
HAL Id: hal-04772531
https://hal.science/hal-04772531v1

Submitted on 8 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Programming parallelism on FPGAs with Eclat
Loïc Sylvestre, Jocelyn Sérot, Emmanuel Chailloux

To cite this version:
Loïc Sylvestre, Jocelyn Sérot, Emmanuel Chailloux. Programming parallelism on FPGAs with Eclat.
17th International Symposia on High-Level Parallel Programming and Applications (HLPP 2024),
Massimo Torquati; Marco Danelutto, Jul 2024, Pisa, Italy. pp. 69-88. �hal-04772531�

https://hal.science/hal-04772531v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Programming parallelism on FPGAs with Eclat

Loïc Sylvestre · Jocelyn Sérot ·
Emmanuel Chailloux⋆

Abstract Eclat is a general purpose OCaml-like programming language
with synchronous semantics for designing reactive hardware applications on
FPGAs. It is compiled down to hardware descriptions to realize computations
as intrinsically parallel circuits able to interact with the physical world.

This paper presents a formalization of Eclat with shared memory and mu-
tability, handling concurrent memory accesses while preserving determinacy.
The language is precise enough to express efficient circuits with fine control
over throughput, parallelism and time-space trade-off. It also enables abstrac-
tion by letting the programmer implement, reuse and compose algorithmic
skeletons such as map and pipe. The synchronous approach makes it possible
to estimate the execution time of parallel programs by simple reasoning on
source code for quick prototyping and optimization.

Keywords Language design and implementation, FPGAs,
Performance prediction, Algorithmic skeletons, Synchronous programming

1 Introduction

Field-Programmable Gate Arrays (FPGAs) are digital circuits interconnecting
generic logic cells, memory blocks and I/O blocks; all of these elements are
configurable by logic synthesis to implement custom circuits. This architecture
offers an interesting trade-off between Application-Specific Integrated Circuits
(ASICs) and general-purpose processors. It exposes fine-grained parallelism

⋆ This Work is partially supported by the Center for Research and Innovation on Free
Software (IRILL).

Loïc Sylvestre and Emmanuel Chailloux
Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
E-mail: Loic.Sylvestre@lip6.fr, Emmanuel.Chailloux@lip6.fr

Jocelyn Sérot
Institut Pascal, UMR 6602 UCA/CNRS/SIGMA
E-mail: Jocelyn.Serot@uca.fr

2 Loïc Sylvestre et al.

with very low latency in I/Os processing. This constitutes a valuable target
for both embedded system design [5] and heterogenous computing.

FPGAs are classically programmed as synchronous circuits at the so-called
Register Transfer Level (RTL) in Hardware Description Languages (HDLs)
such as VHDL or Verilog. The main advantage of RTL is predictability
because any architectural detail (such as throughput, latency and parallelism)
must be encoded in terms of register updates at each clock tick of a global clock.

A variety of high-level synthesis tools have been proposed to generate hard-
ware descriptions from software-like (C/OpenCL) code [12]. However, one of
the side effects of such automation is that many architectural details are hidden
from the programmer [7]. This is a source of unpredictability, e.g., for timing.

To trade this issue, we are currently developing the high-level programming
language Eclat (declarative language), which is tailored for the design of real-
time hardware applications on FPGAs [16].

Eclat is an OCaml-like language compiled to VHDL and whose formal
semantics is based on the synchronous model of computation [4]. It reflects, at
the language level, the tick of the physical clock driving the target FPGA: pro-
gram execution is discretized as a sequence of computation steps called clock
cycles (or instants). The duration of each cycle is fixed by the FPGA clock.

Eclat programs can mix several programming styles, such as high-level
hardware description, general purpose computation and interaction with the
physical world. This paper focuses on general-purpose parallel computing on
FPGAs with Eclat. The contributions are:

• the design of Eclat, including an operational semantics to model shared
memory, mutability and concurrency in a deterministic manner;

• the implementation1 of these new features in the Eclat compiler2;
• the exploration of space-time trade-off in Eclat, by mixing fine-grained

parallelism and shared memory, to obtain important gains of speed on an
FPGA with regard to sequential implementations running on a CPU;

• the efficient implementation of algorithmic skeletons using Eclat with per-
formance prediction and optimization by simple reasoning on source code.

Section 2 formalizes the Eclat language core and mentions practical ex-
tensions that are used in the rest of the paper. Section 3 presents the Eclat
support for array allocation in shared memory and mutability; the mix of syn-
chrony and shared memory provides, for free, determinacy and fairness for con-
current memory accesses, which constitues a basis for performance prediction.
Follows an evaluation, in Section 4, which shows how to exploit fine-grained
parallelism with Eclat, while using shared memory, in order to achieve high
performance on quite large inputs. Section 5 considers the parallel implemen-
tation of algorithmic skeletons (as higher-order functions operating on Eclat
arrays); it focusses on composability and performance prediction through a

1 The artefact presented in this paper, including the source code for the benchmarks, is
available online: https://github.com/lsylvestre/HLPP24

2 We mainly target Intel FPGAs, but also provide experimental backends for Xilinx
FPGAs and the open-source synthesis tool-chain Yosys.

https://github.com/lsylvestre/HLPP24

Programming parallelism on FPGAs with Eclat 3

simple example, paving the way for understanding and optimizing more com-
plex skeleton-based Eclat applications. Section 6 discusses related work, and
section 7 highlights future research perspectives.

2 The Eclat language

This section presents3 Eclat, a declarative programming language compiled
to synchronous circuits for reconfiguring FPGAs. The FPGA target is crucial,
here, because it exposes a physical clock that the language exploits to finely
control timing, throughput and parallelism in the applications.

Eclat is based on a core language named λcbv, which is a typed left-
to-right call-by-value λ-calculus with pairs and like immutable vectors, para-
metric polymorphism and a limited form of higher-orderness to be efficiently
compiled to a synchronous circuit.

Eclat also features tail-recursion and coarse-grained parallelism, both re-
lying on the concept of pause [9]. A pause is a global synchronization barrier
used in Esterel-like synchronous languages to model time logically as a dis-
crete sequence of clock cycles. In Eclat, each recursive function call performs
an implicit pause which delays the execution of the function body to the next
clock cycle. Following the path initiated by Esterel [6], the hardware imple-
mentation of Eclat directly connects logical time to the clock of the FPGA.

2.1 Syntax and dynamic semantics of λcbv

The syntax of λcbv is shown in the upper part of Fig. 1. We let f , g, x, y and z
range over an infinite set of variables. Each program π is an expression e, which
computes an immediate value v̊ of basic type τ̊ , i.e., a constant or a pair of
immediate values. Among constants, immutable vectors (resp. integers) have
a size s in number of elements (resp. in number of bits). Integers are signed.
Values are constants, pairs, and functions. Local definition (let) and function
abstraction (fun) deeply destructurate pairs of values matching a pattern p.
Conditional (if) evaluates only one branch according to a condition.

Following a Hindley-Milner type discipline, a type scheme σ associated
with a let-binding is a type where some variables (α for types, α̊ for basic
types and η for sizes) are quantified to be instantiated (by types, basic types or
sizes respectively) when using this binding. All functions (including operators)
are unary4; this is ensured at type level by enforcing functions to return an
immediate value v̊ of basic type τ̊ . Operators over vectors are:

• vect_create<n> : ∀α̊ · α̊ → α̊ vect<n> for creation with an initial value,
e.g., vect_create<n>(c) evaluates to the array {c, · · · c} of size n,

• vect_size : ∀η · ∀α̊ · α̊ vect<η> → int for access to the size of the vector,

3 This presentation focuses on parallel programming in Eclat and therefore omits two
Eclat constructs (named register and exec) [16], which are used for interacting with the
physical I/Os in a (Lustre/Scade like) synchronous dataflow programming style.

4 For instance, the operator (+) has type ∀η · (int<η>× int<η>) → int<η>.

4 Loïc Sylvestre et al.

• vect_nth : ∀η · ∀α̊ · (α̊ vect<η>× int) → α̊ for access to the element at
the given computed index modulo the size,

• vect_copy_with : ∀η · ∀α̊ · (α̊ vect<η>× int× α̊) → α̊ vect<η> for copy
with update of the element at the given computed index,

• vect_mapi : ∀η · ∀α̊ · ∀β̊ · (((int× α̊) → β̊)× α̊ vect<η>) → β̊ vect<η>
transforming a vector by mapping a function on indexes and elements.

In concret syntax, programs can have global declarations ” let x1 = e1;; · · ·
let xn = en;;”. Expressions can be over-parenthesized, e.g., (f(g(x))). Tuples
are provided as generalization of pairs. Size annotations for integer literals can
be omitted (i.e., expression n stands for the constant (n:int<s>) with s a
fresh size variable). We let type int be an alias for int<32> and we use infixe
notation for binary operators as well as standard OCaml-like notations, e.g.,
let f (p:τ):τ ′ = e;; stands for let f = ((fun p → e):τ → τ ′);;.

program π ::= e
expression e ::=
variable x
constant | c
pair | (e,e)
local def. | let p = e in e
application | e e
abstraction | fun p → e
operator | op
type constr. | (e : τ)
conditional | if e then e else e
pattern p ::= x | () | (p,p)
constant c ::= true | false | ()
sized int. | (n : int<s>)
vector | {c1, · · · cn}

operator op ::= & | or | xor | not
| + | - | * | / | mod
| < | > | <= | >= | = | <>

vector creation | vect_create<n>
vector access | vect_size | vect_nth
vector update | vect_copy_with
transformation | vect_mapi

immediate value v̊ ::= c | (̊v,̊v)
value v ::= v̊ | (v,v) | fun p → e | op

basic type τ̊ ::= unit | bool | int<s>
| τ̊ × τ̊ | τ̊ vect<s> | α̊

type τ ::= τ̊ | τ × τ | τ → τ̊ | α
size s ::= n | η
type scheme σ ::= ∀α · σ | ∀τ̊ · σ | ∀η · σ | τ

evaluation context F ::= (□,e) | (v,□) | let p = □ in e
| □ e | v □ | if □ then e else e

Context
e/µ −→ e′/µ′

F [e]/µ −→ F [e′]/µ′

Ty-constr (e:τ)/µ −→ e/µ

Let let p = v in e/µ −→ e[p 7→ v]/µ
Fun-app (fun p → e) v/µ −→ e[p 7→ v]/µ
Op-app op v/µ −→ ϑ(op, v, µ)
If-true if true then e1 else e2/µ −→ e1/µ
If-false if false then e1 else e2/µ −→ e2/µ

Fig. 1 Syntax and reduction semantics of λcbv

The lower part of Fig. 1 defines the operational semantics of λcbv as a reduc-
tion semantics in the style of Felleisen [8]. The reduction relation e/µ −→ e′/µ′

rewrites configurations of the form e/µ, where an expression e is paired with
a memory µ. Memory is kept abstract in this section (it will be defined in
section 3 when adding mutable arrays in shared memory).

An evaluation context F is an expression with a hole □. F [e] is the expres-
sion obtained by substituting the hole □ by expression e in context F . The
context (v,□) specifies the evaluation order: the right component of a pair
cannot be reduced until the left component is a value. Rule Context reduces

Programming parallelism on FPGAs with Eclat 5

the expression e in the hole of any context F [e] and propagates memory mod-
ifications (if any). Other rules specify, in a deterministic way, the behavior of
each language feature. For example, reducing a let-binding or a function appli-
cation performs a substitution without capture e[p 7→ v] of pattern p by value
v in expression e (rules Let and Fun-app). Operator application is defined
by semantic function ϑ (rule Op-app), e.g., ϑ(not, true, µ) = false/µ.

An important property of λcbv is termination: for any well-typed configu-
ration e/µ, it exists a finite sequence of zero or more reductions e/µ →⋆ en/µn

such that en is stuck or a value.
Any λcbv expression represents a combinational circuit computing outputs

instantaneously. Operators are predefined logic gates. Constants are bit vectors
(e.g., booleans are 1-bit vectors “0” and “1”). Each pair (̊v1,̊v2) is a bit-vector
concatenating the two projections v̊1 and v̊2. The let construct sequentially
connects two sub-circuits. Each function abstraction fun p → e is a circuit
with one input p and one output that is the return value of the function. The
input (resp. the output) is composed of several wires: one for each bit of the
argument value (resp. the result). Function application is circuit instantiation,
i.e., inlining, which eliminates parametric polymorphism and higher-orderness.

Fig. 2 gives an example of circuit description in λcbv. This is a classical
1-bit full adder sequentially connecting two instances of a half adder.

1 fun ((a,b),ci) ->
2 let half_add = fun (a,b) ->
3 (a xor b, a & b) in
4 let (s1,c1) = half_add(a,b) in
5 let (s,c2) = half_add(s1,ci) in
6 let co = c1 or c2 in
7 (s,co)

a s1
b s

co
ci

half_add
half_add

c1
c2

Fig. 2 1-bit full-adder description in λcbv and the corresponding circuit

2.2 A synchronous general purpose language

The λcbv language has limited expressiveness. It cannot describe, in partic-
ular, sequential circuits, i.e., circuits having an internal state. Such circuits
are commonly described by hardware designers using Moore or Mealy Finite
State Machines encoded using low-level patterns at the register transfer level.
Following a different path, Eclat extends λcbv in a way that allows compute-
oriented sequential circuits to be directly expressed as parallel algorithms,
while keeping control over the low-level timing of these circuits.

The upper part of Fig. 3 defines the syntax of Eclat as an extension of that
of λcbv. It features two general purpose programming constructs, namely tail-
recursion5 (fix) and parallel pair (e1∥e2), both for which evaluation may span

5 A recursive function fix f (fun p → e) is a function f in which f is bound to its own
definition fun p → e (i.e., f can occur in e). In source programs, we use the classical derivated
construct let rec f p = e in e′ defined as let f = fix f (fun p → e) in e′ (see Fig. 4).

6 Loïc Sylvestre et al.

several cycles of a synchronizing clock. This notion of clock is incorporated in
the language through the concept of paused expressions, which occur during
evaluation (and never appear in source programs).

The lower part of Fig. 3 defines the operational semantics of Eclat by an
evaluation relation e/µ ⇓n v/µ′ meaning: “the configuration e/µ evaluates to
v/µ′ in exactly n clock cycles (with n ≥ 0)”. This big-step relation ⇓n is defined
by two rules, Eval-val and Eval-pause, which instantaneously apply a
sequence of zero or more reductions −→⋆: if the redex is a value, evaluation
terminates; if it is a pause of the form pause e′, then the execution time is
increased by 1 and the reduction of e′ continues at the next cycle (in this case,
we say that the evaluation is non-instantaneous).

Applying a recursive function f binds the argument to the formal parame-
ter of f , unfolds the fixpoint and places a pause behind the function body (rule
Fix-app). Reducing a parallel pair (e1∥e2) is reducing e1 (by applying rule
Context in the context (□∥e) until reaching either a paused expression or a
value), then reducing e2 in the same clock cycle (by applying rule Context
in contexts (v∥□) or (pause e′∥□)). Pauses are moved up by applying rule
Pause, except for two special cases aiming to synchronize parallel pairs (rules
Pause-par1 and Pause-par2). Once both e1 and e2 have been reduced to
values, a pair is instantaneously created (rule Par).

expression e ::= · · · | pause e | fix f (fun p → e) | (e∥e)
value v ::= · · · | fix f (fun p → e)

Eval-val
e/µ −→⋆ v/µ′

e/µ ⇓0 v/µ′ Eval-pause

e/µ −→⋆ pause e′/µ′

e′/µ′ ⇓n v/µ′′

e/µ ⇓(n+1) v/µ′′

evaluation context F ::= · · · | (□∥e) | (v∥□) | (pause e∥□)

Fix-app (fix f (fun p → e)︸ ︷︷ ︸
ϕ

) v/µ −→ pause ((e[f 7→ ϕ])[p 7→ v])/µ

Pause F [pause e]/µ −→ pause F [e]/µ si

{
F ̸≡ (□∥e′)
F ̸≡ (pause e′∥□)

Pause-par1 (pause e ∥ v)/µ −→ pause (e∥v)/µ
Pause-par2 (pause e ∥ pause e′)/µ −→ pause (e∥e′)/µ

Par (v∥v′)/µ −→ (v,v′)/µ

Fig. 3 Syntax and reduction semantics of Eclat as an extension of λcbv (Fig. 1)

Let ϕadd be: fix add (fun (a,b) -> if a = 0 then b else add(a-1,b+1)).
Evaluating ϕadd(2,2)/µ for a given memory µ behaves as follows:

at cycle 0: ϕadd(2,2)/µ −→⋆ pause e0/µ where e0 = (if 2 = 0 then 2 else
ϕadd(2-1,2+1)), and then the pause is removed (by Eval-pause);

at cycle 1: e0/µ −→⋆ pause e1/µ where e1 = (if 1 = 0 then 3 else ϕadd(1-1,
3+1)), and then the pause is removed (by Eval-pause);

at cycle 2: e1/µ −→⋆ 4/µ; therefore ϕadd(2,2) evaluates to 4 in 2 cycles.

Programming parallelism on FPGAs with Eclat 7

Fig. 4 illustrates how behaves (e1∥e2). At lines 1-5 is defined a function
collatz computing the stopping time of the Collatz sequence (also referred
to as Syracuse) starting from an integer n. It declares a local tail-recursive
function f performing one call per cycle. At line 6, function collatz is called
twice in parallel with arguments 4 and 8. It evaluates as follows:

at cycle 0: collatz(4) reduces to f(4,0) and then collatz(8) to f(8,0);
at cycle 1: f(4,0) reduces to f(2,1) and then f(8,0) reduces to f(4,1);
at cycle 2: f(2,1) reduces to f(1,2) and then f(4,1) reduces to f(2,2);
at cycle 3: f(1,2) reduces to 2 and then f(2,2) reduces to f(1,3);
at cycle 4: f(1,3) reduces to 3 and then the program returns 2 + 3.

1 let collatz n =
2 let rec f (n,t) =
3 if n = 1 then t else
4 if n mod 2 = 0 then f(n/2,t+1) else f(3*n+1,t+1)
5 in f(n,0) in
6 let (x,y) = (collatz(4) ∥ collatz(8)) in x + y

Fig. 4 A parallel computation expressed in Eclat

Note that in (e1∥e2), e1 and e2 are reduced sequentially (from left to right)
within the same clock cycle. This provides a deterministic parallel evaluation
of e1 to a value v1 and e2 to v2, building the pair (v1,v2). If expressions e1 and
e2 are instantaneous, then expressions (e1,e2) and (e1∥e2) are equivalent.

2.3 Compilation

Due to space limitation, the compilation process turning Eclat programs into
circuits cannot be presented in detail in this paper. But having a simplified
view of the compiler ease to estimate the size of the resulting hardware. The
basic principles of the compilation scheme can be summarized as follows:

1. lexical environments are made explicit by additional function parameters
and then functions are globalized (by λ-lifting);

2. higher-order functions (resp. polymorphic functions) are specialized (resp.
monomorphized) and therefore duplicated.

3. non-recursive functions are systematically inlined,
4. tail-recursive function calls are shared6 (i.e., not duplicated) except for

parallel calls (e.g., Fig. 4, line 6), which are duplicated.
5. compiling construct (e1∥e2) leads to two automata for e1 and e2, which are

local to the current state. The whole program becomes the (combinational)
transition function of a Moore machine7 driven by the global clock.

6 Each tail-recursive function definition becomes a state in an underlying hierarchical
automaton. Calling a tail-recursive function f becomes a transition to the corresponding
state (this implements pauses from the semantics).

7 Eclat provides circuit parallelism, with no extra cost for synchronization (no lost cycle).
The reduction order (v∥□) for parallel branches in the semantics is convenient for reasoning
on the behavior of programs and it does not impact performance.

8 Loïc Sylvestre et al.

Consider a sequence let x = e1 in e2 where e1 and e2 are instantaneous.
If there is a data dependency between e1 and e2 (i.e., if x does occur in e2),
a wire x connects e1 to e2 and therefore, the critical path (i.e., the Worst
Case Execution Time) could increase, but the design remains synthesizable up
to a limit imposed by the frequency of the physical clock. If there is no data
dependency between e1 and e2, both can be implemented as parallel hardware.

General recursion is not supported because it would limit scalability and
exploitable parallelism; but it can be encoded by the programmer using explicit
stacks implemented as vectors or arrays, the later being presented in sec. 3.

3 Mixing synchrony and shared memory

Hardware description languages such as VHDL support array types. Synthesis
tools implement such arrays either as collections of logic elements or using on-
chip RAM blocks. The former is only applicable to arrays of small size because
it consumes a large number of logic elements both for storage and for the
addressing circuitry. The latter requires that the source code is written using a
specific pattern to be correctly recognized and handled by the synthesizer. This
pattern induces extra clock cycles to access data stored in the RAM blocks.

This section presents how mutable arrays can be formalized in Eclat to
be implemented using RAM blocks. Eclat takes advantage of the underlying
synchronous model to safely support concurrent memory accesses, in a pre-
dictable and fair way, while exploiting physical parallelism at the circuit level.

3.1 Mutable arrays in Eclat

The array operations provided in Eclat are listed in the upper part Fig. 5.
These operations come with a few Eclat features that have not been presented
in the last section (Fig. 1 and 3). This includes a type constructor τ̊ array<s>,
which represents arrays of length s with elements of basic type τ̊ .

Operator create<s> (of type scheme ∀τ̊ · unit → τ̊ array<s>) creates an
array of length n with unspecified values of a given type τ̊ . Operator length
instantaneously returns the length of its array argument. Operators get and
set allow for reading and modifying arrays. Each array creation returns a
location ℓ, which is a value, associated with a data structure located in memory.
Each location is protected by a lock, which is explicitly manipulated by the
%acquire and %release primitives. No location nor acquire/release operations
appear in source programs; these are hidden in the definitions of get and set.
Arrays are not immediate values (i.e., constants and pairs of immediate values)
unlike vectors (of basic type τ̊ vect<s>) presented in sec. 2.1.

In concrete syntax, we simply write create e by letting the compiler stat-
ically evaluate a simple arithmetic expression e to an integer for inferring the
length of the array to be created. The sequence e1; e2 stands for let _ = e1 in e2
with _ a wildcard pattern. The macro expression parfor x = ea to eb do e done
builds the expression let _ = (ei∥ · · · ∥ej) in () with ea (resp. eb) an arithmetic
expression statically evaluated to i (resp. j) and ek

def
= (let x = k in e)k∈{i,··· j}.

Programming parallelism on FPGAs with Eclat 9

operator op ::= · · · | create<s> | length | get | set | %acquire | %release
expression e ::= · · · | ℓ
value v ::= · · · | ℓ
type τ ::= · · · | τ̊ array<s>

ϑ-Create ϑ(create<n>, (), µ) = ℓ/µ[ℓ 7→ (false,(n,(v0, · · · vn−1)))]
where ℓ is a fresh location and v0, · · · vn−1 are unspecified values

ϑ-Length ϑ(length, ℓ, µ) = n/µ if µ(ℓ) = (b,(n,v))

ϑ-Get-wait ϑ(get, (ℓ,n), µ) = (pause (); get(ℓ,n))/µ if µ(ℓ) = (true,v)
ϑ-Set-wait ϑ(set, ((ℓ,n),v′), µ) = (pause (); set((ℓ,n),v′))/µ if µ(ℓ) = (true,v)

ϑ-Get ϑ(get, (ℓ,i), µ) = (%acquire (ℓ); pause (); pause (); %release(ℓ); vi)/µ
if µ(ℓ) = (false,(n,(v0, · · · vi, · · · vn−1)))

ϑ-Set ϑ(set, ((ℓ,i),v′i), µ) = (%acquire(ℓ); pause (); pause (); %release(ℓ))/µ′

where µ′ = µ[ℓ 7→ (false,(n,(v0, · · · vi−1,v′i,vi+1, · · · vn−1)))]
if µ(ℓ) = (false,(n,(v0, · · · vi−1,vi,vi+1, · · · vn−1)))

ϑ-Acquire ϑ(%acquire, ℓ, µ) = ()/µ[ℓ 7→ (true,v)] if µ(ℓ) = (false,v)
ϑ-Release ϑ(%release, ℓ, µ) = ()/µ[ℓ 7→ (false,v)] if µ(ℓ) = (true,v)

Fig. 5 Syntax and semantics of array operations (as an extension of Fig. 1 and 3)

The behavior of array operations in Eclat is formalized on the lower part
of Fig. 5. It is based on the operational semantics of Eclat (previously defined
in Fig. 1 and 3) and mainly consists in refining the semantic function ϑ used
to specify, by cases, the behavior of each Eclat operator.

A memory µ (kept abstract in the last section) is a partial function from
memory locations to values. Memory locations are denoted with meta-variable ℓ.
We note µ(ℓ) (resp. µ[ℓ 7→ v]) the value stored at location ℓ in µ (resp. the
new memory obtained by assigning a value v to location ℓ in µ).

Array creation returns a location ℓ mapped to a value representing an array
in the memory (rule ϑ-Create). In the semantics, this value is encoded as
two nested pairs (lock,(N,content)) where:

• lock is a boolean indicating if the lock associated with the array is held,
• N is the length of the array,
• content represents the N elements of the array as a tuple. For example, an

array of integers will be encoded as (false,(4,(0,0,0,0))).
The role of the two pauses performed by get and set (cases ϑ-Get and

ϑ-Set) is to accurately reflect the behavior of the hardware implementation
(a synchronous Moore machine) that is generated by the Eclat compiler8.

Concurrent memory accesses are safe because of the lock mechanism, which
is specified by cases Acquire and Release. When the lock associated with
location ℓ is already held, any other access to ℓ is delayed until the lock is
released (cases ϑ-Get-Wait and ϑ-Set-Wait). As there is one lock per array,
parallel accesses to different arrays are executed “simultaneously”, i.e., in the
same sequence of clock cycles. For instance, the expression defined on the left
side of Fig. 6 behaves as depicted in the chronogram on the right side:

8 The address of the element to be read in the RAM block is set at next clock tick. Then,
the RAM block (which also behaves as a Moore machine) makes the read value available
one clock cycle later.

10 Loïc Sylvestre et al.

at cycle 0: after sequentially creating the two arrays, the left branch of the
parallel (x) acquires the lock associated with array a (which is
noted Aa in the chronogram) and starts a sequence of two pauses
(which are noted “-”) as specified by ArraySet in Fig. 5; then,
the right branch (y) does the same with array b (Ab);

at cycle 1: x performs its second pause, then y performs its second pause;
at cycle 2: x releases the lock of a (Ra); then y releases the lock of b (Rb).

1 let a = create 100 in
2 let b = create 100 in
3 let (x,y) = (set((a,0),42) ∥ set((b,0),43)) in ()

cycles:
x:
y:

0 1 2

Aa; - - Ra
Ab; - - Rb

Fig. 6 Eclat expression simultaneously executing two independent array accesses

3.2 Concurrent programming

The semantics of Eclat provides the programmer with a predictable mecha-
nism for dealing with concurrency:

• left-to-right reduction order : if two expressions eleft and eright start at the
same cycle and are put in parallel (e.g., (eleft∥eright)), then eleft always
reduces before eright (though the implementation, which statically encodes
this reduction order in synchronous dataflow style, is intrinsically parallel);

• atomicity of sequential composition: if an access to ℓ is followed by expres-
sion e, then e always reduces before any concurrent access waiting for ℓ.

For example, there is no data race in the program defined in Fig. 7. We have the
guarantee that it always evaluates to 43, as illustrated in the execution trace:

at cycle 0: the array is created; then the first binding (x) acquires the lock
and pauses (-); then the second binding (y) tries to acquire the
lock but cannot (✗) because the lock is already held by x.

at cycle 1: x is paused (the array write progresses); then y is reduced but it
has to wait because the lock is already held by x.

at cycle 2: x releases the lock and atomically continues as far as possible: it
acquires the lock again and pauses; then y has to wait because
the lock is already held by x.

at cycle 3: x is paused (the array read progress); then y has to wait because
the lock is already held by x.

at cycle 4: x releases the lock and returns value 44; then y acquires the
lock and pauses.

Note that this strict ordering of operations does not prevent the program-
mer from writing programs whose behavior cannot be predicted statically. For
example, in the following expression, the writing order (and thus the result)
depends on the duration of the two calls to collatz (defined in Fig. 4):

let _ = ((collatz(i); set((a,0),1))
∥ (collatz(j); set((a,0),42))) in get(a,0)

Programming parallelism on FPGAs with Eclat 11

1 let a = create 1 in
2 let (x,y) = ((set((a,0),42); set((a,0),43); 44) ∥ get(a,0)) in y

cycles:
x:
y:

0 1 2 3 4 5 6

Aa ; - - Ra;Aa - - Ra
✗ ✗ ✗ ✗ Aa ; - - Ra

Fig. 7 Eclat program and its execution trace with atomic sequential composition

The trade-off between expressiveness and predictability therefore remains in
the hand of the programmer.

When programming in Eclat, one might question the fairness of the mech-
anism for concurrent memory accesses. The lock mechanism of Eclat is in-
trinsically fair with regard to the following criterion: let n parallel expressions
(e1 ∥ e2 ∥ · · · en) performing concurrent memory accesses and i < j < k < n.
If ej holds a lock and both ei and ek wait for this lock, then ek will always take
the lock before ei. This comes from the left-to-right reduction order property
(sec. 3.2) because at each cycle, ei is reduced before ej , and thus before ej
releases the lock, which is then available when reducing ek.

This is exemplified with the program defined in Fig. 8. Each time an array
access starts, it acquires the lock (Aa) for two cycles until the lock is released
(Ra). Any other access to a while the lock is hold is delayed. This directly
come from the behavior of the Eclat parallel construct (e1∥e2): at each
clock cycle, e1 is instantaneously reduced until it becomes a pause or a value,
then e2 is instantaneously reduced until it becomes a pause or a value, and
there is a synchronization at the end of the cycle, resulting in a deterministic
parallelism. The chronogram in Fig. 8 gives the corresponding execution trace.
An interesting point occurs at cycles 7-8:

at cycle 7: no array access is executed ; indeed, x cannot acquire the lock
because z already holds it since cycle 5; then y cannot acquire
the lock; then z releases the lock and continues with f(2);

at cycle 8: x acquires the lock (which has been released by z at cycle 7) and
pauses; then y cannot acquire the lock: this is exactly the same
configuration as at cycle 1.

1 let a = create 3 in
2 let rec f (i) = set((a,i),i); f(i) in (* loops forever *)
3 let ((x,y),z) = ((f(0) ∥ f(1)) ∥ f(2)) in ()

cycles:
x:
y:
z:

0

f(0)
f(1)
f(2)

1 2 3 4 5 6 7 8 9

Aa; - - Ra;f(0) ✗ ✗ ✗ ✗ Aa; - -
✗ ✗ Aa; - - Ra;f(1) ✗ ✗ ✗ ✗

✗ ✗ ✗ ✗ Aa; - - Ra;f(2) ✗ ✗

· · ·
· · ·
· · ·

Fig. 8 Fair interlacing of concurrent memory accesses in an Eclat program

12 Loïc Sylvestre et al.

Note that construct (e∥e′) is not commutative (this is a specificity of
Eclat), but is associative. Reducing ((e1∥e2)∥e3)/µ is reducing e1/µ to e′1/µ1

and e2/µ1 to e′2/µ2, and then e3/µ2 to e′3/µ3. Reducing (e1∥(e2∥e3))/µ is
reducing e1/µ to e′1/µ1, and then e2/µ1 to e′2/µ2 and e3/µ2 to e′3/µ3.

4 Evaluation

This section illustrates the ability to exploit in Eclat both shared memory
and fine-grained parallelism with significant performance gains compared to
sequential code running on a CPU. It also shows how the programmer can
easily estimate timing performance from Eclat source code.
Experimental setup We target an Intel Max10 FPGA embedded on a Terasic
DE10-Lite board. This circuit has a frequency of 50 MHz; it comprises 50K
logic elements (LEs) and 1,638 Kbits of on-chip RAM blocks. Each Eclat
program is compiled to VHDL using the Eclat compiler. All of the Eclat
programs presented here meet the timing requirements of the target (i.e., they
can safely run using the global 50 MHz clock). The generated VHDL code is
synthesized using the Quartus 22.1 Lite toolchain, which indicates resource
usage (i.e., both the number of LEs and the number of RAM blocks used
by the design). Execution time estimation is measured both by software-RTL
simulation using GHDL9 and synthesis. Speedups are given with regard to
sequential OCaml code running on an Intel core i7 CPU with 16 GB of RAM
and a frequency of 2.2 GHz (i.e., 44 times faster than the global clock of the
Max10 FPGA). OCaml code is compiled to native code using the OCaml
compiler ocamlopt with optimizations enabled (-O3).

4.1 Game of life - first version

Fig. 9 is an implementation of Conway’s Game of Life (GoL) using Eclat.
Note that this Eclat program is also a valid OCaml program. Function
array_life (lines 22-28) computes the next generation of a world of cells
(being either alive or dead depending on the number of alive neighboring
cells). The world is represented as an array of boolean cells. The higher-order
function array_mapi (lines 15-20) has type ∀η · ∀α̊ · ∀β̊ · (((int × α̊) → β̊)
×α̊ array<η>× β̊ array<η>) → unit. It applies a function f to each element
of a source array src and fills a destination array dst.

Function array_mapi performs a direct call to the local recursive function
aux (taking one cycle), and then one read (2 cycles) plus one write (2 cycles)
plus a recursive call (1 cycle) for each of the N iterations. The resulting exe-
cution time is 1+

∑N−1
i=0 (2 + T (fi) + 2+ 1) where T (fi) is the execution time

of f applied to the i-th array element.
For processing one cell (i.e., reading it and modifying it in memory), the

eight neighbors have also to be read, resulting in a throughput of 5 + 8× 2 = 21
cycles per cell. When synthesized on the Max10 FPGA (clocked at 50 MHz),

9 http://ghdl.free.fr

http://ghdl.free.fr

Programming parallelism on FPGAs with Eclat 13

1 let neighborhood(f,i,n) =
2 f(i-n-1) + f(i-n) + f(i-n+1) +
3 f(i-1) + f(i+1) +
4 f(i+n-1) + f(i+n) + f(i+n+1) ;;
5
6 let next_cell(get_cell,w,i,cell,n) =
7 let alive_int(i) =
8 if get_cell(w,i) then 1 else 0 in
9 let s = neighborhood(alive_int,i,n)

10 in (cell & s = 2) or (s = 3) ;;
11
12 let pos_modulo(i,n,size) =
13 if i < 0 then i+size else
14 if i >= size then i-size else i ;;

15let array_mapi (f,src,dst) =
16let rec aux(i) =
17if i < length(src) then
18(set((dst,i),f(i,get(src,i)));
19aux(i+1)) else ()
20in aux(0) ;;
21
22let array_life (src,dst,n) =
23let access(w,i) =
24get(w,pos_modulo(i,n,length w))
25in
26let f (i,cell) =
27next_cell(access,src,i,cell,n)
28in array_mapi(f,src,dst) ;;

Fig. 9 Game of Life, version 1 – the world is an array of booleans (shared memory)

array_life is 1.3 times faster than the same implementation (seen as an
OCaml function) compiled to native code and running10 on a CPU (clocked
at 2.2 GHz). This measure must take into account the difference in both fre-
quency and memory capacity of the FPGA (limited to RAM blocks) with re-
gard to the CPU. However, we could expect a better speedup because this first
implementation does not exploit the parallelism provided by the target FPGA.

4.2 Game of Life - version 2

Bakhteri et al. [3] have presented a Verilog implementation of GoL, which is
able to process the entire world within one clock cycle. Eclat is expressive
enough to describe such an implementation. For this, the function array_life
of Fig. 9 must be replaced by the function vect_life given in Fig. 10, which
now operates on a world represented as a single vector of boolean values (i.e.,
an immediate value, similar to a very large integer). Function next_cell is
defined in Fig. 9 (lines 6-10) and called point-by-point on the vector in Fig. 10
(lines 30-31). These calls duplicate the body of next_cell for each cell in the
world, so that they can be computed in parallel within one cycle. The prim-
itive vect_mapi (presented in Fig. 2) is similar to the function array_mapi
defined Fig. 9, but now operates instantaneously on vectors.

29 let vect_life (world,n) =
30 let access(w,i) = vect_nth(w,pos_modulo(i,n,vect_size w)) in
31 let f (i,cell) = next_cell(access,world,i,cell,n) in
32 vect_mapi(f,src) ;;

Fig. 10 Game of Life, version 2 – the world is a boolean vector (i.e., an immediate value)

10 The entry point of the Eclat (resp. OCaml) program creates the src and dst arrays,
then applies array_life hundreds of times (using a loop). This makes array allocation and
initialization negligible in both Eclat and OCaml. Furthermore RTL simulation confirms
the accurate execution time prediction for array_life in Eclat (i.e., 21 cycles per cell).

14 Loïc Sylvestre et al.

Fig 11 compares the performance of vect_life on FPGA for a world of
size n2 to that obtained with the previously mentioned array_life running
as an OCaml program on a CPU. Fig. 11a gives the speedup and Fig. 11b
the number of LEs and the corresponding percentage of LE usage (up to 50K
LEs on the Max10 FPGA). The curves perfectly illustrate the kind of time-
space trade-off that can be obtained by using Eclat. The maximum observed
speedup is significant: ×15, 000 for a world of 5, 000 cells. Beyond this limit,
the design does not fit in the Max10 FPGA board we use11.

8 16 32 48 64 72

0

5 000

10 000

15 000

(n)

sp
ee

du
p

(a) speedup wrt CPU execution

8 16 32 48 64 72

10K (20%)

20K (40%)

30K (60%)

40K (80%)

50K (100%)

(n)

(b) number of LEs

Fig. 11 Time-space trade-off in the vect_life implementation of GoL

4.3 Game of life - version 3

To overcome the size limitation of the fine-grain parallel version described in
sec. 4.2, a possible solution is to represent the world not as a single vector but
as an array of vectors, each vector representing a line. With this formulation,
lines will be stored in shared memory, and fine-grained parallelism can be
exploited to process individual lines.

The corresponding implementation, named vect_array_life, is given in
Fig. 12. Note that function next_cell_with_lines(j,cell,line0,line1,
line2) (which is called in Fig. 12, line 5, but not given by lake of space) is
very similar to function next_cell (line 6-10, Fig. 9): it determines if the
current cell located at index j in line line1 becomes dead or alive in the
next generation, knowing the neighboring lines (line0 and line2).

For a world of N lines, vect_array_life reads N +1 lines, independently
of the number W of cells per lines. The transformation is performed in-place,
there are N array writes. The overall execution time is exactly (2+2+1)N+1 =
5N + 1 cycles to process an entire world of size N ×W . The execution time
and the number of RAM blocks grows linearly with N , while the number of
LEs grows with W exactly as in Fig. 11b. Note that vect_array_life is 10
times slower than vect_life for a same number of cells per line, but the world
it processes can be 200 times larger.

Fig. 13 summarizes the performances (for both execution time and LEs/RAM
usage) of all versions of GoL described in this section.

11 High-end FPGAs have much more LEs, e.g., 2.8 million LEs in the Intel Stratix 10 (i.e.,
56 times more than the Max10).

Programming parallelism on FPGAs with Eclat 15

1 let vect_array_life (world : bool vector<’a> array<’b>) : unit =
2 let first_line = get(world,0) in
3 let rec aux (line0,line1,i) : unit =
4 if i < length(world) then
5 (let line2 = if i = length(world)-1 then first_line else get(world,i+1) in
6 let next (j,cell) = next_cell_with_lines(j,cell,line0,line1,line2) in
7 set((world,i),(vect_mapi(next,line1)));
8 aux(line1,line2,i+1)) else ()
9 in aux(get(world,length(world)-1),first_line,0) ;;

Fig. 12 GoL, version 3 – the world is an array of vectors (i.e., a vector per line)

implementation largest size LEs RAM throughput
Bakhteri et al. [3] (Verilog) 64× 64 68K none 4,096 cells each cycle
GoL, v2 (vect_life) 72× 72 47K none 5,184 cells each cycle
GoL, v1 (array_life) 1, 024× 512 2K 1Mbit 1 cell each 21 cycles
GoL, v3 (vect_array_life) 2, 048× 512 49K 1Mbit 2,048 cells each 5 cycles

Fig. 13 Space-time trade-off for different GoL implementations

5 Developing parallelism skeletons with Eclat

This section presents parallel implementations of map and pipe algorithmic
skeletons using Eclat. It focusses on composability and gives an example of
performance prediction, experimentally corroborated.

The map skeleton is classically used to apply a given function f to each
element of an array. A parallel implementation of map, called par_map, is given
in Fig 14 (lines 12-18). It takes a slice length p, a function f, a source array src,
and a destination array dst. It applies f to the elements of src, traversing
p slices of the source array in parallel (a call to map_slice per slice) using
the macro-construct parfor presented in sec. 3. If the length of src is not a
multiple of p, the remaining elements are processed sequentially (line 18). The
result array dst must be passed as an argument since, as already indicated,
Eclat functions cannot return arrays (which are not immediate values).

1 let map_slice(a,b,f,src,dst) =
2 let rec aux(i) =
3 if i < b then
4 (let x = get(src,i) in
5 let y = f(x) in
6 set((dst,i),y);
7 aux(i+1))
8 else ()
9 in

10 if a >= b then ()
11 else aux(a) ;;

12let par_map(p,f,src,dst) =
13let n = length src in
14let d = n/p in
15parfor i = 0 to p-1 do
16map_slice(d*i,d*(i+1),f,src,dst)
17done;
18map_slice(d*p,n,f,src,dst) ;;
19
20let map((p,f,src),k) =
21let dst = create (length src) in
22par_map(p,f,src,dst); k(dst) ;;

Fig. 14 A parallel implementation of map

16 Loïc Sylvestre et al.

Let us add a new notation f e1 @@ e2 that stands for f(e1,e2). Function
map (lines 20-22) is a composable extension of par_map, avoiding passing the
result array explicitly. For this, map takes (in addition to p, f and src) a con-
tinuation function k. It locally allocates a destination array dst (line 21), calls
par_map(p,f,src,dst) and then applies k to dst. For example, applying two
maps in sequence with function f and then g (for a given degree of parallelism
p) is expressible as: map(p,f,src) @@ fun a -> map((p,g,a),k).

In Fig. 15 is defined another parallel implementation map_farm, using a so-
called worker farm for applying on request the f function to the elements of the
src array. This is well-suited when f has an irregular execution time depending
on the elements of src. Workers communicate via a shared variable r, which
is an array of length 1 containing the index of the next array element to be
processed. Each time a worker is available, it: (1) reads the index given by r;
(2) increments r; (3) processes one element, this until the integer i referenced
by r reaches the end of the source array. The important point is that steps
(1) and (2), i.e., reading and writing r (lines 3-5), are always performed
atomically (as explained in sec. 3.2).

1 let worker (f,r,src,dst) =
2 let rec loop() =
3 let i = get(r,0) in
4 if i >= length src then () else
5 let ((),x) = (set((r,0),i + 1)
6 ∥ get(src,i)) in
7 (set(dst,i,f(x)); loop())
8 in loop() ;;

9let map_farm((p,f,src),k) =
10let r = create 1 in
11set((r,0),0);
12let dst = create (length src) in
13parfor _ = 0 to p-1 do
14worker(f,r,src,dst)
15done;
16k(dst) ;;

Fig. 15 Parallel implementation of map using a worker farm

In Fig. 16 is defined a pipe3 skeleton. Functionally, pipe3((f1,f2,f3,src),k)
is equivalent to map(1,f1,src) @@ fun a1 -> map(1,f2,a2) @@ fun a2 ->
map((1,f3,a2),k), but these successive maps (or stages) are parallelized. The
implementation described here could easily be generalized by hand to achieve
more parallelism (i.e., more stages). On the left side of Fig. 16 is defined a
function semi_pipe, which consumes the elements xi of src if their position i
is less than the index referenced by rI and otherwise actively waits. Function
f is applied to each xi consumed. Then, semi_pipe assigns the resulting value
in dst (line 9) and increments the shared variable rO (line 10) to notify that
dst is ready to be processed up to index i. On the right side of Fig. 16, pipe3
creates intermediate arrays and shared variables (the latter being initialized
to 0, except for r0, which takes value n = length src to notify that src is
ready to be consumed), calls the semi_pipes in parallel, and then k.

Performance prediction A key aspect of the synchronous semantics of
Eclat is the ability to predict the execution time of parallel programs. Let’s
illustrate this with an example. The par_map skeleton (defined in Fig. 14) calls
map_slice(a,b,f,src,dst), p times in parallel. Each of these calls comprises

Programming parallelism on FPGAs with Eclat 17

1 let semi_pipe(f,(rI,src),
2 (rO,dst)) =
3 let rec loop(i) =
4 if i < length src then (
5 let (j,x) = (get(rI,0)
6 ∥ get(src,i))
7 in if i < j then
8 let y = f x in
9 set((dst,i),y);

10 set((rO,0),i+1);
11 loop(i+1)
12 else (loop(i))) else ()
13 in loop(0) ;;

14let pipe3 ((f1,f2,f3,src),k) =
15let n = length src in
16let r0 = create 1 in
17let (a1,r1) = (create n, create 1) in
18let (a2,r2) = (create n, create 1) in
19let (a3,r3) = (create n, create 1) in
20let _ = (set(r0,0,n) ∥ set((r1,0),0)
21∥ set((r2,0),0) ∥ set((r3,0),0)) in
22let _ =
23((semi_pipe(f1,(r0,src),(r1,a1))
24∥ semi_pipe(f2,(r1,a1),(r2,a2)))
25∥ semi_pipe(f3,(r2,a2),(r3,a3)))
26in k(a3) ;;

Fig. 16 Eclat implementation of a three-stage pipeline

one direct call to function aux (taking one clock cycle) followed by one read
(2 cycles), one call to f, one write (2 cycles) and one tail-recursive call (1 cy-
cle) per iteration. Let T (fi) be the execution time of f when applied to the
i-th element of array src and let N b the length of src. The execution time
of map_slice (in cycles) is:

Tmap_slice(a, b) = 1 +

b−1∑
i=a

(
2 + T (fi) + 2 + 1

)
For the sake of simplicity, assume f is stateless12 and N is a multiple of p.

Due to the fairness of execution (explained in sec. 3.2), the execution time of
map_par is the maximum execution time among each Tmap_slice plus an amount
of time Tstalls (or lost cycles) spent in sequentializing concurrent accesses13:

Tmap_par =
p−1
max
i=0

(
Tmap_slice(i×N/p, (i+ 1)×N/p)

)
+ Tstalls

If the computation time dominates the access time, then Tstalls becomes
negligible. Note that Tstalls is clearly less than 4N , i.e., the cost of sequen-
tially traversing src (N reads) and updating dst (N writes). The chronogram
in Fig. 17, gives the beginning of the execution of map_par for a regular com-
putation such that T (fi) = Tf and Tf = 2p − 4. There are 2p − 2 stalls (✗)
at initiation (since each call to map_slice simultaneously tries to read src,
but only one acquires the lock (Asrc) at a time. Note that in this specific case,
after initiation, there are no stalls anymore. From this we can deduce that, for
any stateless function f such that Tf ≥ 2p−4, we have Tstalls = 2p−2 cycles.
In other words, if Tf ≥ 2p− 4, then the computation of f dominates accesses.

This theoretical result is verified in practice. For example, for N = 3, 200
and p = 16 and f such that Tf = 2p− 4 = 28 cycles, the measured execution
time of par_map is 6,631 cycles, i.e. (1+maxp−1

i=0 (2+28+2+1)N/p)+(2×p−2).

12 The programmer is free to compose complex behaviors (e.g., global array accesses from
the function f to be parallelized): this remains deterministic, with a trade-off between ex-
pressiveness and predictability.
13 Each map_slice reads src and write dst concurrently.

18 Loïc Sylvestre et al.

cycles:
slice1:
slice2:
slicep:

0 1 2 3 4 5 · · · 2p-1 2p 2p+1 2p+2

aux Asrc; - - Rsrc; f - - · · · Adst; - - Rdst;aux Asrc; -
aux ✗ ✗ Asrc; - - Rsrc; f · · · - - Adst; - -

aux ✗ ✗ ✗ ✗ ✗ · · · Asrc; - - Rsrc;f -

· · ·
· · ·
· · ·

Fig. 17 Initiation of map_par with T (fi) = Tf = 2p− 4 (stalls are noted ✗)

This is 15.93 times better than for p = 1, and therefore optimal with respect to
the degree of parallelism. Fig. 18 gives the measured speedups (on the left) and
execution times (on the right) for map_par depending on p and Tf with regard
to p = 1. This clearly suggests that, if the ratio Tf/p is low, then the accesses
dominate the computation and the speedup does not increase with p anymore.
This can be used to deduce that, for instance, it is useless to parallelize f more
than eight times if Tf = 12, because the resulting ×7.99 speedup is optimal.

1 2 3 4 5 6 7 8 10 12 14 16

1

4

8

12

16
Tf = 28

Tf = 12

Tf = 4

(p)

sp
ee

du
p

8 10 12 14 16
5,000

6,631

9,066

10,579

13,215

Tf = 28

Tf = 12

Tf = 4

(p)

du
ra

ti
on

(i
n

cy
cl

es
)

Fig. 18 Measured speedups and execution times for map_par in function of p and Tf

6 Related work

Eclat is a descendant of the Macle language [15] that has been used for
hardware accelerating OCaml functions on an FPGA, in combination with
a softcore-based implementation of the OCaml virtual machine. The Eclat
compiler adapts the Macle compilation scheme to correctly implement the
cycle-accurate semantics of Eclat. In particular, constructs let and (e1∥e2)
induce no extra clock cycle in Eclat, in contrast to Macle.

Eclat is part of a long-standing tradition of Functional Hardware De-
scription Languages. Cλash [2], for example, is subset of Haskell compiled
to RTL. Computations have to be encoded as Mealy machines, which requires
knowledge of both Haskell and structural hardware design.

Cement [17] extends an HDL core with control structures in imperative
style while preserving cycle-accuracy and predictability. These constructs are
used to explicitly synchronize pipeline stages or communicate with external
modules (such as RAM blocks) responding in several cycles. The tool incor-
porates dynamic monitoring to detect timing violations (e.g., concurrent ac-
cesses) during software-RTL simulation. Eclat pushes this approach further
by providing a cycle-accurate programming language.

Synchronous languages Scade and Lustre v6 have functional arrays with
predefined parallel skeletons (called iterators) [4]. Reads and updates (by copy)

Programming parallelism on FPGAs with Eclat 19

are performed within the clock cycle. This is similar to Eclat immutable
vectors. Eclat mutable arrays behave differently, due to FPGA design con-
straints: concurrent accesses must be sequentialized and communication with
memory components induces synchronizations on clock ticks.

Whereas semantics in mainstream parallel programming (including schedul-
ing and execution time) is usually informal, operational semantics have been
proposed to model both the parallel and functional behavior of skeletons-
based parallel libraries [1]. The formal semantic framework they proposed is
based on a labeled transition system, which can be used to prove properties of
programs. Our semantics framework is more programming-oriented. This is a
similarity with BSML [10], which also has a small-step operational semantics
and has been used to implement skeleton libraries. In BSML, every communi-
cation step must be followed by a synchronization step. This aims to provide
language abstractions (such as higher order functions, pattern matching and
exceptions) without sacrificing scalability and predictability of performance.

Reduction semantics have been used to model timing in cycle-accurate
reactive languages such as Esterel [9] and ReactiveML [13]. As in our work,
each cycle encompasses a sequence of small-step reductions. In these languages,
given two processes p and q, reducing (p∥q) can be carried (□∥p) and (q∥□).
By contrast, Eclat enforces a left-to-right reduction order for (e1∥e2).

Recent works such as FPX [14] have tackled the difficulty of produce time
and space-efficient code for FPGA architectures involving a host CPU from
parallel software code. FPX is a framework to accelerate general-purpose Data
Stream Processing (DSP). It provides a parametrizable Domain-Specific Lan-
guage (DSL) embedded in Python, in which the application programmer can
define dataflow operators as sequential programs and compose them to form
the DSP application (that is a graph of dataflow operators). The program-
mer is no longer responsible for the low-level implementation details, which is
obtained by code generation (using OpenCL as intermediate representation)
combined with a runtime library implementing efficient data-flow components.

7 Conclusion

This paper has presented Eclat, an OCaml-like programming language for
implementing hardware applications on FPGAs. Eclat unifies functional, par-
allel and synchronous programming under the global clock of the target FPGA.
The semantics of the language is deterministic, by following the synchronous
hypothesis [11]: all programming constructs reduce instantaneously, except
tail-recursive function calls (which pause for one cycle) and memory accesses
(which pause for two cycles, the concurrent accesses being sequentialized).

At compile time, functions defined with the “ let” keyword are duplicated
(by inlining) while those defined with “ let rec” are shared (with dynamic
dispatching of the callers for function return). Pauses on tail-calls allow the
programmer to decrease the width of the combinatorial parts of the circuit.

This programming model enables performance prediction to a large extent
while being quite intuitive for software programmers. It is expressive enough

20 Loïc Sylvestre et al.

to exploit fine-grained parallelism and explore the space-time trade-off inher-
ent to FPGA programming, resulting in significant speedups with regard to
sequential CPU execution. Moreover, it enables abstraction, by letting the
programmer define and compose higher-order functions, including algorithmic
skeletons such as map and pipe, with predictable performance.

We are currently working on enabling skeleton-based FPGA program-
ming in a hardware implementation of the OCaml virtual machine written in
Eclat [16]. As future work, we plan to provide in Eclat a Foreign Function
Interface to use RTL code. We will also access external SDRAM memory from
Eclat to program real-time FPGA applications with more data and scale up.

References

[1] M. Aldinucci and M. Danelutto, “Skeleton-based parallel programming: Functional
and parallel semantics in a single shot,” Computer Languages, Systems & Structures
(CLSS), vol. 33, no. 3-4, pp. 179–192, 2007.

[2] C. Baaij, M. Kooijman, J. Kuper, et al., “Cλash: Structural descriptions of syn-
chronous hardware using haskell,” in Euromicro Conference on Digital System Design
(DSD): Architectures, Methods and Tools, IEEE, 2010, pp. 714–721.

[3] R. Bakhteri, J. Cheng, and A. Semmelhack, “Design and implementation of cellular
automata on FPGA for hardware acceleration,” Procedia Computer Science, vol. 171,
pp. 1999–2007, 2020.

[4] A. Benveniste, P. Caspi, S. A. Edwards, et al., “The synchronous languages 12 years
later,” Proceedings of the IEEE, vol. 91, no. 1, pp. 64–83, 2003.

[5] C. Bernardeschi, L. Cassano, and A. Domenici, “SRAM-based FPGA systems for
safety-critical applications: A survey on design standards and proposed methodolo-
gies,” Journal of Computer Science and Tech. (JCS&T), vol. 30, pp. 373–390, 2015.

[6] G. Berry, “A Hardware Implementation of Pure Esterel,” Sadhana, Academy Proceed-
ings in Engineering Sciences, Indian Academy of Science, vol. 17, no. 1,95–130, 1992.

[7] Y.-k. Choi, P. Zhang, P. Li, et al., “HLScope+: Fast and accurate performance estima-
tion for FPGA HLS,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), IEEE, 2017, pp. 691–698.

[8] M. Felleisen and R. Hieb, “The revised report on the syntactic theories of sequential
control and state,” Theoretical computer science, vol. 103, no. 2, pp. 235–271, 1992.

[9] S. P. Florence et al., “A calculus for Esterel: if can, can. if no can, no can.,” Proc. of
the ACM on Prog. Languages (PACMPL), vol. 3, no. POPL, pp. 1–29, 2019.

[10] F. Gava and F. Loulergue, “Semantics of a functional BSP language with imperative
features,” in Advances in Parallel Computing, vol. 13, Elsevier, 2004, pp. 95–102.

[11] L. Gonnord, L. Henrio, L. Morel, et al., “A survey on parallelism and determinism,”
ACM Computing Surveys, vol. 55, no. 10, pp. 1–28, 2023.

[12] Y.-H. Lai, E. Ustun, S. Xiang, et al., “Programming and synthesis for software-defined
FPGA acceleration: status and future prospects,” ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), vol. 14, no. 4, pp. 1–39, 2021.

[13] L. Mandel and M. Pouzet, “ReactiveML: a reactive extension to ML,” in Principles
and practice of declarative programming (PPDP ’05), 2005, pp. 82–93.

[14] A. Ottimo, G. Mencagli, and M. Danelutto, “Boosting general-purpose stream proces-
sing with reconfigurable hardware,” The Journal of Supercomputing, pp. 1–31, 2024.

[15] L. Sylvestre, E. Chailloux, and J. Sérot, “Accelerating OCaml programs on FPGA,”
International Journal of Parallel Prog. (IJPP), vol. 51, no. 2, pp. 186–207, 2023.

[16] L. Sylvestre, J. Sérot, and E. Chailloux, “Hardware implementation of OCaml using
a synchronous functional language,” in Practical Aspects of Declarative Languages
(PADL), Springer, 2024, pp. 151–168.

[17] Y. Xiao, Z. Luo, K. Zhou, et al., “Cement: Streamlining FPGA hardware design
with cycle-deterministic eHDL and synthesis,” in Field Programmable Gate Arrays
(FPGA ’24), 2024, pp. 211–222.

	Introduction
	The Eclat language
	Mixing synchrony and shared memory
	Evaluation
	Developing parallelism skeletons with Eclat
	Related work
	Conclusion

