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Abstract — In this paper, we report a technique for tracking 

multiple small moving targets using a millimeter-wave Frequency-

Modulated Continuous-Wave radar. Radar images are obtained 

from raw radar data collected by a radar system that performs a 

digital beamscanning in the azimuth plane and a mechanical 

beamscanning in the elevation plane. Trajectories of several 

targets in the scene are estimated from a new multi-target tracking 

(MT2) algorithm based on the calculation of the global nearest 

neighbors. We demonstrate the effectiveness of this algorithm 

from the tracking of two moving targets. Our preliminary 

experimental results obtained for short range (up to 2.0 meters) 

outdoor detection of small tags pave the way for future research 

on tracking tagged flying insects and could therefore be useful for 

studying the behavior and ecology of pollinators. 

Keywords — multi-target tracking, millimeter-wave, radar 

imaging, remote sensing. 

I. INTRODUCTION 

How small flying insects such as bees, wasps and flies move 

across space is a fundamental question in biology, with 

applications for pollination and pest control [1]. Detailed 

tracking of insect movements in their natural environment is 

challenging, even at short ranges. For instance, tracking a flying 

bee requires to monitor a small target (<2cm long) with high 

velocity (up to 20km/h) moving in the three-dimensional (3D) 

space. Optical tracking systems have been proposed (see, e.g., 

[2]-[4]), but require multiple sensors to resolve the position of 

insects in 3D and are sensitive to brightness. To fill this 

technological gap, we recently proposed a millimeter-wave 

(mm-wave) Frequency-Modulated Continuous-Wave (FM-

CW) radar tracking system [5]. This radar imaging system 

allowed to track 3D flights of a single bumblebee in a limited 

volume during 5.2 minutes. Building on these encouraging 

results, we now aim to track simultaneously multiple insects 

moving in the scanned scene.  

Multi-Object Tracking (MOT) algorithms have been 

proposed to resolve the tracks of multiple targets from a set of 

detections (see overviews of MOT in [6] and [7]). One of the 

main applications of this class of algorithms is real-time video 

surveillance (e.g., for traffic surveillance). In the present article, 

we introduce a new algorithm for tracking multiple small 

moving targets using a mm-wave FM-CW radar. We call it the 

Multi-Target Tracking (MT2) algorithm. It is based on the 

Global Nearest Neighbours approach, which is one of the 

simplest MOT methods (see, e.g., [7]). The MT2 algorithm 

estimates the tracks of multiple targets from a set of unclassified 

radar detections. The detections are assigned to one or multiple 

tracks from the computation of a specific cost function. We first 

demonstrate the performances of the MT2 algorithm by 

estimating tracks on simulated data. Then, we apply the MT² 

algorithm to experimental radar data obtained from two small 

moving targets as preliminary work for the tracking of multiple 

flying insects. 

The article is organized as follows: in Section II, we 

introduce the radar-based detection system, and in Section III 

we present the MT2 algorithm. In Section IV we report and 

discuss the experimental demonstration of the proposed MT2 

algorithm to track multiple small moving tags. 

II. MM-WAVE RADAR DETECTION SYSTEM 

A. Radar scanning system 

To collect mm-wave radar data from the scene of interest, 

we use the RBK2 FM-CW MIMO radar with an operating 

frequency of 77GHz commercialized by INRAS GmbH. This 

sensor steers the radar beam electronically in azimuth using 16 

channels. We add the beam scanning in elevation by using a 

rotating reflector (20cm-by-25cm rectangular metallic plate) 

placed at a distance of dr=15cm from the front-end of the radar 

(see Figure 1). This reflector is set to rotate by a DC motor at a 

speed of 500rpm, while the FM-CW measurement rate is 1ms. 

The scene is then scanned in average 16.7 times per second. The 

power transmitted by the radar is of 10mW (see [5] for more 

technical information about this radar scanning system). 

B. Acquisition of radar images  

To obtain 3D radar images from the collected raw radar 

data, we apply a 2D-MUSIC algorithm [8], which estimates a 

so-called range-azimuth pseudo-spectrum on each elevation 

plane collected for each FM-CW radar measurement. The set of 

range-azimuth pseudo-spectra on successive elevation planes 

allows to map the radar echo level in 3D from the scanned 

scene. 
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Fig. 1.  (a) Annotated photo of the mm-wave FM-CW radar system used to track 

small moving targets in the 3D space. The Cartesian (x, y and z) coordinate 
system and the origin set on the rotating axis centered with the radar front-end 

are shown. Schematic representation of the beam scanning system projected on 

(b) Oyz plane and (c) Oxz plane (a0=20cm and b0=25cm are respectively the 

width and length of the rectangular plate used as a reflector). 

C. Detection algorithm 

To detect the targets in the radar images derived from the 

collected radar data, we apply the detection algorithm reported 

in [9] and based on the isoline segmentation technique 

developed in [10]. We use the DBSCAN clustering to group 

close detections in a so-called cluster from which the centroid 

is considered as a new detection instead of those from the 

cluster. Electromagnetic clutter generated by static objects in 

the scene is mitigated thanks to an algorithm [9] that relies on a 

calibration radar measurement of the scene without any targets 

present. So-called clutter calibration detections are then 

derived from the calibration radar images and are used to 

classify as “clutter” or “target” the unclassified detections 

derived from the radar images of the scene in presence of the 

target. 

III. MT2 ALGORITHM 

A. Description of the MT2 algorithm 

Let D be the set of ND detections computed by applying the 

detection algorithm on radar images. Each detection of the set 

D is characterized by its position in the Cartesian coordinate 

system (O, x, y, z)  and its associated timestamp ti  with 

i∈[1,ND].  The original process from which tracks are 

reconstructed by the proposed MT2 algorithm follows the steps 

summarized in Figure 2. The detection set D  is first sorted 

monotonically by time, that is, either by increasing time or by 

decreasing time (respectively forward and backward 

reconstruction methods). Tracks are then reconstructed 

sequentially from the sorted detection set using the Global 

Nearest Neighbours (GNN) approach. The tracks 

reconstruction is facilitated by splitting the set D into M subsets 

Dm so-called gates with m an integer ranging from 1 to M. The 

number of detections inside each gate is determined both by a 

constant time interval δts  and a maximum number nmax  of 

detections per gate. This step is called gating. Each detection 

from gate Dm can be a part of existing tracks or can be the first 

detection of a new track. To evaluate all possible tracks, the 

permutations of detections in the gate Dm  are considered. A 

permutation is denoted Pq where q is an integer ranging from 1 

to Q = nm! with nm the number of detections in gate Dm. This 

step is called permutation. Next, for each permutation Pq, the 

detections are added to the previously defined tracks. To 

estimate the most probable association of a given detection to a 

track, we define the cost function C as follows : 

C(δp, δα, δt) = wp

δp

δp0

+wα

δα

δα0
+wt

δt

δt0
   (1) 

where δp, δα and δt are respectively the Euclidian distance, the 

scalar product angle and the duration between the current 

detection and the last detection of the considered track. Weights 

wp, wα and wt in Eq. (1) as well as the normalization quantities 

δp
0
, δα0, and δt0 are set beforehand. The detection is assigned 

to the track for which C is minimum. When δp ≥ δp
0
, δα ≥ δα0 

or δt ≥ δt0,  the detection generates a new track. This step is 

called track assignment. Once the track assignment step is 

performed for each permutation Pq, a number of Q updated set 

of tracks are obtained. To determine the best set of tracks among 

the Q possible sets of tracks, we proceed as follows:  

(i.) Only sets of tracks with the lowest number of tracks are 

considered; 

(ii.) Among the remaining sets of tracks, we compute the 

averaged cost function Ĉ over all tracks. Only sets for 

which Ĉ<Ĉ0  are selected, where Ĉ0  designates a 

threshold defined beforehand; 

(iii.) Remaining sets of tracks are finally investigated by 

analyzing how detections correlate with the increasing 

timestamp. This investigation is carried out from the 

determination of the Spearman rank correlation 

coefficient. The set of tracks associated with the highest 

correlation coefficient is then selected. 

The three steps defined above are part of the tracks update 

process. The complete tracks are obtained both for the forward 

and backward reconstruction methods when the permutation, 

the track assignment, and the track update steps are respectively 

applied to each gate Dm. To select which of the backward or 

forward tracks are kept, we select the solution with the smallest 

number of tracks. If the numbers of tracks are equal for both 

backward and forward reconstructions, then we compute the 

sum of the cost function Ctot over all gates. The reconstruction 

which minimizes the cost function is chosen. This last step of 

the MT² algorithm is called the reconstruction method 

selection. 
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The main factor impacting computation time of the MT² 

algorithm is the average number of detections within a gate. For 

a detection set D  with M  detections with uniformly-spaced 

timestamps, the number nm of detections within each gate Dm 

is the same and therefore, the number of permutations of Q=nm! 

–and consequently, the computation time– can be reduced by 

shortening the time interval δts  set beforehand. When the 

detection set D  includes detections that are not uniformly-

spaced in time, the number of detections per gate can be reduced 

to the maximum value nmax.  

 

Fig. 2. Flowchart of the MT2 algorithm from the detection set to the selected 

tracks (i.e., the complete best set of tracks) for a given (forward or backward) 

reconstruction method. 

B. Performance evaluation of the MT2 algorithm 

To test the performance of the MT2 algorithm, we simulate 

the tracks of two point targets (#1 and #2), one moving along 

the x-axis and the other along the y-axis (see Figure 1 for the 

definition of the axes). Each target is modeled by 10 detections. 

The simulated trajectories of the targets cross at (x,y)=(0,0) 
with a small delay δt of 100ms at the angle β of 90°. Gaussian 

noise is added to the detection locations in x, y and z with the 

standard deviation σ  of 5cm (Figure 3(a)). Nc=5  clutter 

detections (or false detections) are added, which locations are 

generated randomly. Next, we apply the MT2 algorithm on the 

set of unclassified detections and obtain the tracks shown in 

Figure 3(b). The parameters of the algorithm were set 

beforehand with the following values: δp
0
=0.5,  δα0=180°, 

δt0=300ms, wp=1, wα=1, wt=1 and δts=150ms. Six tracks are 

obtained from both the forward and backward reconstructions, 

and the total cost for the forward reconstruction (Ctot=20.36) is 

found lower than the total cost obtained from the backward 

reconstruction (Ctot=20.58). Therefore, tracks provided by the 

forward reconstruction are selected here. To evaluate the 

comparison between the estimated tracks with ground-truth 

tracks, we use the standard Association Accuracy (AssA) metric 

detailed in [11] (value between 0 and 1). We obtain a higher 

AssA score for the forward reconstruction (0.85) compared 

with the backward reconstruction (0.65). Therefore, the 

proposed MT2 algorithm generates tracks using the forward 

reconstruction as its accuracy score is lower than that of the 

backward reconstruction.  

We explore now the effect of the angle β  between two 

trajectories at the crossing point (0,0) on the performance of the 

tracking algorithm by applying the Monte-Carlo approach. 

From Figure 4(a), we observe that the algorithm accuracy 

increases with angle β  and therefore, the larger the angle 

between two tracks, the higher the accuracy of tracks 

reconstruction. The impact of the number of clutter detections 

Nc  on the algorithm performance is also explored using the 

Monte-Carlo approach. From Figure 4(b), we observe that, as 

expected, the higher the number of false detections, the lower 

the accuracy of tracks reconstruction. Obtained tracks of two 

detections or less (#2, #3, #5 and #6) are classified as clutter. 

  

(a) (b) 

Fig. 3. Three dimensional representations of: (a) the ground-truth simulated 

targets tracks and clutter detections; (b) the tracks derived from the proposed 

MT2 algorithm applied to the set of unclassified detections (using the forward 

reconstruction method). The detections are labelled by increasing timestamp. 

  
(a) (b) 

Fig. 4.  Average accuracy (AssA) over 100 random experiments as a function 

of : (a) angle β between two trajectories at the crossing point (0,0); and (b) 

number Nc of clutter detections (i.e., of false detections). 

IV. APPLICATION OF THE MT2 ALGORITHM TO TRACK SMALL 

MOVING TARGETS  

A. Tracking of two tags moving in the scene 

To demonstrate experimentally the effectiveness of the MT2 

algorithm, we moved two metallic objects (2cm long metallic 

cylinders used to tag/equip bees [9]), one along the x-axis and 

the other along y-axis so as they cross at approximately 1.5m in 

front of the radar system. The targets were moved linearly at a 

constant speed. These measurements were carried out outside. 
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To control their movement, tags were attached to a rod using a 

nylon thread. We first applied the detection algorithm of 

Section II.C to the radar images obtained from the collected raw 

data and next, we used MT2 algorithm on the set of unclassified 

detections, as described in Section III. The parameters of the 

algorithm were set beforehand with values: δp
0
=0.2, δα0=180°, 

δt0=400ms,  wp=1,  wα=1,  wt=2,  δts=60ms  and nmax=4 . The 

tracks provided by the MT2 algorithm are then classified as 

clutter (75.3%) if they include less than 10 detections or if their 

total duration is shorter than 0.5s. Otherwise, the tracks are 

classified as target tracks (24.7%). The resulting tracks are 

displayed in Figure 5(a).  

 
(a) 

 
(b) 

Fig. 5. Tracks of two moving tags obtained from the application of the MT2 

algorithm: (a) raw target tracks (the classification step allows discriminating 
clutter which is shown in black, while each target track is indicated in a unique 

colour); (b) corrected tracks obtained from applying the correction algorithm to 

the target tracks. Tracks #1, #2 and #3 are respectively in purple, green and red. 

Finally, to join successive tracks that are likely to 

correspond to the same target, a set of corrected target tracks is 

generated using a similar assignment strategy as in Section 

III.A. Therefore, track-to-track associations are derived 

sequentially from the minimization of a cost function at each 

step. From application of this correction process to the set of 

target tracks, we derive the three tracks shown in Figure 5(b), 

that is, tracks #1 and #3 of tag #1 and track #2 of tag #2. Two 

separate tracks occurred for tag #1 because it was moved 

outside of the detection volume of the radar scanning system 

(5.3m3). Using the aforementioned MT2 algorithm parameters, 

the total computation time of the MT2 algorithm and the 

correction process was found to be 26.17s (average of 10 trials). 

As the total runtime is lower than the experiment duration, the 

proposed tracking method may be implemented in real-time 

(only when using the forward reconstruction method). 

V. CONCLUSION 

We introduced a so-called Multi-Target Tracking algorithm 

to track several small moving targets from a mm-wave FM-CW 

radar system. The algorithm is simple to implement compared 

with most multi-object tracking algorithms currently used, and 

it does not require prior knowledge of the number of targets to 

tracks (as, e.g., in Probabilistic Data Association Multi-Target 

Tracking Filters [12]). The next step is to use the algorithm for 

tracking tagged bees flying between their nest and a feeder. 
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