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Abstract. In this article, the capability of the VP-LBM (Volume Penalization
- Lattice Boltzmann Method) is explored on new cases whose studied physics

is quite different from previous work, and the use of fluid force calculation

methods within the VP-LBM framework is discussed. The first method, the
momentum exchange method, uses the variation of distribution functions near

the fluid-solid interface, while the second, the stress integration method, allows
the direct integration of fluid forces on this interface. Applied to the VP-LBM,

which involves penalizing the solid in the LBM, these two methods can lead

to significantly different results. Tests were carried out to investigate the lift
and drag coefficients of a NACA 0012 profile at different angles of attack,

Reynolds number 1000, an energy extraction system consisting of a translating

and rotating foil, and finally the sedimentation of particles under the effect of
gravity in a very low Reynolds number channel.

1. Introduction. Computational modeling of fluid-structure interaction (FSI) has
remained a challenging area of research in recent decades. Many effective method-
ologies and algorithms for modeling fluid-structure interaction have evolved in recent
years. A classical approach consists in coupling a fluid solver for the Navier-Stokes
equations with a structure solver, the fluid solver being obtained by a classical dis-
cretization method, such as the finite element or finite volume method. In this
paper, we propose to use the Lattice Boltzmann method (LBM) as a fluid solver
for FSI simulation.

The LBM has been successfully developed for computational fluid mechanics
since the 1990s [5], and appears to be an efficient alternative computational method.
Based on the Boltzmann equation, the LBM considers the transport of the proba-
bility of finding a particle at a given time, position and mesoscopic velocity. Macro-
scopic variables are obtained using the moments of the distribution functions. The
power of the LBM lies in its programming simplicity and short computation time
if the algorithm is solved using graphics processing units (GPUs) [12]. The LBM
approaches to solving flows around moving bodies can be classified into two families.

The first concerns Bounce-Back methods and their derivatives. Bounce-Back
methods consist in considering that a wall rejects the particle, and, for a moving
boundary, in locally changing the macroscopic velocity. For moving bodies, this
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2 ERWAN LIBERGE AND CLAUDINE BÉGHEIN

family can be decomposed into 4 groups as suggested by Krüger et al. [18]. In
the first group of methods, the boundary is approximated by a staircase [20]. This
method can lead to errors in the case of complex geometries, and for moving bound-
aries it requires a costly step to update the fluid site and a filling algorithm on nodes
that become fluid. The second group concerns methods that use interpolation to
impose the exact wall velocity [29, 7]. The results obtained with these methods
are more accurate, but have a drawback due to interpolation: the mass is not con-
served. The other drawback is the use of a filling algorithm to compute quantities
on solid nodes that become fluid after boundary movement. The next group focuses
on methods called Partially Saturated Bounce-Back (PSBB) in Kruger et al. [18].
The principle is that a network node can be a mixed fluid/solid node. The method,
originally proposed by Noble and Torczynski [23], involves modifying the collision
operator by introducing a solid volume fraction. Finally, the collision operator is a
mixture of the classical collision operator and the Bounce-Back method. The major
drawback of this method is the difficulty of calculating the solid volume fraction
for each node in the network. This limits the field of application of this method
to stationary bodies. Krüger et al. propose a final group of methods based on the
extrapolation of distribution functions for fluid nodes located near the boundary.

The second family is that of immersed boundary (IB) methods for LBM [13]
which consists in modeling the effect of the boundary by adding nodal forces in the
vicinity of the boundary, in the fluid flow solver. The main drawback of IB-LBM
is that nodal forces use a penalty factor, and hydrodynamic forces and torques
depend on this factor for rigid bodies. The direct forcing scheme [11] cancels this
disadvantage, but it requires solving the Boltzmann equation twice per time step.
Wang et al. [26] propose an alternative approach using a Lattice Boltzmann Flux
Solver (LBFS), whose formulation is not efficient for a GPU implementation.

In previous papers [2, 3, 4], we proposed coupling the volume penalization (VP)
method [1] and the LBM (VP-LBM). The volume penalization method consists in
extending the Navier-Stokes equations to the whole domain (fluid and solid) and
adding a volume penalization term to account for structure. This approach can
be seen as a cross between the partially saturated rebound method (PSBB) and
the immersed boundary method (IB). However, the volume penalty method does
not require the costly calculation of the solid fraction near the solid interface as
in PSBB methods, and the difference with IB methods is that the VP method
uses a volume force, instead of local forces on Lagrangian markers. The capabil-
ity of penalty methods for fluid-structure interaction problems in a finite element
framework has been demonstrated by Destuynder et al. [8]. In earlier work, Ben-
amour et al. [2, 3] showed that VP-LBM gives good results for fixed bodies. In [4],
the method was successfully tested for moving boundaries and a real case of fluid-
structure interaction (FSI). In these earlier works, the momentum exchange (ME)
method was used to calculate fluid forces and, although the results were validated,
spurious oscillations could be observed in the case of fluid-structure interaction on
lift and drag coefficients. In this article, we propose first to present the performance
of the VP-LBM approach for new cases for which the physics of fluid flow is rad-
ically different from previous work, and then to compare the accuracy of the ME
method and the other well-known method for calculating forces in LBM, the stress
integration method (SI) on these cases. The first case is the study of a NACA 0012
airfoil with angles of attack from 0◦ to 28◦ at Reynolds number 1000, the objective
here is to capture the stall phenomena, the second is the imposed displacement of
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a NACA 0015 which is part of a power extractor, and the last is the sedimentation
of particles under the effect of gravity in a channel at very low Reynolds number.

The theoretical background is presented in the next section. This section deals
with the Lattice Boltzmann method, and more specifically with the two-relaxation-
time (TRT) approach, volume penalization and the combination of these two meth-
ods. Next, the momentum exchange (ME) and stress integration (SI) methods are
introduced. The final section presents applications computed on a GPU device.
For the first case tested, the lift and drag coefficients of a NACA 0012 profile at
different angles of attack, Reynolds number 1000, obtained with ME and SI are
compared with literature data. The second example deals with a foil oscillating in
translation and rotation, leading to a disturbed fluid flow configuration. The next
case explores the ability of the VP-LBM method to model a very low Reynolds
number phenomenon represented here by the sedimentation of particles under the
effect of gravity in a channel.

2. Governing equations. In this section, the numerical models are described.
The following notations are used: ρ and u are macroscopic density and velocity,
and boldface type designates vectors.

2.1. Volume penalization. Let’s consider a fluid domain Ωf , a solid domain Ωs,
Γ the fluid-solid interface, and let’s denote Ω = Ωf ∪Ωs ∪Γ. The Volume Penaliza-
tion (VP) method consists in extending the Navier-Stokes equations to the entire
Ω domain, and considering the solid domain as a porous medium with very low
permeability. The method was introduced by Angot et al.[1] and already applied
to macroscopic equations for moving bodies [16]. The low permeability of the solid
domain is modeled using a penalization factor, allowing the desired boundary con-
ditions to be imposed naturally at the fluid-solid interface. With this method, the
incompressible Navier-Stokes equations are written as follows:

∇ · u = 0
∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u− χs

η
(u− us)

(1)

where

χs (x, t) =

{
1 if x ∈ Ωs (t)
0 otherwise

; η � 1 penalization factor (2)

u represents the velocity field, p is the pressure field, ρ and ν are the density and

viscosity of the fluid. F =
χs
η

(u− us) is the penalization term, and us is the

velocity field in the solid domain.

2.2. Lattice Boltzmann method. Based on the Boltzmann equation (equation
(3)) proposed in the context of the kinetic theory of gas by L. Boltzmann in 1870,
the Boltzmann lattice method has been successfully used to model fluid flow since
the 1990s.

∂f

∂t
+ c · ∇xf = Ω (f) (3)

This equation models the transport of f (x, t, c), a probability density function of
particles with velocity c at location x and time t. Ω (f) is the collision operator.
The link between the Boltzmann equation and the Navier-Stokes equations is well
known since the Chapmann-Enskog expansion proposed in 1915.
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The lattice Boltzmann method considers the discretization of the equation (3) in
space and velocity, and leads to the following discretized equations:

fα (x + cα4t, t+4t)− fα (x, t) = Ωα (f) +4tFα (4)

where fα (x, t) = f (x, cα, t), Fα is a forcing term related to the discrete velocity cα
[15].

4x

4y c0

c1

c2

c3

c4

c5c6

c7 c8

Figure 1. Discrete velocities of the D2Q9 model
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π

2

)
, sin

(
(α− 1)

π

2

))
c α = 1, 2, 3, 4(

cos
(

(2α− 9)
π

4

)
, sin

(
(2α− 9)

π

4

))√
2c α = 5, 6, 7, 8

(5)

Where c =
4x
4t

. We generally choose 4x = 4y = 4t = 1.

The first model proposed by Bhatnagar et al. [6] is the BGK model which is
based on a linear collision operator with a single relaxation time:

Ωα (f) = −1

τ
(fα (x, t)− f eq

α (x, t)) (6)

where f eq is the equilibrium function,

f eq
α = ωαρ

(
1 +

cα · u
c2s

+
uu :

(
cαcα − c2sI

)
2c4s

)
, (7)

ωα = {4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36}, cs =
c√
3

and τ is the non-

dimensional relaxation time which is related to the fluid viscosity as follows.

ν = c2s4t
(
τ − 1

2

)
(8)

In order to increase the stability, approaches using multiple relaxation times have
been proposed [9, 18]. In this work, the Two Relaxation Times (TRT) method is
used.

We denote cα the discrete velocity in the α direction and cᾱ = −cα the discrete
velocity in the opposite ᾱ direction.

The TRT method consists of introducing modified positive and negative distri-
bution functions:

f+
α =

fα + fᾱ
2

, f−α =
fα − fᾱ

2
. (9)

In the same way, feq +
α and feq −α are defined.
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This leads to the following discretized scheme :

fα (x + cα∆t, t+ ∆t)− fα (x, t)

= −∆t

τ+

(
f+
α (x, t)− feq +

α (x, t)
)

− ∆t

τ−
(
f−α (x, t)− feq −α (x, t)

)
+

(
1− ∆t

2τ+

)
Fα, (10)

where τ+ is the relaxation time linked with the non-dimensional viscosity ν accord-
ing to:

ν = c2s4t
(
τ+ − 1

2

)
. (11)

The relaxation time τ− is obtained as follows:

τ− =
∆t Λ

τ+ − 1
2

+
1

2
, (12)

In this work, we choose Λ = 1
6 , because of the better stability we obtained with

this value.
Finally, macroscopic quantities arecomputed according to the following expres-

sions:

ρ =
∑
α

fα ρu =
∑
α

cαfα +
4t
2
ρF (13)

In the present approach, the volume penalization term is added:

ρu =
∑
α

cαfα −
4t
2
ρ
χs
η

(u− us) (14)

To avoid instabilities, the term including u in the penalization force is moved to
the left hand side of equation (14)

ρ

(
1 +
4t
2

χs
η

)
u =

∑
α

cαfα +
4t
2
ρ
χs
η

us (15)

This leads to the modified update step for computing the macroscopic velocity
field:

u =

∑
α

cαfα +
4t
2

χs
η
ρus

ρ+
4t
2

χs
η
ρ

(16)

In the fluid domain, where χs = 0, the classical LBM equation is obtained, while
in the solid domain, where χs = 1, the equation (16) forces the velocity field to
approach us.

2.3. Fluid forces computation. Angot et al. [1] proposed in the context of an
integral formulation of the volume penalization problem to compute the fluid forces
with the following formula:

Ff = lim
η−→∞

∫
Ωs

u− usdΩ (17)

The formula (17) works with finite element or finite volume methods, but fails in
our calculation tests. We present below the two classical methods used in the LBM
to calculate fluid forces.
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2.3.1. Momentum Exchange Method (ME). The fluid forces are computed with the
Momentum Exchange method (ME) proposed by Wen at al.[27]. We denote xf a
boundary node in the fluid domain and xs the image of this boundary node across
the solid interface by a lattice velocity cα, also called the incoming velocity (see
figure 2). The point of intersection between the fluid-solid interface and the link
xf − xs is xΓ, and the outgoing network velocity is denoted cα = −cα.

xs
•

xf
•

xΓ•
cα

fluid

solid

Figure 2. Curved interface on a square lattice: example of a fluid
boundary node xf , its image in the solid domain xs, and the in-
tersection point xΓ located on the interface

The local force at xΓ is computed using the following expression:

F (xΓ) = (cα − uΓ) f̃α (xf )− (cα − uΓ) f̃α (xs) , (18)

and the total fluid force acting on the solid domain is:

Ff =
∑

F (xΓ) (19)

The torque is obtained with

T f =
∑

(xΓ − xG)× F (xΓ) , (20)

with xG the coordinates of the body’s center of gravity. A simple way to implement
the ME method is to use the characteristic function and calculate on the nodes
around the solid:

F (xΓ) ∗ (χs(xs) ∗ (1− χs(xf ))

This method avoids the need to search explicitly for the point of intersection xΓ.
Giovacchini and Ortiz [14] have shown that the ME does not depend on how the

solid domain boundary conditions are implemented.

2.3.2. Stress Integration Method (SIM). This method is more intuitive in compu-
tational fluid dynamics, and consists of integrating the stress tensor of the fluid on
the structure:

Ff =

∫
∂Ωs

σ · ndS and T f =

∫
∂Ωs

r× σ · ndS (21)

with

σ = −pId + ν
(
∇u + (∇u)

T
)

= −ρc2sId −
(

1− 1

2τ

)(∑
α

cα ⊗ cα (fα − feqα )

)
(22)
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and n is the external unit normal vector to the solid interface.
The fα are extrapolated from the nearest point in the direction concerned (close

to n) in the fluid domain to the xi integration points located on the surface. Finally,
equation (21) becomes:

Ff =
∑
i

Siσ (xi) · ni (23)

Si and ni are the integration surface and the exterior normal at the integration
point xi.

3. Applications. All computations were performed on a NVIDIA QUADRO P500
GPU card, using a CUDA implementation. A penalization factor value η = 10−6

was chosen for all cases1.
In the following, l.u. denotes lattice length units and t.s. denotes lattice time

units.

3.1. NACA airfoil. The first application is the study of the NACA 0012 airfoil
with different values of angle of attack at Reynolds number 1000. This case is well
documented in the literature, and the different ME or SI results for VP-LBM are
compared with those obtained by [10, 19, 22].

Liu et al. [22] uses the finite element method combined with fine meshing to
obtain accurate numerical results. Kurtulus [19] offers a very comprehensive study,
using the finite volume method and extensive data for comparison. Di Illio et
al. [10] combines the standard LBM method with an unstructured finite volume
formulation in the so-called hybrid Boltzmann lattice method. They used an overlap
between a standard LBM approach on the whole domain and an unstructured grid
model adapted to the body where a finite volume Boltzmann formulation is applied.
This approach produced highly accurate results close to the body. However, no
information was given on the calculation of fluid forces. This appears to be a stress
integration method, as the macroscopic values are taken directly from the mesh
fitted to the body.

The figure 3 represents the computational domain. Let C be the chord of the

C
α

L1 L2

HU0

inlet outletsymmetry

x

y

Figure 3. Scheme of the computational domain around the
NACA airfoil

NACA 0012. The airfoil is placed at 4C from the inlet and 9C from the outlet. The
height of the computational domain is 7C, and the NACA is 3.5C from the bottom.

1No difference was observed for a value below 10−3. 10−6 is a value that guarantees that the
penalization term dominates the other terms of the calculation in the solid domain.



8 ERWAN LIBERGE AND CLAUDINE BÉGHEIN

A constant velocity profile was imposed at the inlet using the classical halfway
bounce back method, and the flow boundary condition at the outlet was modeled
using the convection condition [28]. This condition reduces the distance between the
aerodynamic profile and the extreme limit of the computational domain downstream
of the immersed body. Boundary symmetry conditions ( u · n = 0) were imposed
on the other boundaries.

The computations were performed using the following parameters (in lattice
units):

C = 278, U0 = 0.0599, τ = 0.55

Note that τ is close to the stability limit for LBM, but this makes it possible
to reduce C and therefore the size of the computational problem as well as the
computation time. Di Illio et al. [10] used 512 nodes in the string, and a larger
computational domain. However, our interest in VP-LBM solved in CUDA being
computation time, we are trying to get a good qualitative result without resorting
to overly expensive computational resources. That is why this set of parameters
was used.

For the Stress Integration method, 849 integrations points have been used. Note
that the number of integration points was chosen arbitrarily. Increasing their num-
ber increases the accuracy of the calculation, but not significantly in this case.

(a) Lift coefficient (b) Drag coefficient

Figure 4. Lift and Drag coefficient versus angle. The VP-LBM’s
results computed with Stress Integration and Momentum Exchange
methods are compared with those in the literature

The drag and lift coefficients are plotted in figure 4. The VP-LBM gives a good
prediction of these values compared with the literature.

For α ≤ 8◦ a steady solution has been obtained, leading to a slight increase in
drag. Then, up to 24◦, a periodic vortex shedding is observed (figures (5(b)) and
(5(c)). During this phase, the increase in drag and lift is regular. An irregularity in
the lift coefficient appears at 26◦. This stall phenomena is well captured with the
VP-LBM approach, and the numerical value is also well computed with ME as well
SI.

Note that the values obtained here are slightly higher than those obtained by
[19] and Di Illio et al. [10], but lower than those obtained by Liu et al.[22]. As our
results are close to those of Liu et al. [22] and Di Illio [10], they can be considered
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(a) α = 7◦ (b) α = 10◦

(c) α = 24◦ (d) α = 26◦

Figure 5. Streamlines around NACA 0012 for various angles

validated. If we consider that the work of Di Illio et al. [10] is the reference, because
a finer mesh is used, the Stress Integration method gives better results than the
Momentum Exchange method. SI provides a better approximation of the surface,
with a direct discretization of the solid boundary, and a true outward normal, while
ME used a staircase approximation. The limit of SI, which is an extrapolation of
the distribution values on the boundary, does not seem to have any consequences
in these cases.

Lift forces are fairly similar, with neither ME nor SI affecting the results. Drag
was slightly overestimated with ME, probably due to the approximation of the
computational boundary induced by this method.

3.2. Oscillating foil. The second example concerns a power extraction system
presented by Kinsey and Dumas [17]. The system consists of a NACA 0015 foil
whose translational and rotational displacement is imposed. The vertical displace-
ment y (t) and the rotation θ (t) of the foil are imposed according to the following
expressions:

y (t) = Y0sin (γt+ φ) and α (t) = α0sin (γt) (24)

The capacity of the VP-LBM method was tested for the physical parameters H0 =
C,α0 = 76.33 deg, Re = 1100, with the following LBM parameters (in lattice units):
C = 459, UO = 0.039941 and τ = 0.55.

In the figure 6 the power coefficient cp, which represents the instantaneous power
extracted from the flow, over a period of oscillation T is plotted and compared. The
cp coefficient makes it possible to concatenate the lift and torque coefficients into a
single coefficient:

cp (t) =
Ff (t) ·U (t) + T f (t) ·Ω (t)

1

2
ρU0C

, (25)

with U and Ω representing the velocity of the NACA’s center of gravity and the
angular velocity of pitch.

The evolution of power due to the significant variation in oscillation angle is well
captured, and the power extracted by the fluid calculated by the VP-LBM method,
whatever the method used to calculate the fluid forces, is as good as the literature
reference.



10 ERWAN LIBERGE AND CLAUDINE BÉGHEIN

(a) Imposed displacement (b) Drag coefficient

Figure 6. Comparison of the power extractor coefficient (equa-
tion (25)) obtained using the VP-LBM method and the literature
reference

Figures 7 and 8 show the fluid patterns for two foil angles during the descending
phase. Figure 7 shows the vorticity field for the maximum foil angle. The vor-
tices previously detached from the foil and descending into the fluid flow are well
captured, even the three lowest amplitude vortices in the bottom right of figure
7(b).

(a) Literature reference (b) VP-LBM result

Figure 7. Comparison of the vorticity field obtained by [17] and
by the LBM-VP for t/T = 0.25

Figure 8 shows the fluid flow for the second peak of the CP maximum on figure
6 for a dimensionless time around t/T = 0.45. Two large vortices under the NACA
will escape, and the small vortices in the wake of the foil are the same on both
figures 8(a) and 8(b).

The VP-LBM method proved effective in this case to capture the complexity of
fluid flow induced by the large translational and rotational displacement of a NACA
0015. The two methods used to calculate fluid forces give similar results in terms
of power extraction coefficients.
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(a) Literature reference (b) VP-LBM result

Figure 8. Comparison of the vorticity field obtained by [17] and
by the LBM-VP for t/T = 0.45

3.3. Sedimentation of a particle under gravity. The next case concerns the
sedimentation of a particle under the effect of gravity in an infinite channel (figure
9) for non-centered configurations. This problem has been widely used for model
validation and is very useful for testing the ability of a method to capture complex
trajectories at very low Reynolds numbers [25, 24, 27, 21]. Indeed, at very low
Reynolds numbers, numerical noise cannot be hidden by a large average that could
cover it.

L

H

D

x

y

x0

y0

g

Figure 9. Scheme of particle sedimentation

A circular particle of diameter D falls by gravity g into a fluid of density ρ in
a vertical channel of width H. In the initial state, the particle is at a distance x0

from the left wall, a distance y0 from the top of the channel and the velocity of
the particle is equal to zero. In this case, the displacement of the particle can be
described using the equations (26) and (27):

m
d2xG
dt2

= Ff +m

(
1− ρ

ρs

)
g (26)

I
d2θ

dt2
= T f (27)
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where ρ denotes the fluid density, ρs the solid density and m the particle mass. The
last term of the equation (26) represents the weight and buoyancy (Archimedes’
principle) acting on the particle.

For small Reynolds numbers and a large non dimensional width H̃ =
H

D
, the

particle reaches a steady state.
The following case deals with a particle whose initial position is not at the center

of the channel (x0 = 0.75D). The properties of the fluid are ρ = 1 g · cm−3, and
µ = 0.1 g · cm−1 · s−1 and the physical problem concerns a particle of diameter

D = 0.1 cm. Four mass ratio ρr =
ρs
ρf

= 1.0015, 1.003, 1.0015 and 1.03 and ‖g‖ =

980 cm · s−2 are used. The Reynolds numbers based on the final velocity of the
particle are, respectively, Re = 0.52, 1.03, 3.23 and 8.33.

For the LBM computations the cylinder diameter was 26 l.u., the same value used
in the literature [24], the relaxation time was τ = 0.6. No-slip boundary conditions
were imposed on the left and right walls. A zero velocity boundary condition was
applied at the inlet (top of the channel) and free flow conditions were applied at
the outlet (bottom). A large value of L was chosen, so that the inlet and the outlet
do not influence the behavior of the particle.

Figure 10. Results obtained using the VP-LBM approach and
compared with Tao et al’s results [24]

The particle trajectory for each mass ratio is plotted in figure 10, and compared
with the reference results of the literature [24, 21]. In order to facilitate the reading
of the figure, only a few points for each trajectory have been plotted. First of all,
it can be noted that the VP-LBM method, coupled with the Stress Integration
method gives for each case a good behavior of the particle. The results are similar
to those obtained with the UIBB and the literature. This is not what is observed
for VP-LBM coupled with Momentum Exchange. The trajectory is almost correct
for a high mass ratio, although a small difference can be observed around t = 0.5s
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for ρr = 1.03 , and the error increases as the mass ratio (i.e the Reynolds number)
decreases. Our analysis is that for small mass ratio, the fluid forces are very small,
and a small error has a greater significance in the behavior of the particle than
for a larger mass ratio. The lack of accuracy of the fluid solid interface has a
great consequence here. Extrapolating fα to the fluid-structure interface in the
Stress Integration method not only improves the calculation of fluid forces, but also
smoothes out fα oscillations. The momentum exchange method is affected by the
spurious oscillation of fα values when a solid node becomes solid. This phenomenon
has already been observed in the two previous cases, but the amplitudes of the
spurious oscillations are too small in relation to the amplitude of the signal, so they
are not visible.

Figures 11 show the rotational velocity for the smallest and largest mass ratio.
For ρr = 1.0015 (figure 11(a)) spurious oscillations are observed with ME. Even if
the average follows the reference solutions, these oscillations lead to particle devia-
tion from the reference trajectory. In the figure 11(b), oscillations are smaller, but
even if the solution is close to the reference one, the Stress Integration gives better
results. This phenomenon is well known in ME for moving boundaries. Indeed, as
the solid moves, the number of xΓ points in equations (19) and (20) can change,
which can lead to oscillations in the total forces.

(a) ρr = 1.0015 (b) ρr = 1.03

Figure 11. Rotational velocity obtained using the VP-LBM ap-
proach and compared with reference’s results [24, 21]

Figures 12 and 13 show the fluid velocity and the vorticity field around the
particle at four different times. The dynamics of the flow field and the particle can
be analyzed using the velocity magnitude and the vorticity. The particle first moves
to the right and rotates in a positive direction. This is followed by a brief oscillation
around the center line of the channel and, finally, the particle remains in the middle
of the channel with a constant velocity.

This example shows that the VP-LBM method is capable of predicting a com-
plex trajectory for a real case of fluid-structure interaction at a very low Reynolds
number.

4. Conclusion. The volume penalization method coupled to the Boltzmann lattice
method (VP-LBM) was successfully applied to three cases of different complexity.
Available methods for calculating fluid loads were also discussed. The VP-LBM
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(a) t = 0.4 s (b) t = 0.6 s (c) t = 1.0 s (d) t = 3.0 s

Figure 12. Fluid velocity magnitude at times t=0.4, 06, 1.0 and
3.0 seconds in lattice units

(a) t = 0.4 s (b) t = 0.6 s (c) t = 1.0 s (d) t = 3.0 s

Figure 13. Fluid vorticity at times t=0.4, 06, 1.0 and 3.0 seconds
in lattice units

method demonstrated its ability to reproduce the complex physics of an airfoil at
different angles of attack, and the stall phenomenon was well captured. For this
application, the momentum exchange (ME) and stress integration (SI) methods
give similar results, but the drag coefficients seem a little more accurate with the
SI method. In the second example, a foil oscillating in translation and angle, both
methods gave similar results. The complexity of the velocity field is well captured
by the two methods used to calculate fluid forces. The final application concerns the
sedimentation of particles under the effect of gravity at very low Reynolds numbers.
The SI method gave the best results, not least because the extrapolation step in this
method smoothes out spurious oscillations in the values of the fα density function.
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However, the trajectories were found perfectly. VP-LBM combined with the stress
integration method appears to be a valid tool for simulating fluid-structure interac-
tion problems. At low Reynolds numbers, it is advisable to use the stress integration
method, whereas as the Reynolds number increases, the differences between the two
methods cancel out, as the influence of the variation in the number of integration
points in ME is small. For an extension of the method to three-dimensional cases,
the use of the ME should be better. Indeed, the ME method will be easy to use,
due to the simplicity of its implementation, whereas the SI method should be ex-
pensive, due to the need for a large number of integration points to be placed on the
fluid-structure interface, and costly extrapolations on the distribution functions.
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