
use meta-level tools. Such a task will be strongly
constrained because the users involved in its
corresponding activity-supports will not be
allowed to evolve they working environment. In a
learning scenario, this may be helpful, as
sometimes teachers do not want their students to
change the object or rules of a subtask they have
to perform (e.g. an exercise)! At the opposite,
introducing meta-level tools combined to
negotiation tools allows a teacher to co-construct
the learning environment with its students that
then have the possibility to reflect on the meta-
level of their activity. As we have already noticed
in the introduction of this paper, this type of
activity-support should be very useful in order to
develop the student’s self reflective skills. Figure 7. A Task applet.

Conclusion
Developing a new generation of CSCL systems we have taken into account the contributions from the
Activity Theory as a foundation for a meta-level architecture supporting cooperative activities. This
provides a “milieu” where the software components representing tasks, tools or roles are immerged and
tighten together into a common theoretical framework. A particular attention has been put on the
support for continuous changes realized by the users and at the run-time, thus satisfying a deeper
tailorability and the expansiveness of the human activities. This is achieved by providing a reflection
mechanism both at the conceptual and implementation levels. This, combined with a modern software
engineering approach (not totally developed here but presented in [5]) gives a solid technical
framework for developing dedicated learning systems. This development is partially performed through
our participation to the DIVILAB IST European project. We are generating a CSCL system dedicated
to the needs of a distributed learning environment for experimental sciences and technologies.
However a lot of work still has to be done. At the composition level, we are further developing the set
of tools for the referencing and cataloguing the components. Some dedicated components more tightly
coupled with the DARE environment, some kind of DARElets (by analogy with the servlets), will be
developed to support the bootstrapping of the future co-operative activities and to ease the integration
of traditional applications such as databases and Workflow Management Systems already in use
educational organisations. At the user level, we want to provide more CSCL domain-specific applets
based on the underlying levels, such as organisation management or even course or curriculum design-
support applets. We expect that educational agents like pedagogical designers, instructors, tutors,
learners, etc could use the same kind of applications with different perspectives or viewpoints. It is a
way to satisfy the need for a more reflective learning process.

Notes
1. The Workflow can briefly be defined as the automated co-ordination, control, and communication

of people and computers work in the context of organisational processes, through software
execution into a network of computers. For more see WFMC [22].

References
1. Bardram J., Designing for the dynamics of cooperative work activities, Proceedings of the ACM

CSCW’98 conference, ACM Press, 1998, pp. 89-98.
2. Bedny G., Meister D., The Russian theory of activity, Current Applications to Design and

Learning, Lawrence Erlbaum Associates Publishers, 1997, 430 p.
3. Bourguin G., Derycke A., A Reflective CSCL Environment with Foundations Based on the Activity

Theory, Springer Verlag proceedings of ITS’2000, Fifth International Conference on Intelligent
Tutoring Systems, Montreal, CANADA, 19-23 June 2000.

4. Bourguin G., Derycke A., Meta Groupware Design for CSCL Environments, ED-MEDIA’2000,
AACE, Montreal, CANADA, 26 June-1st July 2000.

5. Bourguin G., Un support informatique à l’activité coopérative fondé sur la Théorie de l’Activité :
le projet DARE, Ph.D. Thesis, Informatique, n° 2753, Université des Sciences et Technologies de
Lille, France, 2000.

6. Bowkers, G; Leigh Star, S. Turner, W. Gasser, L. (1997). Social science, technical systems and
cooperative work: beyond the great divide. Lawrence Erlbaum Associates, “Computer, cognition
and work” series.

7. Carstensen, P. H. Schmidt, K. Computer Supported Cooperative Work: new challenges to systems
design. To appears in Handbook of Human Factors, Kenji Itoh, Tokio, 1999 (23p)

8. Derycke, A. C. “Integration of the Learning Processes into the Web: Learning Activity centred
Design and Architecture”. Webnet’98 conference, invited conference, Orlando, FL, USA,
November 1998.

9. Derycke, A. Kaye, A.(1993).Participative modeling and design of collaborative learning tools in
the CO-LEARN project. In G. Davis, B. Samways (eds), IFIP, Teleteaching 95 Conference,
Trondheim, August 20-25,North-Holland, Amsterdam, , pp. 191-200.

10. Derycke, A. Viéville, C. (1994). Real-time multimedia conferencing system and collborative
learning. Collaboration Dialogue Technologies in distance education, Verdejo, F., Ceri, S. (eds),
NATO ASI Series, Springer Verlag, Berlin, 1994, pp. 236-256.

11. Gifford, B. R. Enyedy, N.D. Activity centered Design: Towards a theoretical framework for
CSCL. In Proceeding the CSCL’99 conference, December 12-15, 1999, pp 189-197.

12. Grabinger. S. REAL Strategies and Distributed Learning. EuroConference98, Aveiro, Portugal,
September, 1998. Invited conference, http://ceo.cudenver.edu/~scott_grabinger

13. Kuutti K., The concept of activity as a basic unit of analysis for CSCW research, Proceeding of the
second ECSCW’91 conference, Kluwers Academics Publishers, 1991, pp 249-264.

14. Morch, A. Mehandjiev, N. Tailoring as Collaboration: the Mediating Role of Multiple
Representations and Applications Units. “Computer Supported Cooperative Work” journal, vol9,
2000, Kluwers Academic Publishers, pp75-100.

15. Nardi B. A., Context and consciousness : activity theory and Human-Computer Interaction. Eds.,
Cambridge, Ma : MIT Press, 1996.

16. Pea, R. D. Distributed Multimedia Learning Environments: why and How?. In Interactive learning
Environments, vol. 2, Issue (2), 1992, pp 73-109.

17. Roschelle, J. Kaput, J. Stroup, W. M. Kahn.T. Scalable Intergration of Eductional Software:
exploring the Promise of Component Architecture. http://www.jiime.open.ac.uk/98/6/roschelle-
01.html .

18. Schmidt, K. Simone, C. Mind the gap! Towards a unified view of CSCW. In proceeding of
COOP2000, Sophia Antipolis, France, 23-26 May 2000, INRIA (16 p).

19. Sorensen, E. K. Intellectual Amplification through Reflection and Didactic Change in Distributed
Collaborative learning. In Proceeding the CSCL’99 conference, December 12-15, 1999, pp 582-
589, http://kn.cilt.org/cscl99 .

20. Szyperski, C. Component Software Beyond Object-Oriented Programming. ACM press Edition/
Addison Wesley, 1997.

21. Viéville C., Derycke A. (1998). Self-Organised Group Activities Supported by Asynchronous
Structured Conversations. Proceedings of the IFIP conference on “Virtual Campus: trends for
higher education, and training”, Madrid, Spain, November 1997, F. Verdjo, G.Davies (Eds),
Chapmann & Hall, London, 1998, pp 191-204.

22. Workflow Management Coalition, http://www.aiim.org/wfmc/ .

View publication stats

https://www.researchgate.net/publication/228592320

