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Abstract.
Property graphs (PG) and RDF graphs are two popular database graph models, but they are not interoperable: data modeled in

PG cannot be directly integrated with other data modeled in RDF. This lack of interoperability also impedes the use of the tools
of one model when data are modeled in the other.
In this paper, we propose PRSC, a configurable conversion to transform a PG into an RDF graph. This conversion relies on PG
schemas and user-defined mappings called PRSC contexts. We also formally prove that a subset of PRSC contexts, called well-
behaved contexts, can be used to reverse back to the original PG, and provide the related algorithm. Algorithms for conversion
and reversion are available as open-source implementations.

Keywords: Property Graph, RDF graph, Conversion, Schema

1. Introduction

Graphs are a popular data model in which knowledge is represented through objects and links between these
objects. Today, there are two mainly used models of graphs: Property Graphs and RDF.

Property Graphs (PGs) are a family of implementations, in which data are represented with nodes and edges,
and labels and properties (key-value pairs) can be attached to these nodes and edges. Property Graphs are not a
uniform model: some implementations like Neo4j 1 only allow exactly one label for each edge. Most PG engines
offer easy-to-use graph query languages like Cypher [1] and Gremlin [2] that rely on graph traversal. While no
uniform standard has been settled yet, the Property Graph needs a Schema Working Group 2 is working towards
defining a schema language for PG, and a unified formalization of the PG model. In the rest of this paper, following
other authors [3], the variability of implementations is neglected and PGs are considered as a uniform model.

*Corresponding author. E-mail: julian.bruyat@liris.cnrs.fr.
1https://neo4j.com/
2https://www.w3.org/Data/events/data-ws-2019/assets/position/Juan%20Sequeda.txt
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Another popular graph model is the Resource Description Framework (RDF) model [4]. In this model, data
are represented with triples that represent links between resources. The resources and the links between them are
identified through Internationalized Resource Identifiers (IRI). This data model is a W3C standard, and has been
studied through a large quantity of works, like RDFS [5] and OWL [6] for inference, or SHACL [7] for data
validation. This model has been extended by RDF-star [8] that helps writing properties on triple terms in a more
concise manner, but does not provide exactly the same modeling capabilities as PGs. For example, multiple links
with the same predicate between two resources are still not supported and requires using extra constructs, like
the occurrence pattern described in the “Triples and occurrences" section of the RDF-star community group final
report [9].

While PG and RDF are both based on the idea of using graph data, the choice of one removes the ability to use the
tools developed for the other. The maintainers of Amazon Neptune, a graph database service that can support both
models independently, report that their users choose the solution that best suits their current use case, then struggle
because they are stuck with the tools of this model even if the tools of the other model would better answer the new
business problem they have [10]. Generally speaking, this diversity of graph models, and more precisely the lack of
interoperability, hinders graph database adoption.

Numerous authors [11, 12] highlight the benefits of interoperable systems, and in particular of interoperability
between PGs and RDF graphs [13–15]. We can distinguish two levels of interoperability: syntactic interoperability
and semantic interoperability. The former consists in having common data formats, for example JSON or CSV.
The latter consists in having data not only in a common data format, but also that use shared vocabularies. Tim
Berners-Lee theorized the 5-star Open-data model3. In this model, datasets are given a number of stars depending
on how interoperable they are. RDF graphs are by design the best candidate to elevate the ranking of data in the
5-star data-model, in particular through the use of shared vocabularies. So, while internally developers may choose
RDF or PG databases based on their preferences and the convenience of associated tools, RDF is better suited as a
pivot model for interoperable exchange of data.

Among the many questions risen by the interoperability between PGs and RDF graphs, the scenario we want to
support is the conversion from PGs to RDF (syntactic interoperability) without information loss, and while promot-
ing the use of existing shared vocabularies (semantic interoperability). The requirement of using of existing shared
vocabularies requires a converter to be highly customizable, in particular in terms of how the produced triples are
structured. On the other hand, the requirement of not losing information, i.e. producing reversible conversions,
requires to formally study the possible conversions.

In a previous paper [16], we introduced the motivations behind PREC (PG to RDF Experimental Converter), a
user-configured mapping from Property Graphs (PG) to RDF graphs and proposed a mapping language, specialized
for the PG to RDF conversion problem, to let the user describe how to convert the node labels, the edges and the
properties of the original PG to an RDF graph. By converting the data stored in PGs into RDF, users are then able
to use all the tools available for RDF. In this paper, we introduce a new mapping language, named PRSC4, driven
by a schema and a description of how to convert the elements of the types in the schema to RDF. This mapping
language is formally defined, and conditions under which the conversion produced by PRSC is reversible are also
defined. Compared to the previous mapping language, this language contains fewer terms and concepts, and should
be easier to use. The PRSC engine is available under the MIT license5 and can connect both to a Cypher endpoint
and a Gremlin endpoint.

The rest of this paper is organized as follows. Section 2 gives an overview of PRSC to understand its principles.
Section 3 gives generic formal definitions of PGs and RDF graphs. Section 4 gives a formal definition of a PRSC
conversion, which is essentially a formal definition of Section 2. Section 5 studies reversibility, and proves that some
contexts can convert PG to RDF graph without information loss. Section 6 discusses the existing works to make
easier interoperability between PGs and RDF graphs relatively to PRSC. Section 7 discusses the proposed solution
and describes some future works.

3https://5stardata.info/en/
4PG to RDF: Schema-driven Converter, pronounced “presque”
5https://github.com/BruJu/PREC, https://npmjs.com/package/prec

https://5stardata.info/en/
https://github.com/BruJu/PREC
https://npmjs.com/package/prec


J. Bruyat et al. / PRSC 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

:Person 
 name: ''Tintin'' 
 job: ''Reporter''

name: ''Snowy''

:TravelsWith 
 since: 1978

Fig. 1. A small PG about Tintin that serves as a running example in this paper

Listing 1 An example of an RDF-star graph in Turtle Format
1 _:n1 rdf:type ex:Person .
2 _:n1 foaf:name "Tintin" .
3 _:n1 ex:profession "Reporter" .
4 _:n1 ex:isTeammateOf _:n2 .
5 << _:n1 ex:isTeammateOf _:n2 >> ex:since 1978 .
6 _:n2 foaf:name "Snowy" .

2. PRSC in practice

The Property Graph exposed on Figure 1 describes the relationship between Tintin and Snowy. It is composed
of two nodes. The first one holds the label Person and two properties: the first property has “name” as its key and
“Tintin” as its value, the second has “job” as its key and “Reporter” as its value, or more simply its name is “Tintin”
and its job is “Reporter”. The other node only has one property: the name “Snowy”. These two nodes are connected
by an edge that holds one label, TravelsWith, and a property that tells that it is “since” “1978”.

A similar example represented in RDF-star is exposed on Listing 1. Most information that was in the PG is repre-
sented by the triples in lines 1-4 and 6. The information about since when Tintin travels with Snowy is represented
through a nested RDF-star triple.

Using the user-defined mapping, PRSC is able to convert the PG in Figure 1 into the RDF-star graph in Listing 1,
and more generally any Property Graph with the same schema into the corresponding RDF graph. In this paper, we
consider that Property Graphs with the same schema as the one in Figure 1 are Property Graphs where all nodes
have either (1) the “Person" label, a “name" property and a “job" property, (2) no label and a “name" property, (3)
and where all edges have the “TravelWith" label and a “since" property. The mapping the user must provide to the
PRSC engine is exposed on Listing 2 and is in Turtle-star format [17]. Rules are split in two parts:

– The target part that describes which elements of the Property Graph are targeted. The target is described
depending on three criteria: (1) whether the element must be an edge or a node, (2) the labels and (3) the
properties of the element.

– The production part that describes the triples to produce with a list of template triples. Values in the pvar
namespace are mapped to the blank node in the resulting RDF graph. The literals that use valueOf as their
datatype are converted to the property values in the RDF graph.

The mapping, named PRSC context, exposed on Listing 2 reads as follows:

– The first rule is named _:PersonRule (line 1)

* The rule is used for all PG nodes (line 3) that only have the node label “Person” (line 4) and have the
properties “name” and “job” (line 5). In our example, the node corresponding to Tintin matches this
description, but Snowy does not as it misses the Person label and the job property.

* It will produce three triples:
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Listing 2 The PRSC context that maps the PG running example to the RDF graph running example
1 _:PersonRule
2 # Target: all nodes with label "Person" and two properties "name" and "job"
3 a prec:PRSCNodeRule ;
4 prec:label "Person" ;
5 prec:propertyKey "name", "job" ;
6 # Production part of the rule: a template graph
7 prec:produces
8 << pvar:self rdf:type ex:Person >> ,
9 << pvar:self foaf:name "name"^^prec:valueOf >> ,

10 << pvar:self ex:profession "job"^^prec:valueOf >> .
11
12 _:NamedRule
13 # Target: all nodes with no label and one property "name"
14 a prec:PRSCNodeRule ;
15 prec:propertyKey "name" ;
16 # Production part of the rule
17 prec:produces
18 << pvar:self foaf:name "name"^^prec:valueOf >> .
19
20 _:TravelsWithRule
21 # Target: all edges with the label "TravelsWith" and one property "since"
22 a prec:PRSCEdgeRule ;
23 prec:label "TravelsWith" ;
24 prec:propertyKey "since" ;
25 # Production part of the rule
26 prec:produces
27 << pvar:source ex:isTeammateOf pvar:destination >> ;
28 << << pvar:source ex:isTeammateOf pvar:destination >> ex:since "since"^^prec:valueOf >>.

⋆ One triple with a blank node as its subject, rdf:type as its predicate and ex:Person as its
object (line 8). Each node from the Property Graph is identified by a distinct blank node. In this
example, _:n1 rdf:type ex:Person will be produced.

⋆ Another triple with the same blank node as its subject, foaf:name as its predicate and a literal
that matches the value of the name property in the PG (line 9). The PRSC engine converts all literals
whose datatype is prec:valueOf into the value of the corresponding property in the PG. In this
example, _:n1 rdf:type "Tintin" will be produced.

⋆ One last triple is produced with the same blank node as its subject, ex:profession as its pred-
icate and a literal corresponding to the value of the property job (line 10). In this example, _:n1
ex:profession "Reporter" will be produced.

– The second rule is named _:NamedRule (line 12).

* It is applied to nodes (line 14) that have no labels and only one property: name (line 15). This is the case
of the PG node used to describe Snowy but not the one that describes Tintin as it has an extra label and
an extra property.

* These PG nodes will be converted into one triple with a blank node that identifies the PG node as its
subject, foaf:name as its predicate and the literal that correspond to the value of the name property
as its object (line 18). In this example, the triple _:n2 foaf:name "Snowy" is produced.

– The third rule is named _:TravelsWithRule (line 20):

* It is used to convert edges (line 22) whose only label is “TravelsWith” (line 23) and with one and only
one property named “since” (line 24).

* These edges are converted by producing a triple with the identifier of the source PG node as the subject,
ex:isTeammateOf as the predicate and the identifier of the destination PG node as the object (line
27). In this example, the triple _:n1 ex:isTeammateOf _:n2 is produced.

* A triple with a quoted triple is created by the rule on line 28: the triple that was created by the line
27 is used on the subject position of the triples created by this triple, ex:since is used as the pred-
icate and the value of the “since” property is used as the object. In our example, the triple << _:n1
ex:isTeammateOf _:n2 >> ex:since 1978 is produced.
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* Note that in this example, pvar:self is not used in lines 27 and 28. If it was used, it would be mapped
to a blank node that identifies the edge. The consequence of not using it is a smaller RDF graph, at the
cost of if several PG edges with the “TravelsWith” label were present between the two same nodes, the
RDF representation of these edges would have been merged.

Note that this mechanism of using quoted triples to describe templates in a pure Turtle-star file was al-
ready presented in our previous work [16]. Compared to R2RML [11], it lets the user describe the triples
to produce with a syntax closer to the triples that will actually be produced, but it is currently impossi-
ble to express templated terms in any position. For example, if the user wants to generate a named node
<http://example.org/person/{name}> in subject position in which the {name} part is substituted with
the value of the name property, R2RML offers it as a native feature. As PRSC is currently unable to generate ar-
bitrary IRIs, nodes and edges from the PG are always mapped to blank nodes and minting IRIs is left for future
works.

3. General definitions

This section introduces some standard definitions, mostly inspired from previous works.

3.1. Notations and conventions

Let Str be the set of all strings. Strings are noted between quotes. For example, “node”, “edge”, “since” and
“Snowy” are strings.

Definition 1 (Domain and image of a function). For all partial functions f : D → A, Dom and Img are defined as
follows:

– Dom( f ) = {x | ∃y ∈ A, such that f (x) = y}
– Img( f ) = {y | ∃x ∈ D, such that f (x) = y}.

Example 1. For the partial function inverse : R → R, with inverse(x) = 1/x, Dom(inverse) = Img(inverse) =
R− {0}.

Let S be a set, we recall that 2S denotes the set of all parts of S .

3.2. Compatible functions

For all functions f , we recall that they can be seen as sets: f = {(x, f (x)) | x ∈ Dom( f )}. For all sets S of
2-tuples, S can be seen as a function iff (if and only if) ∀(x, y1, y2), (x, y1) ∈ S ∧ (x, y2) ∈ S ⇒ y1 = y2.

Example 2. Consider the three functions f1, f2, f3 exposed in Table 1.

Table 1
Some functions defined both with the usual function notation and with a set notation

Function notation Set notation

f1(x) =

{
0 if x = 0

1 if x = 1
f1 = {(0, 0), (1, 1)}

f2(x) =


66 if x = −2

33 if x = −1

0 if x = 0

f2 = {(−2, 66), (−1, 33), (0, 0)}

f3(x) =

{
10 if x = 0

1 if x = 1
f3 = {(0, 10), (1, 1)}
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As f1, f2 and f3 can be defined with a set, it is possible to use the usual set operations.
The set f1 ∪ f2 = {(−2, 66), (−1, 33), (0, 0), (1, 1)} is a function: the first element of all tuples has a different

value. Using a function notation, it may be written as:

( f1 ∪ f2)(x) =


66 if x = −2 [ f2(−2) = 66]
33 if x = −1 [ f2(−1) = 33]
0 if x = 0 [ f1(0) = f2(0) = 0]
1 if x = 1 [ f1(1) = 1]

On the opposite, f1 ∪ f3 = {(0, 0), (0, 10), (1, 1)} is not a function. Both (0, 0) and (0, 10) are members of the
set f1 ∪ f3, ( f1 ∪ f3)(0) would be equal to both f1(0) = 0 and f3(0) = 10 which are different values.

Remark 1. Instead of using the notation {(x0, f (x0)), (x1, f (x1)), . . . }, the notation {x0 7→ f (x0), x1 7→ f (x1), . . . }
is sometimes used to clarify the fact that a set is a function. For example, f3 may be noted as f3 = {0 7→ 10, 1 7→ 1}.

Definition 2 (Functions compatibility). Two functions f and g are compatible iff f ∪ g is a function, i.e.
∀(x, y f , yg), (x, y f ) ∈ f ∧ (x, yg) ∈ g⇒ y f = yg.

In other words, two functions f and g are compatible iff for every common input, they share the same output i.e.
∀x ∈ Dom( f ) ∩ Dom(g), f (x) = g(x).

3.3. Property Graph

Definition 3 (Property Graph). Following the definition of Angles [3], a property graph pg is defined as the tuple
(Npg, Epg, srcpg, destpg, labelspg, propertiespg), where:

– Npg and Epg are finite sets with Npg ∩ Epg = ∅. Npg and Epg are respectively the set of nodes and the set of
edges of the property graph pg.

– srcpg : Epg → Npg and destpg : Epg → Npg are two total functions. These two functions map each edge to its
starting and destination nodes.

– labelspg : Npg ∪ Epg → 2Str is a total function. This function maps the nodes and edges to their sets of labels.
– propertiespg : (Npg ∪ Epg) × Str → V is a partial function. This function describes the properties of the

elements. V is the set of all possible property values. Considering that a property is a key-value pair, it expects
two inputs: a node or an edge, and a property key. The output is the property value.

The set of all property graphs is denoted PGs.

In this paper, property graph nodes and edges are grouped under the term element.
In the rest of the paper, when any PG x is introduced, we allow ourselves to use the symbols Nx, Ex, srcx, destx,

labelsx and propertiesx without explicitly defining x as the tuple (Nx, Ex, srcx, destx, labelsx, propertiesx).

Example 3 (Running example of a Property Graph). The PG exposed on Figure 1 can formally be defined as the
PG denoted TT with

– NTT = {n1, n2} ; ETT = {e1}
– srcTT = {e1 7→ n1} ; destTT = {e1 7→ n2}
– labelsTT = {n1 7→ {“Person”} ; n2 7→ ∅; e1 7→ {“TravelsWith”}}

– propertiesTT =

{
(n1, “name”) 7→ “Tintin”; (n1, “job”) 7→ “Reporter”
(n2, “name”) 7→ “Snowy”; (e1, “since”) 7→ 1978

}
Definition 4 (The empty PG). The empty PG, which is the PG that contains no nodes and no edges, is formalized
as follows: pg∅ with Npg∅ = Epg∅ = ∅, srcpg∅ = destpg∅ = labelspg∅ = ∅ → ∅ and propertiespg∅

: ∅ × ∅ → ∅.
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3.3.1. Renaming Property Graphs and isomorphism
The chosen formal definition of the running example is not the only one that is possible: for example an arbitrary

element named a could have been used in place of n1 as the first listed node identifier in Example 3.

Definition 5 (Renaming function). For all sets N1,N2, E1, E2 where N1 ∩ E1 = ∅ and N2 ∩ E2 = ∅, a renaming
from N1 and E1 to N2 and E2 is a bijective function ϕ : N1 ∪ E1 → N2 ∪ E2 where ∀n ∈ N1, ϕ(n) ∈ N2 ∧ ∀e ∈
E1, ϕ(e) ∈ E2.

Example 4. Let TT ′ be another formal definition of the PG in Figure 1 that uses the sets NTT′ = {a, b} and ETT′ =
{c}.

An example of a renaming function ϕTT from NTT = {n1, n2} ∪ ETT = {e1} to NTT′ = {a, b} ∪ ETT′ = {c} is
ϕTT = {n1 7→ a; n2 7→ b; e1 7→ c}.

Definition 6 (Property Graph renaming). Let pg be a property graph, N′ and E′ be two sets and ϕ be a renaming
function from Npg and Epg to N′ and E′. We define the renamed PG rename(ϕ, pg) = pg′ as follows:

– Npg′ = N′ = {ϕ(n) | n ∈ Npg}
– Epg′ = E′ = {ϕ(e) | e ∈ Epg}
– srcpg′ =

{
e 7→ ϕ(srcpg(ϕ

−1(e))) | e ∈ Epg′
}

– destpg′ =
{

e 7→ ϕ(destpg(ϕ
−1(e))) | e ∈ Epg′

}
– labelspg′ =

{
m 7→ labelspg(ϕ

−1(m)) | m ∈ Npg′ ∪ Epg′
}

– propertiespg′ =
{
(m, key) 7→ propertiespg(ϕ

−1(m), key) | m ∈ Npg′ ∪ Epg′ ∧ key ∈ Str
}

Example 5. Let us consider back TT , the PG about Tintin defined in Example 3, TT ′ the other formalization of the
same PG and ϕTT the renaming function introduced in the Example 4.

The PG produced by rename(ϕTT ,TT) = TT ′ is

– NTT′ = {a, b} ; ETT′ = {c}
– srcTT′ = {c 7→ a} ; destTT′ = {c 7→ b}
– labelsTT′ = {a 7→ {“Person”} ; b 7→ ∅; c 7→ {“TravelsWith”}}

– propertiesTT′ =

{
(a, “name”) 7→ “Tintin”; (a, “job”) 7→ “Reporter”
(b, “name”) 7→ “Snowy”; (c, “since”) 7→ 1978

}
Definition 7 (Isomorphic property graph). Two PGs pg and pg′ are isomorphic iff there exists a renaming function
ϕ from Npg and Epg to Npg′ and Epg′ such that rename(ϕ, pg) = pg′. Note that because renaming functions are
bijectives, it implies that ϕ−1 exists and rename(ϕ−1, pg′) = pg.

Note that both TT and TT ′ from Examples 3 and 4 match the graphical representation given in Figure 1. An
informal way to define the isomorphism between two PGs is to check if they have the same graphical representation.

Existing works [1, 18] on PG query languages focus on extracting the properties of some nodes and edges, and
never look for the exact identity of the elements. It is therefore possible to affirm that the exact identity is not
important, and that if two PGs are isomorphic, they are the same PG for practical matter.

3.4. RDF-star definition

Definition 8 (Atomic RDF terms). Let I be the infinite set of IRIs, L = Str × I be the set of literals and B be the
infinite set of blank nodes. The sets I, L and B are disjoint.

IRIs, literals and blank nodes are grouped under the name “Atomic RDF terms".
Notation: In the examples, the IRIs, the elements of I, will be either noted as full IRIs between brackets, e.g.

<http://example.org/Tintin> or by using prefixes to shorten the IRI e.g. ex:Tintin. The list of pre-
fixes used in this paper is described in Table 2.

Literals, the elements of L, can be noted either by using the usual tuple notation, e.g. (“1978”,xsd:integer)
or with the compact notation “1978”xsd:integer.
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Table 2
List of prefixes used in this paper

Prefix IRI

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

xsd http://www.w3.org/2001/XMLSchema#

ex http://example.org/

prec http://bruy.at/prec#

pvar http://bruy.at/prec-var#

Finally, the blank nodes, the elements of B, are denoted by blank node labels prefixed with the two symbols “_:"
e.g. _:edge, _:2021 or _:node35.

Definition 9 (RDF(-star) triples and graphs). The set of all RDF triples6 is denoted RdfTriples and is defined as
follows:

– ∀subject ∈ I ∪ B,∀predicate ∈ I,∀object ∈ I ∪ B ∪ L, (subject, predicate, object) ∈ RdfTriples.
– ∀tsubject ∈ RdfTriples, ∀tobject ∈ RdfTriples, and for all sub ject, predicate and object defined as above,
(tsubject, predicate, object), (subject, predicate, tobject) and (tsubject, predicate, tobject) are members of
RdfTriples.

A subset of RdfTriples is an RDF graph.
Both the atomic RDF terms defined in Definition 8 and RDF triples are terms. A triple used in another triple, in

subject or object position, is a quoted triple. An RDF triple can not contain itself and can not be nested infinitely.

Example 6.

1. The triple (ex:tintin, rdf :type, ex:Person) is an element of RdfTriples. Its Turtle representation is
ex:tintin rdf:type ex:Person ..

2. The RDF graph exposed in Listing 1 is composed of 5 triples written in Turtle format. In our formalism, the
second triple, _:tintin foaf:name "Tintin", is (_:tintin, foaf :name, “Tintin”xsd:string).

3. (ex:tintin, ex:travelsWith, ex:snowy) is an element of RdfTriples.
((ex:tintin, ex:travelsWith, ex:snowy), ex:since, “1978”xsd:integer) is an element of RdfTriples that has a quoted
triple in subject position.

Definition 10 (Term membership). The ∈ operator is extended to triples to check if a term is part of a triple.

∀term ∈ I ∪ B ∪ L ∪ RdfTriples,∀(s, p, o) ∈ RdfTriples, term ∈ (s, p, o)⇔


term = s

∨ (s ∈ RdfTriples ∧ term ∈ s)
∨ term = p
∨ term = o
∨ (o ∈ RdfTriples ∧ term ∈ o)


Example 7 (Term membership examples).

– rdf :type ∈ (ex:tintin, rdf :type, ex:Person).
– ex:snowy ̸∈ (ex:tintin, rdf :type, ex:Person).
– _:n ∈ (_:n, rdf :type, ex:Person)
– _:e ̸∈ (_:n, rdf :type, ex:Person)

6For the sake of readability, although RDF-star is not yet part of the official RDF recommendation [4], we conflate RDF-star and RDF in
this paper. When we mention an RDF triple or an RDF graph, we allow them to contain quoted triples.
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– xsd:string ∈ (xsd:string, ex:p, ex:o)
– xsd:string ̸∈ (ex:tintin, ex:name, “Tintin”xsd:string)
– ex:tintin ∈ ((ex:tintin, ex:travelsWith, ex:snowy), ex:since, “1978”xsd:integer)

Definition 11 (List of blank nodes used in an RDF graph). For every RDF graph rdf , BNodes(rdf ) is the set of blank
nodes in rdf i.e. ∀rdf ⊆ RdfTriples,BNodes(rdf ) = {bn ∈ B | ∃t ∈ rdf , bn ∈ t}.

Example 8. Let GTT be the RDF graph exposed on Listing 1. BNodes(GTT) = {_:tintin, _:snowy}

4. PRSC: mapping PGs to RDF graphs

PRSC enables the user to convert any Property Graph to an RDF graph by using user-defined templates.

4.1. Property graphs with blank nodes

By default, every node and edge of the PG to convert is mapped by PRSC to an arbitrary fresh blank node. This
mapping is arbitrary because blank nodes are essentially interchangeable, and because they have no global identifiers
which would allow to map to a specific blank node anyway. This mapping is used throughout the transformation.
For the sake of conciseness, we introduce the following modelling trick.

We note that in the respective definitions of PGs and RDF, the sets N and E of nodes and edges (in any PG) and
the global set B of blank nodes (in RDF), are very loosely characterized. The only constraints are that N and E are
disjoint and finite, and that B is disjoint from the sets of IRIs and literals. Theoretically, nothing prevents a property
graph to take its nodes and edges in the set B, in other words, to have N ⊂ B and E ⊂ B.

Our arbitrary mapping from N ∪ E to fresh blank nodes can then be used as a renaming function to build a new
PG that is isomorphic to the original one. As noted in Section 3.3.1, the two PGs are indistinguishable for any
practical purpose, including the transformation to an RDF graph. Without loss of generality, all the definitions and
algorithms in this paper expect PGs whose nodes and edges are elements of B. This amounts to assume that the
arbitrary mapping to blank nodes has been set in advance, and is carried by the PG to transform: every element of
N ∪ E is identified with the blank nodes it maps to.

Conversely, when we study the reversibility of some contexts in Section 5, we prove that the produced BPG is
exactly the original one. Producing a PG with arbitrary elements, and proving that it was isomorphic to the original,
would be much more complex.

Definition 12 (Blank Node Property Graph). BPGs is the set of property graphs with blank nodes only (BPG), i.e.
BPGs = {pg ∈ PGs | (Npg ∪ Epg) ⊆ B}.

Example 9. By defining the renaming function ϕBTT = {n1 7→ _:n1; n2 7→ _:n2; e1 7→ _:e1}, it is possible to build
the BPG BTT = rename(ϕBTT ,TT):

– NBTT = {_:n1, _:n2} ; EBTT = {_:e1}
– srcBTT = {_:e1 7→ _:n1} ; destTT ′ = {_:e1 7→ _:n2}
– labelsBTT = {_:n1 7→ {“Person”} ; _:n2 7→ ∅; _:e1 7→ {“TravelsWith”}}

– propertiesBTT =

{
(_:n1, “name”) 7→ “Tintin”; (_:n1, “job”) 7→ “Reporter”
(_:n2, “name”) 7→ “Snowy”; (_:e1, “since”) 7→ 1978

}
By construction, BTT is isomorphic to TT , and as NBTT ∪ EBTT ⊆ B, BTT ∈ BPGs.
This may raise the question of the meaning of two BPGs that share the same blank nodes, in particular if one

blank node is used as a node in one BGP and as an edge in the other. However, this question could also be raised
for all PGs: what would it mean for two PGs to have common elements in their respective sets of nodes and edges?
In general, it would not hold any semantics, as PG elements are considered locally for a given PG. However, in
Section 5.3.4, we will define operators for PGs, even the ones without blank nodes, that will consider PGs with
shared PG elements and their possible relations.
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4.2. Type of a PG element and PG schemas

We define the type of a PG element and PG schemas as follows. Let pg be a PG.

Definition 13 (Property keys of an element). We recall that in Section 2 and in Definition 3, properties are described
as key-value pairs.

keyspg is the function that maps a PG element (node or edge) of the PG pg to the list of property keys for which it
has a value, i.e. keyspg : Npg ∪ Epg → 2Str, with
∀m ∈ (Npg ∪ Epg), keyspg(m) = {key | propertiespg(m, key) is defined}.

Definition 14 (Type of a PG element). A type is a triple composed of 1) the kind of the PG element, i.e. if it is a
node or an edge, 2) a set of labels and 3) a set of property keys. The set of all types is denoted Types and is defined
as Types = ({“node”, “edge”} × 2Str × 2Str).

The type of an element m ∈ Npg ∪ Epg is

typeofpg(m) = (

{
“node” if m ∈ Npg

“edge” if m ∈ Epg

}
, labelspg(m), keyspg(m))

A set of PG types is named a schema.
The functions kind, labels and keys are defined for types such that ∀type = (u, l, key) ∈ Types, kind(type) =

u, labels(type) = l, keys(type) = key.

Example 10. Table 3 shows the types of the PG elements in the running example.

Table 3
The types of the elements in the PG BTT

m typeofBTT(m)

_:n1 (“node”, {“Person”}, {“name”, “job”})
_:n2 (“node”, ∅, {“name”})
_:e1 (“edge”, {“TravelsWith”}, {“since”})

Remark 2. If two PGs pg and pg′ are isomorphic, their elements share the same type.
Indeed, by definition, there exists a renaming function ϕ from the elements of pg to the elements of pg′, and

∀m ∈ Npg ∪ Epg, typeofpg(m) = typeofpg′(ϕ(m)).

4.3. Template triples

PRSC resorts to a mechanism of templating: to produce an RDF graph from a PG, we use tuples of three elements,
named template triples, that will be mapped to proper RDF triples.

Definition 15 (Placeholders). There are four distinct elements, not included in either of the previously defined sets,
named valueOf , ?self , ?source and ?destination7.

Let pvars = {?self , ?source, ?destination}. pvars elements serve as placeholders that will be replaced by the
blank nodes that represent the nodes and edges in the PG.

Let P = {(l, valueOf ) | l ∈ Str}. Elements of P can be noted with the same syntax as literals, for example
“name”valueOf is the pair (“name”, valueOf ). Each element of P serves as a placeholder to be replaced with an RDF
literal that represents the value of a property in the PG.

7In practice, our implementation of this paper maps valueOf to the IRI prec:valueOf and all terms prefixed with ? to the pvar
namespace. Examples given in Turtle reflect the implementation instead of fully fitting the theoretical definitions.
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Definition 16 (Template triples). A template triple is a member of Templates and is defined as follows:

– ∀subject ∈ I ∪ pvars,∀predicate ∈ I,∀object ∈ I ∪ pvars ∪ L ∪ P, (subject, predicate, object) ∈ Templates.
– ∀tsubject ∈ Templates,∀tobject ∈ Templates, and for all subject, predicate and object defined as above,
(tsubject, predicate, object), (subject, predicate, tobject) and (tsubject, predicate, tobject) are members of
Templates.

Note that unlike RDF triples, the elements of Templates can not contain blank nodes but can contain placeholders:
pvars members can be used in subject (first) and/or object (third) position as they will be mapped later to blank
nodes, and members of P are allowed in object position as they will be mapped later to literals. Similarly to RDF
triples, template triples can not contain themselves and can not be nested infinitely.

Any subset of Templates is named a template graph. The PRSC engine will use template graphs to produce RDF
graphs.

Example 11. The triple (ex:tintin, rdf :type, ex:Person) is both an element of RdfTriples and an element of Templates.
Indeed, both RdfTriples and Templates allow IRIs in the subject, predicate and object positions.

The triple (?self , rdf :type, ex:Person) is a member of Templates but not of RdfTriples. The first member is an
element of pvars, which is only allowed in template triples. The two other members are IRIs, and pvars× I × I is a
subset of Templates.

The triple (ex:tintin, ex:name, “name”valueOf ) is also a member of Templates but not of RdfTriples. While the first
two members are IRIs, the third member is an element of P. Again, elements of P are only allowed by template
triples.

Definition 17 (Placeholders and template triple membership). The ∈ operator, which we extended in Definition 10,
is further extended to placeholders and template triples:

∀term ∈ I ∪ B ∪ L ∪ RdfTriples ∪ Templates,∀(s, p, o) ∈ RdfTriples ∪ Templates,

term ∈ (s, p, o)⇔


term = s

∨ (s ∈ RdfTriples ∪ Templates ∧ term ∈ s)
∨ term = p
∨ term = o
∨ (o ∈ RdfTriples ∪ Templates ∧ term ∈ o)


4.4. PRSC context

In this paper, the notion of PRSC context is the keystone to let the user drive the conversion from a PG to an RDF
graph. It maps PG types to template graphs. The prsc algorithm proceeds by looping on each node and edge of the
PG, computing its type, finding the associated template graph in the context, and replacing the placeholders of this
template graph with data extracted from the PG to produce an RDF graph.

Definition 18 (PRSC Context). A PRSC context ctx : Types → 2Templates is a partial function that maps types to
template graphs.

All template graphs must be valid, i.e. for all types, the placeholders used in the associated template graph must
be consistent with the type: (1) for any given property key, its associated placeholder may only be used in template
graphs associated with types that contain the property key, for example the placeholder “name”valueOf may only be
used if the property key “name” is in the type associated to this template; (2) and templates associated to node types
are not allowed to use the placeholders ?source and ?destination, as they are related to the source or the destination
of an edge.

Formally, all template graphs used by a context ctx are valid iff ∀type ∈ Dom(ctx):

1. ∀(key, valueOf ) ∈ P, (∃tp ∈ ctx(type) | (key, valueOf ) ∈ tp)⇒ key ∈ keys(type).
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2. (kind(type) = “node”)⇒ [∄tp ∈ ctx(type) | ?source ∈ tp ∨ ?destination ∈ tp].

The set of all context functions is denoted Ctx.

Definition 19 (Complete PRSC contexts for a given PG). A PRSC context is said complete for a property graph
pg ∈ BPGs iff there is a template graph defined for each type used in pg. The set of all complete contexts for a PG
pg is noted Ctxpg = {ctx ∈ Ctx | ∀m ∈ Npg ∪ Epg, typeofpg(m) ∈ Dom(ctx)}.

Remark 3. Note that the type system described in Definition 14 is trivial to resolve as the type of a PG element m,
denoted by typeofpg(m), only depends on its kind (node or edge), the list of its labels and the list of its property keys.
For this reason, checking if a PRSC context ctx is complete for a property graph pg is also trivial as it consists in
computing the type of each PG element of pg and checking if all types are in the domain of ctx.

Example 12. Table 4 exposes an example of a complete ctx context function for our running example. First, the
function is a context as all template graphs are valid: The placeholders “name”valueOf and “job”valueOf are only
used in types with the associated property key. The fact that the property key “since” in the third type has no
associated placeholder occurrence in the template graph does not invalidate the context. The placeholders ?source
and ?destination are only used in the third type, which is an edge type. Then, all three types used by our running
example have an associated template graph, so it is a complete context for the PG exposed in Example 1.

Table 4
An example of a complete context for the Tintin Property Graph.

type ctx(type)

(“node”, {“Person”} , {“name”, “job”})
(?self , rdf :type, ex:Person)

(?self , foaf :name, “name”valueOf )

(?self , ex:profession, “job”valueOf )

(“node”, ∅, {“name”}) (?self , foaf :name, “name”valueOf )

(“edge”, {“TravelsWith”} , {“since”}) (?source, ex:isTeammateOf , ?destination)

Example 13. The function ctx exposed in Table 5 is not complete for the PG BTT as its domain lacks the type of
_:n2 and the type of _:e1.

Table 5
An incomplete context for the Tintin PG

type ctx(type)

(“node”, {“Person”} , {“name”, “job”})
(?self , rdf :type, ex:Person)

(?self , foaf :name, “name”valueOf )

(?self , ex:profession, “job”valueOf )

Example 14. The function ctx exposed in Table 6 is not a context because “surname”, which is used in the template
graph mapped to the first listed type (“node”, {“Person”} , {“name”, “job”}), is not a value in {“name”, “job”}.

Table 6
A function that is not a context

type ctx(type)

(“node”, {“Person”} , {“name”, “job”}) (?self , ex:familyName, “surname”valueOf )

(“node”, ∅, {“name”}) (?self , foaf :name, “name”valueOf )

(“edge”, {“TravelsWith”} , {“since”}) (?source, ex:isTeammateOf , ?destination)
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4.5. Application of a PRSC context on a PG

We now define formally the conversion operated by PRSC. A PRSC conversion of a PG depends on a chosen
context ctx ∈ Ctx.

Definition 20 (Property value conversion). For the conversion of property values to literals, we consider that we
have a fixed total injective function toLiteral : V → L, common for all PGs and contexts. We suppose that toLiteral
is reversible, i.e. we are able to compute toLiteral−1.

Definition 21 (The prsc function). The operation that produces an RDF graph from the application of a PRSC
context ctx ∈ Ctxpg on a property graph pg ∈ BPGs is noted prsc(pg, ctx). The result of the prsc function is the
union of the RDF graph built by converting all elements of the PG, into RDF. The conversion of a single element is
materialized by the build function.
∀tps ⊆ Templates,∀pg ∈ BPGs,∀m ∈ Npg ∪ Epg, build(tps, pg,m) = {βpg,m(tp) | tp ∈ tps} with βpg,m defined as

follows:

βpg,m :


Templates → RdfTriples
P ∪ L → L
I → I
pvars → B

βpg,m(x) =



(βpg,m(xs), βpg,m(xp), βpg,m(xo)) if x = (xs, xp, xo) ∈ Templates
x if x ∈ L ∪ I
m if x = ?self
srcpg(m) if x = ?source ∧ m ∈ Epg

destpg(m) if x = ?destination ∧ m ∈ Epg

toLiteral(propertiespg(m, key)) if x = (key, valueOf ) ∈ P
undefined otherwise

As said previously, the result of prsc is the union of the graphs produced by build, i.e.

prsc(pg, ctx) =
⋃

m∈Npg∪Epg

build(ctx(typeofpg(m)), pg,m)

Example 15. Table 7 exposes the resolution of prsc on the running example.

Table 7
Application of a PRSC context on the running example

m typeofBTT(m) ctx(typeofBTT(m)) build(ctx(typeofBTT(m)),BTT ,m)

_:n1
(“node”, {“Person”} ,
{“name”, “job”})

(?self , rdf :type, ex:Person)

(?self , foaf :name, “name”valueOf )

(?self , ex:profession, “job”valueOf )

(_:n1, rdf :type, ex:Person)

(_:n1, foaf :name, “Tintin”)

(_:n1, ex:profession, “Reporter”)

_:n2 (“node”, ∅, {“name”}) (?self , foaf :name, “name”valueOf ) (_:n2, foaf :name, “Snowy”)

_:e1
(“edge”, {“TravelsWith”} ,

{“since”})
(?source, ex:isTeammateOf , ?destination) (_:n1, ex:isTeammateOf , _:n2)
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Algorithm 1: The prsc function
Input: pg ∈ BPGs, ctx ∈ Ctxpg

Output: An RDF graph
1 Main Function prsc(pg, ctx):
2 rdf ← {}
3 forall PG element m ∈ Npg ∪ Epg do
4 tps← ctx(typeofpg(m))

/* build function */

5 built← {}
6 forall tp ∈ tps do
7 built← built ∪ {β(tp, pg,m)} /* βtp,pg(m) is necessarily defined, since ctx ∈ Ctxpg */

8 rdf ← rdf ∪ built

9 return rdf
/* In the formal definition, pg and m are implicitly passed to β */

10 Function β(tp, pg,m):
11 if tp ∈ Templates then
12 (s, p, o)← tp
13 return (β(s, pg,m), β(p, pg,m), β(o, pg,m))

14 else if tp ∈ L then return tp
15 else if tp ∈ I then return tp
16 else if tp ∈ P then
17 (key, valueOf )← tp
18 return toLiteral(propertiespg(m, key))
19 else if tp ∈ pvars then
20 if tp = ?self then return m
21 if m ∈ Epg then
22 switch tp do
23 case ?source do return srcpg(m)
24 case ?destination do return destpg(m)

/* βtp,pg(m) is undefined according to Definition 21 */

25 raise Error(Undefined behavior)

The resolution of _:n2 is as follows:

build(ctx(typeofBTT(_:n2),BTT , _:n2)

=build(ctx((“node”, ∅, {“name”})),BTT , _:n2) Resolution of the type

=build(
{
(?self , foaf :name, “name”prec:valueO f )

}
,BTT , _:n2) Application of ctx

= {(_:n2, foaf :name, toLiteral(propertiesBTT(_:n2, “name”)))} Application of build

= {(_:n2, foaf :name, toLiteral(“Snowy”))} Evaluation of the property “name"

=
{
(_:n2, foaf :name, “Snowy”xsd:string)

}
Application of toLiteral

Algorithm 1 gives an algorithmic view of the prsc function presented by Definition 21.
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4.6. Complexity analysis

In this section, we discuss the different metrics that can be used to evaluate the complexity and evaluate the
complexity of the prsc function.

4.6.1. Functions considered constant
For a given PG pg, the complexity of the functions srcpg, destpg, labelspg and propertiespg are considered constant.
The complexity of the functions keyspg, the toLiteral and the toLiteral−1 is also considered constant.
Evaluating if something is a member of a given set, for example if an entity is part of the set Npg, is generally

considered to be constant time thanks to hash maps8.

4.6.2. Considered metrics
For a given PG pg and a given context ctx, the following metrics are considered:

– The number of nodes and edges in pg, denoted NbOfPGElements.

NbOfPGElements = |Npg ∪ Epg|

– The size of the biggest template graph, denoted BiggestTemplateSize.

BiggestTemplateSize = max
type∈Dom(ctx)

(|ctx(type)|)

– The complexity of the types in the context, denoted TypeComplexity, reflected by the number of labels and the
number of properties of the type with the highest number of labels and properties. Note that since the context
has to be valid, i.e. all elements of the PG must have their type in the context, TypeComplexity is also an upper
bound of the type complexity of the types in the PG.

TypeComplexity = 1 + max
type∈Dom(ctx)

(|labelspg(type)|+
∣∣keyspg(type)

∣∣)
– The number of types supported by the context NbTypes = |Dom(ctx)|.

In RDF-star, quoted triples can be used as subject or object of other triples, without limit on how deeply triples
can be nested. In practice, however, it is rare to have more than one level of nesting. Usually, users are expected to
use atomic RDF triples like _:tintin :travelsWith _:haddock or to use RDF-star triples with a depth of
one like << _:tintin :travelsWith _:haddock >> :since 1978. We therefore consider the depth
of any triple to be bound by a constant. As a consequence, in all functions processing terms and triples recursively
(such as β in Algorithm 1), we can ignore the recursion depth in the complexity analysis.

In all complexity analyses, all metrics are considered non null. Indeed, if there are no elements or if the biggest
template graph is empty, the produced RDF graph will be empty so this case is not interesting. As we add one to the
number of labels and properties, the type complexity can never be zero, even if the context only supports nodes and
edges with no labels and no properties.

4.6.3. Complexity of ctx calls in the prsc function
For each given PG element m, the complexity of a call to ctx(typeofpg(m)) is

O(TypeComplexity ∗ ln(TypeComplexity)):

– The type of m in the PG pg must be computed. typeofpg(m) has a complexity of O(1):

* Evaluating if m is a node or an edge is constant as checking if an element is a member of a set is constant.
* Calls to labelspg(m) and keyspg(m) are considered constants in Section 4.6.1.

8Inserting and searching in a hash map is not strictly speaking a constant time operation but has an amortized constant complexity, and is
linear in the worst case.
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– In the complexity analysis, we consider that ctx is implemented as a hash map from the types to the template
graphs. A ctx call would first need to compute the hash of the type. To do so, it has to look at all the labels
and properties in the type in a deterministic order; for this, the labels and keys needs to be sorted, which has
a complexity of O(TypeComplexity ∗ ln(TypeComplexity)). After the hash has been computed, the cost of
retrieving the template graph has an amortized constant complexity. The overall complexity of a ctx call is
O(TypeComplexity ∗ ln(TypeComplexity)).

4.6.4. Complexity of prsc
Given a PG pg ∈ BPGs and a context ctx ∈ Ctxpg,

– Calls to ctx(typeofpg(m)) in line 4 have a complexity of O(TypeComplexity ∗ ln(TypeComplexity)).
– Calls to the β function in line 7 are constant, as it has been assumed that the depth of the most nested triple is

low enough to be ignored and the operations it performs are in constant time.
– There are two for loops, one iterating on all PG elements (NbOfPGElements) and one iterating on all tem-

plate triples of a template graph (BiggestTemplateSize). All instructions in the prsc but the one on line 4 are
computed in constant time. Line 4 is inside the first loop but outside the second loop.

The prsc function has anO(NbOfPGElements∗ (BiggestTemplateSize+TypeComplexity∗ ln(TypeComplexity)))
complexity.

5. PRSC reversibility

When PGs are converted into RDF graphs, an often desired property is to not have any information loss. To
determine whenever or not a conversion induces information loss is to check if the conversion is reversible, i.e.
if from the output, it is possible to compute back the input. The reversion is studied relatively to the used PRSC
contexts: the PRSC context is used as both an input of both the PRSC algorithm and the reversion algorithm. In
other words, we consider that the information stored in the PRSC context do not need to be stored in the produced
RDF graph to produce a reversible conversion.

This section first shows that not all PRSC contexts are reversible. Then, properties are exhibited about PRSC
contexts, leading to a description of a subset of reversible PRSC contexts, i.e. contexts that we prove do not induce
information loss.

5.1. Reversibility in this paper

In this paper, we call a function f reversible if we can find back x in practice from f (x). This implies that:

– The function f must be injective. Indeed, if two different values x and x′ can produce the same value y, it is
impossible to know if the value responsible for producing y was x or x′.

– The inverse function f−1 must be computable and tractable in reasonable time. By counter-example, a public-
key encryption function is supposed to be injective. It is theoretically possible, although prohibitively costly,
to decipher a given message by applying the encryption function on all possible inputs until the result is the
original encrypted message. This is not the kind of “reversibility” we are interested in.

We say that a context ctx is reversible if for any PG pg ∈ BPGs such that the context ctx is complete for the PG
pg, it is possible to find back pg from the context ctx and the result of prsc(pg, ctx).

More formally, when studying reversibility, we want to check if for a given ctx ∈ Ctx, we are able to define a
tractable function prscctx

−1 such that ∀pg ∈ BPGs, [ctx ∈ Ctxpg ⇒ prsc−1
ctx (prsc(pg, ctx)) = pg].

Example 16 (A trivially non-reversible context). Consider the context ctx∅ such that for all types, it returns the
empty template graph, i.e. ∀type ∈ Types, ctx∅(type) = ∅. As it is complete for all property graphs, it is possible
to use this context on any property graph. However, applying the context ctx∅ produces the empty RDF graph.
Therefore, the use of the context ctx∅ makes the function prsc not injective, and therefore not reversible.
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Example 17 (A more realistic example of a non-reversible context). Another example of a non-reversible context is
the context exposed in Table 4: while this context can be applied on PGs in which edges have the “since" property,
the value of this property will never appear in the produced RDF graph.

As not all contexts are reversible, the next sections focus on characterizing some contexts that produce reversible
conversions.

5.2. Well-behaved contexts

5.2.1. Characterization function
To be able to reverse back to the original PG, we need a way to distinguish the triples that may have been produced

by a given member of Templates from the ones that cannot have been produced by it. For this purpose, this section
introduces the κ function. This function must verify that, for every triple template tp and every triple t, κ(t) = κ(tp)
if and only if t can be produced from tp by the β function. It would then follow that two template triples that may
produce the same triple have the same image through κ.

Definition 22 (Characterization function).

The κ function maps:

– All template triples to a super set of triples that it is able to generate.
– All RDF triples t to a super-set of the RDF triples that a template triple that may generate the triple t may also

generate. For example, a literal may be generated by any element of P. An element of P may generate any
literal. Therefore, the κ function maps all literals to the set of all literals.

κ :


Templates ∪ RdfTriples → 2RdfTriples

L ∪ P → {L}
I → 2I

B ∪ pvars → {B}

κ(x) =


κ(s)× κ(p)× κ(o) if x = (s, p, o) ∈ RdfTriples ∪ Templates
L if x ∈ L ∪ P
{x} if x ∈ I
B if x ∈ B ∪ pvars

The κ function is extended to all template graphs and RDF graphs xs as κ(xs) =
⋃

t∈xs κ(t).

Example 18 (κ applied to the running example from Figure 1).

– κ(?source) = B, κ(_:n1) = B.
– κ(foaf :name) = {foaf :name}.
– κ(“name”valueOf ) = L, κ(“Tintin”) = L.
– κ((?self , foaf :name, “name”valueOf )) = B× {foaf :name} × L.
– κ((_:n1, foaf :name, “Tintin”)) = B× {foaf :name} × L.
– Note that

* κ((_:n1, foaf :name, “Tintin”)) = κ((?self , foaf :name, “name”valueOf ))

* (_:n1, foaf :name, “Tintin”) ∈ κ((?self , foaf :name, “name”valueOf ))

– κ((?source, ex:isTeammateOf , ?destination)) = B× {ex:isTeammateOf} × B
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– κ(((?source, ex:isTeammateOf , ?destination), ex:since, “since”valueOf ))
= (B× {ex:isTeammateOf} × B)× {ex:since} × L

Table 8 provides an example of applying κ on the running example context of Table 4.

Remark 4 (κ on terms and triples is, as expected, a super-set of the possible generated values). When comparing
the definition of the κ function with the β functions defined in Section 4.5, it appears that:

– For elements in B, pvars, L and P, the image of κ is equal to the corresponding image set of the β function.
– For elements in I, the image of κ is equal to a singleton containing that element; β maps any IRI to itself.
– If the given term is a triple, the image of κ is the cross product of the application of the κ function to the terms

that compose the RDF triple. As β on triples recursively applies itself to the three terms in the triple, we can
see that ∀β,∀triple, β(triple) ∈ κ(triple).

Therefore, if x is a term or an RDF triple, for any β function, β(x) ∈ κ(x).

Remark 5 (The result of build is, as expected, a subset of the result of κ). The build function, from which prsc
is defined, uses β on each template triple. After β is applied, the union of the singletons containing each triple is
computed. This is similar to the definition of κ on a set of triples.

From Remark 4, it can be deduced that if tps is a set of template triples, ∀pg,∀m, build(tps, pg,m) ⊆ κ(tps).

Remark 6 (A template and its produced values share the same image through κ). When using the κ function, el-
ements in B and pvars both map to B, and elements in L and P both map to L. Elements in I are wrapped into a
singleton and both RdfTriples and Templates apply the function recursively on their members.

When using the β function:

– Elements in pvars map for all PGs pg ∈ BPGs to elements of Npg and Epg, which are both subsets of B.
– Elements in P map to elements in Img(toLiteral), which is a subset of L.
– Elements in L and I are mapped to themselves.
– Elements in Templates apply the β function recursively on their members.

Therefore, ∀tp ∈ Templates, κ(β(tp)) = κ(tp)

As mentioned previously, the role of κ is to allow us to determine whether two template triples with placeholders
may produce the same triple. It maps all placeholders to a super-set 9 of all elements they can generate with the
build function. All RDF Triples are mapped by the κ function to a subset of RdfTriples they are a member of.

Lemma 1. If a triple is generated by a template graph, then there exists a template triple with the same image
through κ.
∀pg ∈ BPGs,∀m ∈ (Npg ∪ Epg),∀tps ⊆ Templates,∀td ∈ build(tps, pg,m),∃tp ∈ tps | κ(td) = κ(tp)

Proof. Per the Definition 21 of build, a triple can only be generated by a template graph by the application of β to
one of its template triples. Per Remark 6, the generated triple and the corresponding template triple have the same
image though κ.

Definition 23 (unique template triple). A template triple tp is unique in a set of template triples if no other template
triple in the set has the same image through κ equal to tp.

It is defined as follows with tp ∈ tps ⊂ Templates:

unique(tp, tps) = (∀tp′ ∈ tps, κ(tp) = κ(tp′)⇔ tp = tp′)

9Note that as κ maps to a super set, it may catch false positives. For example, P can only generate elements in Img(toLiteral), but the κ
function considers that all elements of L can be generated from P. For the scope of this paper, κ catching false positives is considered acceptable,
as we are only trying to prove the reversibility of a given class of contexts, rather than to characterize the whole class of reversible contexts.
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Combined with Remark 6, what unique(tp, tps) tells us is that any triple, with the same image through κ as tp ,
can not have be generated by any other element of tps than tp itself. This leads us to Theorem 1 below.

Theorem 1 (Triples produced by a unique template triple). In the result of the build function, if a data triple and a
unique template triple have the same value through κ, then the data triple must have been produced by this template
triple.
∀pg ∈ BPGs,∀ctx ∈ Ctxpg,∀m ∈ (Npg ∪ Epg), let tps = ctx(typeofpg(m)), ∀td ∈ build(tps, pg,m),∀tp ∈ tps:

unique(tp, tps) ∧ κ(td) = κ(tp)⇒ td ∈ build({tp} , pg,m)

Proof. We prove the theorem by contradiction.
Let us suppose that:

– (A) td ∈ build(tps, pg, b)
– (B1) unique(tp, tps), i.e. (∀tp′ ∈ tps, κ(tp) = κ(tp′)⇒ tp = tp′)
– (B2) κ(td) = κ(tp)
– (C) td ̸∈ build({tp} , pg, b)

td ∈ build(tps− {tp} , pg, b) [(A) and (C)]

⇒∃tdp ∈ tps− {tp} , κ(tdp) = κ(td) [Lemma 1]

⇒∃tdp ∈ tps− {tp} , κ(tdp) = κ(tp) [(B2)]

⇒∃tdp ∈ tps− {tp} , tdp = tp [(B1)]

⇒tp ∈ tps− {tp}

tp can not be a member of the set tps − {tp}, as it explicitly exclude it. As we reached a contradiction, it means
that td ∈ build({tp} , pg, b).

Theorem 1 allows us to link an RDF triple to the unique template triple that produced it. Then by comparing the
terms of the RDF triple to the corresponding placeholders in the template triple, we will be able to reconstruct the
original PG.

5.2.2. Well-behaved PRSC context
In this section, we define a subset of contexts that we call well-behaved PRSC contexts. In the next section, we

will prove that these contexts are reversible.

Definition 24 (Well-behaved contexts). A PRSC context ctx is well-behaved if it conforms to those 3 criteria:
∀type ∈ Dom(ctx), let tps = ctx(type)

1. Element provenance: all generated triples must contain the blank node that identifies the node or the edge it
comes from. This is achieved by using the ?self placeholder in all template triples:

– ∀tp ∈ tps, ?self ∈ tp

2. Signature template triple: tps contains at least one template triple, called its signature and noted signctx(type),
that will produce triples that no other template in ctx can produce. This will allow, for each blank node in the
produced RDF graph, to identify its type in the original PG.

– ∃signctx(type) ∈ tps,∀x ∈ Dom(ctx), κ(signctx(type)) ⊆ κ(ctx(x))⇒ x = type

3. No value loss: for all elements in the PG, we do not want to lose information stored in properties, nor for edges,
the source and destination node. Each of these pieces of information must be present in an unambiguously
recognizable triple pattern.
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– ∀key ∈ keys(type),∃tp ∈ tps | unique(tp, tps) ∧ (key, valueOf ) ∈ tp
– kind(type) = “edge”⇔ ∃tp ∈ tps | unique(tp, tps) ∧ ?source ∈ tp
– kind(type) = “edge”⇔ ∃tp ∈ tps | unique(tp, tps) ∧ ?destination ∈ tp

The set of all well-behaved contexts is Ctx+, and the set of all well-behaved contexts for a PG pg is Ctx+pg.
Ctx+ ⊂ Ctx and Ctx+pg = Ctx+ ∩ Ctxpg.

Remark 7 (Handling multiple signctx candidates). In the case where there are multiple template triples candidates
to become the signature template triple, the choice of the signature template triple among the candidates is generally
not important.

To make the choice deterministic, it could be considered that the chosen signature template triple is the first
in lexicographic order. In the case of the presented algorithms, the choice of the signature template triple is not
important, and will lead to the same output.

Remark 8 (The template graphs used in well-behaved contexts are not empty). A well-behaved context cannot map
a type to an empty template graph: the signature template triple criterion ensures that every template graph contains
at least one template triple: ∀tps ∈ Img(ctx),∃tp ∈ tps⇔ |tps| ⩾ 1.

Remark 9 (Inside a well-behaved context, all template graphs are different from all others). For any well-behaved
context ctx, two types cannot share the same template graph. Indeed, if two types share the same template graph,
i.e. there are two types type1 and type2 with type1 ̸= type2 such that ctx(type1) = ctx(type2), it would contradict
the signature template triple criterion as it would lead to type1 = type2.

Example 19. Table 8 studies the context used in our running example, exposed in Example 12.

Table 8
The running example context with the corresponding values through κ

type ctx(type) κ(ctx(type))

tn1 = (“node”, {“Person”} , {“name”, “job”})
(?self , rdf :type, ex:Person)

(?self , foaf :name, “name”valueOf )

(?self , ex:profession, “job”valueOf )

(B × {rdf :type} × {ex:Person})
∪ (B × {foaf :name} × L)

∪ (B × {ex:profession} × L)

tn2 = (“node”, ∅, {“name”}) (?self , foaf :name, “name”valueOf ) (B × {foaf :name} × L)

te1 = (“edge”, {“TravelsWith”} , {“since”}) (?source, :isTeammateO f , ?destination) (B × {:isTeammateO f} × B)

– The type tn1 matches all criteria of a well-behaved PRSC context:

* All triples contain ?self .
* At least one template triple is a signature: the image through κ of (?self , rdf :type, ex:Person) is not

contained in the image through κ of other types. It is also the case of (?self , ex:profession, “job”valueOf ).
* The properties “name” and “job” have a unique template triple inside κ(ctx(tn1)).

– The type tn2 violates the signature template triple criterion as (?self , foaf :name, “name”valueOf ), its only
template triple, is shared with the type tn1,

– The type te1 violates the element provenance criterion as ?self is missing. It also violates the no value loss
criterion as the term “since”valueOf is missing from any template triple.

For all these reasons, this context is not well-behaved.

Example 20 (A well-behaved context for the running example). Let ctxTTWB be the function described in Table 9. In
this new context, an arbitrary ex:NamedEntity IRI is used to sign the PG nodes that have no labels and only a name,
and a classic RDF reification is used to model the PG edges.

This context is well-behaved:
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Table 9
An example of a complete and well-behaved context for the Tintin Property Graph.

type ctx(type)

(“node”, {“Person”} , {“name”, “job”})
(?self , rdf :type, ex:Person)⋆

(?self , foaf :name, “name”valueOf )

(?self , ex:profession, “job”valueOf )⋆

(“node”, ∅, {“name”})
(?self , foaf :name, “name”valueOf )

(?self , rdf :type, ex:NamedEntity)⋆

(“edge”, {“TravelsWith”} , {“since”})

(?self , rdf :subject, ?source)⋆

(?self , rdf :object, ?destination)⋆

(?self , rdf :predicate, ex:TravelsWith)⋆

(?self , ex:since, “since”valueOf )⋆

– ?self appears in all triples,
– Template triples that are signature are marked with a ⋆. At least one signature triple appears for each type,
– All property keys have a unique template triple.

Listing 3 is the RDF graph produced by the application of the context ctxTTWB on the PG BTT . Each part that starts
with a # denotes the application of a build application to the PG element described in the comment. The elements
are ordered in the same order as their type in Table 9, and the RDF triples and the template triples that produced
them are also in the same order.

Listing 3 The RDF graph produced by the application of the well-behaved context ctxTTWB on the running example PG BTT .
1 # From _:n1
2 _:n1 rdf:type ex:Person .
3 _:n1 foaf:name "Tintin" .
4 _:n1 ex:profession "Reporter" .
5 # From _:n2
6 _:n2 foaf:name "Snowy" .
7 _:n2 rdf:type ex:NamedEntity .
8 # From _:e1
9 _:e1 rdf:subject _:n1 .

10 _:e1 rdf:object _:n2 .
11 _:e1 rdf:predicate _:TravelsWith .
12 _:e1 ex:since 1978 .

Remark 10 (Relationship between the empty PG and the empty RDF graph with well-behaved PRSC context). For
all well-behaved PRSC contexts, the only PG that can produce the empty RDF graph is the empty PG:

∀pg ∈ BPGs, ctx ∈ Ctx+pg, |prsc(pg, ctx)| = 0⇔ pg = pg∅

Indeed, Remark 8 ensures that the template graphs are non-empty. So any application of the build function with
any well-behaved context produces at least one RDF triple. As the produced RDF graph is the union of the graphs
produced by the use of build on each node and edge, the only way to have an empty result is to have no node nor
edge in the property graph.

5.2.3. Complexity analysis and implementation
PRSC well-behaved contexts will be proved to be reversible in Section 5.3, meaning that producing an RDF

graph from them will preserve all information stored in the PG. It is therefore important to be able to determine if
in practice, it is possible to compute if a PRSC context is well-behaved.

Lemma 2. The values through κ of two given terms are either disjoint or equal:
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Proof. Consider any atomic RDF term t:

– If t ∈ I, its value through κ is the singleton composed of the element t. Other terms can not map κ to a
super-set of the singleton {t}, in particular no term can be mapped to I.

– If t ∈ L ∪ P, the value through κ is L. No other term can be mapped to a super-set or a subset of L.
– If t ∈ B ∪ pvars, the value through κ is B. No other term can be mapped to a super-set of a subset of B.

As L, I and B are pairwise disjoint, for two given atomic RDF terms, the value through κ is either disjoint or
equal.

For two given RDF triples composed of atomic terms, their value through κ are equals to the Cartesian product of
the value through κ of the components. As the values through κ of their components are either equals or disjoints,
the values through κ of the triples are also either equals or disjoints. By induction, this is true for any two RDF
triples, even if their subject or object are also triples.

Remark 11 (Implementing κ and complexity analysis). The function κ is defined to return sets, some of them being
infinite sets. While this definition is useful to prove different theorems in this paper, it is not practical from an
implementation perspective.

Let λ and δ be two distinct values that are not members of the set I. We propose below an alternative function
κimpl to be used instead of κ in algorithms:

κimpl(x) =



{κ(triple) | triple ∈ x} if x ∈ RdfTriples ∪ Templates
(κimpl(s), κimpl(p), κimpl(o)) if x = (s, p, o) ∈ RdfTriples ∪ Templates
λ if x ∈ L ∪ P
x if x ∈ I
δ if x ∈ B ∪ pvars

Compared to Definition 22, we replaced:

– the singleton {x} with x, in the case where x ∈ I,
– the sets L and B with two constants λ and δ that are not elements of I,
– the cross product with a simple triple of the values returned for each element of x when x is a triple.

The complexity of the κimpl(x) is:

– For any x that is not a triple nor a graph, calls to this function can be done in constant time, by simply checking
the type of x.

– When x is a triple, calls to this function involves recursive calls up to the depth of x, which we consider to be
bounded by a constant (see Section 4.6.2). So it is also done in constant time.

– When x is a graph, calls to this function involves calling κimpl on each triple of the graph. As the call on a
triple is constant, the call on the graph x has a linear complexity depending on the size of the graph.

Note that:

– For two triples, checking if their value through κimpl are equals can be done in constant time.
– Thanks to Lemma 2, checking if the value through κimpl of a triple t is included in the value through κimpl of a

graph tps can be done in linear time by iterating on each triple tp of the graph tps and comparing the values
through κimpl of the triples t and tp.

Remark 12 (Complexity of checking if a PRSC context is a well-behaved). The first task to check if a context ctx
is well-behaved consists in computing the value through κ of all triples used in it. As the depth of a template triple
is considered to be negligible, the complexity is the number of template triples, bounded to the number of types
multiplied by the size of the biggest template graph: O(NbTypes ∗ BiggestTemplateSize).

After the value through κ of all template triples have been computed, for each type, we need to check if the type
complies with the three criterion exposed in the Definition 24.
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– The element provenance criterion consists in checking if ?self is in all templates triples of all type. This task
has anO(1) complexity for each template triple and an overall O(NbTypes∗BiggestTemplateSize) complexity
for the whole context.

– The signature template triple consists in checking if there is at least one signature template triple in the
template graph of all types, i.e. checking if the value through κ of one of the template triples of each type
is not contained in the set of the value through κ of the other types template graph. As hash sets make the
membership check constant, this task has an O(NbTypes) complexity for a single template triple candidate,
and an overall O(NbTypes ∗ BiggestTemplateSize ∗ NbTypes) for the whole context.

– For a given type, checking the no value loss criterion consists in checking if a unique template triple can be
found in the template graph for each placeholder, i.e. a placeholder corresponding to each property keys in the
type; and if the PG element is an edge, the ?source and ?destination placeholders must also be found. Thanks
to hash sets, checking if a template triple is unique inside its template graph is constant. Implementing the test
by following the definition leads to an O(TypeComplexity ∗ BiggestTemplateSize) complexity for each type
and an O(NbTypes ∗ TypeComplexity ∗ BiggestTemplateSize) complexity for the whole context.

The final complexity of checking if a context is a well-behaved PRSC context is:

O(NbTypes ∗ BiggestTemplateSize ∗ (NbTypes + TypeComplexity))

5.3. Reversion algorithm

Algorithm 2 aims to convert an RDF graph, that was produced from a PG and a known well-behaved context,
into the original PG.

It is a four steps algorithm: 1) it finds the elements of the PG, by assuming they are the same as the blank node
in the RDF graph, 2) it gives a type to all PG elements with the FindTypeOfElements function in Algorithm 310,
3) it assigns each triple to a single PG element, corresponding to the production of the build function, with the
AssociateTriplesWithElements function in Algorithm 4, and 4) it looks for the source, destination and properties of
all elements with the buildpg function in Algorithm 5.

Further subsections prove that for all ctx ∈ Ctx+, for all PGs pg, applying these algorithms to rdf = prsc(pg, ctx)
actually produces pg, meaning that the reversion algorithm is a sound and complete implementation of prsc−1 for
well-behaved contexts. Applying this algorithm to an arbitrary RDF graph and/or an arbitrary context is out of the
scope of this paper.

5.3.1. Finding the elements of the PG
The first step of the algorithm relies on the assumption that the blank nodes of the RDF graph and the elements

of the original PG are the same.

Algorithm 2: The main algorithm to convert back an RDF graph into a PG by using a context

Input: rdf ⊂ RDFTriples, ctx ∈ Ctx+

Output: A BPG or error
1 Main Function RDFToPG(rdf , ctx):
2 Elements← BNodes(rdf )
3 typeof ← FindTypeOfElements(rdf , ctx,Elements)
4 builtfrom← AssociateTriplesWithElements(rdf ,Elements, typeof )
5 return buildpg(ctx,Elements, typeof , builtfrom)

10To help the comprehension of Algorithm 3, we recall that for a given set A, the mathematical notation ∃!a ∈ A, somepredicate(a) means
that in the set A, there is one and only one element, denoted by a, that matches somepredicate. By extension, ∃!a ∈ A means that there is one
and only one element in the set A that is denoted by a.
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Algorithm 3: Associate the elements of the future PG with their types
Input: rdf ⊂ RDFTriples, ctx ∈ Ctx+,Elements = BNodes(rdf )
Output: A mapping between Elements and Dom(ctx) or error

1 Function FindTypeOfElements(rdf , ctx, Elements):
2 typeof ← {}
3 forall element m ∈ Elements do

/* Find possible types */

4 candtypesnodes ← {}
5 candtypesedges ← {}
6 forall triple t ∈ rdf | m ∈ t do
7 forall type ∈ Dom(ctx) do
8 if κ(signctx(type)) = κ(t) then
9 if kind(type) = “node” then

10 candtypesnodes ← candtypesnodes ∪ {type}
11 else
12 candtypesedges ← candtypesedges ∪ {type}

/* Choose a type */

13 if (∃!type ∈ candtypesnodes) or (∃!type ∈ candtypesedges and candtypesnodes = ∅) then
14 typeof (m)← type
15 else
16 raise Error(No type found)

17 return typeof

Algorithm 4: Associate each triple to the element that has produced it
Input: rdf ⊂ RDFTriples,Elements = BNodes(rdf ), typeof : Elements 7→ Type
Output: A mapping Elements→ 2RdfTriples or error

1 Function AssociateTriplesWithElements(rdf ,Elements, typeof ):
2 builtfrom← {}
3 forall b ∈ Elements do builtfrom(b)← {}
4 forall td ∈ rdf do
5 bns← {term ∈ td | term ∈ B}
6 if (∃!b ∈ bns) or (∃!b ∈ bns | kind(typeof (b)) = “edge”) then
7 builtfrom(b)← builtfrom(b) ∪ {td}
8 else

/* No blank node in bns, or multiple PG nodes but no PG edges, or multiple PG

edges */

9 raise Error(No element provenance)

10 return builtfrom
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Algorithm 5: Produce a PG from the previous analysis of the elements and triples.

Input: ctx ∈ Ctx+,Elements ⊂ B, typeof : Elements→ Type, builtfrom : Elements→ 2RdfTriples

Output: A BPG or error
1 Function buildpg(ctx,Elements, typeof , builtfrom):
2 g is initialized to the empty PG
3 forall b ∈ Elements do
4 labelsg(b)← labels(typeof (b))
5 if kind(typeof (b)) = “edge” then
6 srcg(b)← extract(?source, builtfrom(b), ctx(typeof (b)))
7 destg(b)← extract(?destination, builtfrom(b), ctx(typeof (b)))
8 Ng ← Ng ∪ {srcg(b), destg(b)}
9 Eg ← Eg ∪ {b}

10 else
11 Ng ← Ng ∪ {b}
12 forall key ∈ keys(typeof (b)) do
13 propertiesg(b, key)← extract(key, builtfrom(b), ctx(typeof (b)))

14 return g

15 Function extract(placeholder, tds, tps):
16 values← {}
17 forall tp ∈ tps | unique(tp, tps) ∧ placeholder ∈ tp do
18 samekappa← {td ∈ tds | κ(td) = κ(tp)}
19 if ∥samekappa∥ ≠ 1 then raise Error(Unique data triple is not unique)
20 td ← the only element in samekappa
21 answer ← The term from td that is at the same place as placeholder in tp
22 values← values ∪ {answer}
23 if |values| ≠ 1 then raise Error(Not exactly one value for a placeholder)
24 answer ← The only member of values
25 if placeholder ∈ P then
26 return toLiteral−1(answer)
27 else
28 return answer

Theorem 2 (Equality between the elements of a PG and the blank nodes of the RDF graph). If the RDF graph rdf
has been produced from a PG pg and a PRSC well-behaved context ctx, then the set of all blank nodes of rdf is the
set of PG elements of pg.

∀pg ∈ BPGs, ctx ∈ Ctx+pg, rdf = prsc(pg, ctx),Npg ∪ Epg = BNodes(rdf )

Proof.

– The build function, described in Section 4.5, produces specific triples depending on the given template. The
template graphs cannot contain blank nodes: the blank node produced by prsc are forced to be the elements
of the converted BPG. So BNodes(rdf ) ⊆ Npg ∪ Epg.
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– From Remark 8, we know that ctx(typeofpg(m)) contains at least one triple pattern tp. Combined with the
element provenance criterion from Definition 24-1, we know that ?self ∈ tp. When β is applied to tp, a triple
that contains m is forced to appear, meaning that Npg ∪ Epg ⊆ BNodes(rdf ).

Theorem 2 proves the correctness of the Elements← BNodes(rdf ) step in Algorithm 2.

5.3.2. Finding the type related to each element
In this part of the proof, we show that the FindTypeOfElements function from Algorithm 3 is correct, i.e. it is able

to find back the right type of all elements m in the original pg graph.

Lemma 3. If a data triple shares the same value through κ as one of the signature triples of a type (Definition 24-2),
then the element from which the data triple was produced must be of this type:

∀td ∈ rdf ,∀type ∈ Dom(ctx),∀m ∈ Npg ∪ Epg,

[κ(td) = κ(signctx(type)) ∧ td ∈ build(ctx(typeofpg(m)), pg,m)]⇒ typeofpg(m) = type

Proof. ∀td ∈ rdf ,∀type ∈ Dom(ctx),∀m ∈ Npg ∪ Epg

Assuming (A) κ(td) = κ(signctx(type))

td ∈ build(ctx(typeofpg(m)), pg,m)

⇒ ∃tp ∈ ctx(typeofpg(m)) | κ(td) = κ(tp) [Lemma 1]

⇒ ∃tp ∈ ctx(typeofpg(m)) | κ(signctx(type)) = κ(tp) [A]

⇒ ∃tp ∈ ctx(typeofpg(m)) | κ(signctx(type)) = κ(tp) ⊆ κ(ctx(typeofpg(m)))

[
tp ∈ ctx(typeofpg(m))

and by construction of κ

]
⇒ typeofpg(m) = type

[
Signature template triple

in Definition 24-2

]

Definition 25 (Formalizing candtypes). For a given blank node/PG element b, candtypesnodes and candtypesedges,
introduced in Algorithm 3, can be formally defined as:

candtypesnodes(b) = {type ∈ Dom(ctx) | kind(type) = “node”

∧∃td ∈ rdf | b ∈ td ∧ κ(signctx(type)) = κ(td)}

candtypesedges(b) = {type ∈ Dom(ctx) | kind(type) = “edge”

∧∃td ∈ rdf | b ∈ td ∧ κ(signctx(type)) = κ(td)}

They give the set of all node types and edge types, respectively, for which one of their signature triple could have
produced a triple with b.

Theorem 3 (candtypes correctness). Even though the candtypes functions are defined by only used the used context
and the produced RDF graph, they can be used to compute the type of any blank node in the original PG:

– ∀b ∈ Npg, candtypesnodes(b) = {typeofpg(b)}
– ∀b ∈ Epg, candtypesnodes(b) = ∅ and candtypesedges(b) = {typeofpg(b)}.
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Table 10
A simple view of Theorem 3

|candtypesnodes(b)|
∣∣candtypesedges(b)

∣∣
b ∈ Npg 1 any

b ∈ Epg 0 1

Table 10 provides an overview of the cardinality of the different candtypes sets.

Proof.

∀b ∈ BNodes(rdf ),∀type ∈ candtypesnodes(b)
Per Definition 25, kind(type) = “node” ∧ ∃td ∈ rdf | b ∈ td ∧ κ(signctx(type)) = κ(td).
We are going to restrict the portion of the graph rdf where such triples td may be located:

td ∈ rdf

⇔ td ∈
⋃

m∈Npg∪Epg

build(ctx(typeof (m)), pg,m) [Definition of rdf / prsc]

⇒ td ∈
⋃

m∈Npg∪Epg|typeof (m)=type

build(ctx(type), pg,m)

[
κ(td) = κ(signctx(type))

and Lemma 3

]

⇒ td ∈
⋃

m∈Npg|typeof (m)=type

build(ctx(type), pg,m) [kind(type) = “node”]

– We see that all triples td contributing to candtypenodes(b) must have been produced by the signature triple
template applied to a node from the PG. Also remember that td must contain b.

– If b ∈ Npg, then the signature triple of ctx(typeofpg(b)) must have generated a td containing b (since it
must contain ?self , according to Definition 24-1), so typeofpg(b) ∈ candtypenodes(b). Furthermore, no other
node can produce a td containing b (?self is the only blank node placeholder in node type templates), so
candtypenodes(b) can not contain any other type. Therefore candtypenodes(b) = {typeofpg(b)}.

– If b ∈ Epg, it is impossible to produce the blank node b from any node m ∈ Npg (again, ?self is the only blank
node placeholder in node type templates). No td containing b can be found, so candtypesnodes(b) is empty.

The reasoning for candtypesedges(b) when b is an edge is similar to the one for candtypesnodes(b) when b is a
node: only b can produce triples containing itself, and it will, because having at least one signature triple with ?self
is imposed by Definition 24. So candtypeedges = {typeofpg(b)}.

Finally, a blank node b ∈ Npg can appear in any number of triples that share the same value through κ with an
edge signature template triple: an edge signature template triple can contain ?source or ?destination, that can be
mapped to any node depending on the PG. So candtypeedges(b) can contain an arbitrary number of types in that
case.

Remark 13. Theorem 3 not only shows that the FindTypeOfElements function in Algorithm 3 will always find the
right typeofpg function by using candtypes, i.e. that it is computable from rdf and ctx, but Table 10 also explicitly
shows that the Error(No type found) scenario can not appear if the RDF graph was produced from a PG, making the
FindTypeOfElements function both sound and complete.

Remark 14 (Using different signatures to determine the types). As mentioned previously, the choice of the signature
template triple signctx(type) of a given type is not important for the reversion algorithm. Choosing one or another
signature template triple only leads to other data triples being used to determine the type of the elements. However,
the end result does not change.



28 J. Bruyat et al. / PRSC

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

5.3.3. Finding the generated triples for each PG element
For each PG element, given the produced RDF graph and the type of this PG element, we are able to compute the

list of RDF triples produced from this PG element. In other words, Algorithm 4 correctly partitions the RDF graph
into sub-graphs describing each element of the original PG.

Theorem 4. In Algorithm 4, assuming that the passed value of typeof is equal to typeofpg, ∀m ∈ Npg ∪
Epg, build(ctx(typeofpg(m)), pg,m) = builtfrom(m).

Proof. As rdf =
⋃

m∈Npg∪Epg
build(ctx(typeof (m)), pg,m), each triple td ∈ rdf is a member of at least one

build(ctx(typeof (m)), pg,m). For all triples td ∈ build(ctx(typeof (m)), pg,m), the element provenance criterion
ensures that m ∈ td. So the first step that consists in listing in the set bns the blank nodes in td, and consider that m
is part of the set bns is correct: the actual element m is in the set.

The algorithm associates each triple td with a single builtfrom(m):

– Let’s first recall that blank nodes in rdf can only be produced via the placeholders from pvars: ?self , ?source,
and ?destination. Let’s also recall that every triple pattern in the Well-behaved context ctx must contain ?self
(per the element provenance criterion).

– If bns contains only one blank node m, then m must come from ?self , and the corresponding triple pattern
must then belong to ctx(typeof (m)). td must then have been produced by build(ctx(typeof (m)), pg,m) so
putting it in builtfrom(m) is correct.

– If bns contains multiple blank nodes, td must have been produced by a template triples with several place-
holders from pvars.

* Node template graphs can contain only one placeholder from pvars: ?self . No m ∈ Npg could then have
produced td. It follows that td must have been produced by the template graph of an edge.

* Edge template graphs can contain several placeholders from pvars. But by definition of β, only ?self
can be mapped to an edge (when m ∈ Epg); ?source and ?destination are always mapped to nodes. Of
the multiple blank nodes in bns, exactly one of them, m, must therefore be an edge, and come from
?self . Following the same reasoning as above, when bns contained only one blank node, we conclude
that td must then have been produced by build(ctx(typeof (m)), pg,m) and that putting it in builtfrom(m)
is correct.

– Error(No element provenance) will never be raised if rdf was produced by prsc: each triple will contain at
least one blank node generated from ?self (per the element provenance criterion), and if there are multiple
blank nodes we showed that there must be only one edge blank node.

As each triple in rdf is attributed in builtfrom(m) to the right element m that produced it from
build(ctx(typeofpg(m)), pg,m), ∀m ∈ Npg ∪ Epg, builtfrom(m) = build(ctx(typeofpg(m)), pg,m).

5.3.4. Building the PG element
Projecting Property Graphs As an RDF graph is defined as a set of RDF triples, any subset of that set, as well
as the union of two RDF graphs, are formally defined and are also RDF graphs. Algorithm 5 constructs back the
original PG in an iterative manner. To prove its correctness, we need operators similar to ⊂ and ∪ for RDF graphs,
but for our formalization of PGs.

In this section, the projection of a Property Graph is defined by focusing only on a single PG element, node or
edge. The concept of merging PGs, which is the inverse of the projection, is also defined.

Let pg be a PG.

Definition 26 (π projection of a Property Graph on an element). The π projection of a PG on a node is equal to the
PG with only the node itself. The π projection of a PG on an edge is the edge, and its source and destination nodes
without the labels and properties of these nodes.
∀m ∈ Npg ∪ Epg, πm(pg) is a PG such as:
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– If m ∈ Npg, Nπm(pg) = {m} , Eπm(pg) = ∅, srcπm(pg) = destπm(pg) = ∅ → ∅
– If m ∈ Epg, Nπm(pg) = {srcpg(m), destpg(m)} , Eπm(pg) = {m}, srcπm(pg) = {m 7→ srcpg(m)}, destπm(pg) =
{m 7→ destpg(m)}

– ∀x ∈ Nπm(pg) ∪ Eπm(pg), labelsπm(pg)(x) =
{

labelspg(x) if x = m
∅ otherwise

– ∀key ∈ keyspg(m), propertiesπm(pg)(m, key) = propertiespg(m, key), all other values are undefined.

Definition 27 (Property Graph merge operator ⊕). The merge operator ⊕ is the inverse of the projection operator
π. It can only be used on two PGs that are compatible, i.e. (1) a PG element defined as a node is not defined as an
edge in the other, (2) an edge defined in both PGs have the same source and destination in both, and (3) if in both
PGs, the value of a property key on the same PG element is defined, the values should be the same. The ⊕ operator
builds a PG with the PG elements, labels and properties of both PGs.

We now define the ⊕ merge operator on property graphs. ∀(pg′, pg′′) ∈ PGs2,⊕(pg′, pg′′) (or pg′ ⊕ pg′′) is
defined only if:

– Epg′ ∩ Npg′′ = ∅ ∧ Npg′ ∩ Epg′′ = ∅
– srcpg′ is compatible with srcpg′′ and destpg′ is compatible with destpg′′ (see compatibility definition in Sec-

tion 3.2).
– propertiespg′ is compatible with propertiespg′′ .

Its value is ⊕(pg′, pg′′) = pg with:

– Npg = Npg′ ∪ Npg′′

– Epg = Epg′ ∪ Epg′′

– srcpg : Epg → Npg, srcpg = srcpg′ ∪ srcpg′′ .
– destpg : Epg → Npg, destpg = destpg′ ∪ destpg′′ .

– ∀m ∈ Npg ∪ Epg, labelspg(m) =

labelspg′(m) ∪ labelspg′′(m) if both are defined
labelspg′(m) if only labelspg′(m) is defined
labelspg′′(m) if only labelspg′′(m) is defined

– propertiespg : (Npg ∪ Epg)× Str → V , propertiespg = propertiespg′ ∪ propertiespg′′ .

Lemma 4. ⊕ is commutative, associative, and the neutral element is the empty PG pg∅

Proof. (Sketch) ⊕ is defined by using the ∪ operator, which is commutative, associative and whose neutral element
is ∅. The equivalent of ∅ for PGs is pg∅.

Theorem 5. The
⊕

merge of the π projection of a PG on all its PG elements is equal to the PG itself:

∀pg ∈ PGs, pg =
⊕

m∈Npg∪Epg

πm(pg)

Proof. The proof is provided in Appendix A.

While the ⊕ operator has been primarily designed as the inverse operation of the projection operator π, it can
only merge two PG that are consistent between themselves. If a PG defines an entity as a node, the other PG can not
define it as an edge. If a PG has a given source and destination for a given edge, the other one can not define another
source or destination. Properties must also be consistent in both PGs. The presented version of the merge operator
can only add information, and in the case merging two PGs would lead to an inconsistent PG, the merge operator is
undefined.
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Relationship between the prsc function and projections We are now going to redefine the prsc function using the
π operator.

The RDF graph built by prsc from a PG pg with a context ctx is equal to:

rdf =
⋃

m∈Npg∪Epg

build(ctx(typeofpg(m)), pg,m)

The build function is defined in such a way that the RDF triples it produces from an element m are only influenced
by:

– m itself.
– Its labels, i.e. labelspg(m).
– Its property values, i.e. ∀key, propertiespg(m, key).
– If m is an edge, its source and destination nodes, i.e. srcpg(m) and destpg(m).
– The template graph ctx(typeofpg(m)).

Therefore the following equality can be asserted, ∀pg ∈ BPGs,∀m ∈ Npg ∪ Epg,∀ctx ∈ Ctxpg:

build(ctx(typeofpg(m)), pg,m) = build(ctx(typeofpg(m)),πm(pg),m)

πm(pg) can be considered as the minimal required Property Graph to produce the RDF triples related to the
element m in the PG pg. If we can prove that the reversion algorithm constructs all πm(pg) graphs and merges them
with the ⊕ operator, then it means that we have properly reconstructed the pg PG.

Completing the proof of the reversion algorithm We are now back to proving that for all well-behaved contexts
ctx, the RDFToPG function presented in Algorithm 2 is an implementation of the prsc−1 function. pg is a PG for
which we know the value of prsc(pg, ctx) = rdf . We are focusing on the last line of Algorithm 2, where the buildpg
function is invoked.

To prove the correctness of the buildpg function in Algorithm 5, starting from an empty PG g, we are going to
show that at each iteration, we are adding to the PG g the π projection of pg on an element m. After iterating on all
elements, as we merged the π projection of all PG elements, the PG g ends up being equal to the PG pg itself.

Lemma 5 (Merging the projection of one PG element to the reconstructed PG). In Algorithm 5, assuming that
the typeof parameter is equal to typeofpg and buildfrom is a total function that maps all PG elements b to
build(ctx(typeofpg(b)), pg, b), at the end of an iteration of an element b ∈ Npg ∪ Epg after line 13, the computed PG
gafter is equal to gbefore ⊕ πb(pg), where gbefore is the PG g at the beginning of the iteration between lines 3 and 4.

Proof. The PG πb(pg) is described in Table 11. Bold values are the ones for which we need to prove that we compute
the correct value: srcg(b), destg(b) and propertiesg(b, key). Other values are trivially correct by construction.

Table 11
Description of the PG projection that is built in Algorithm 5

b ∈ Npg b ∈ Epg

Nπb(pg)) {b} Img(srcπb(pg)) ∪ Img(destπb(pg))

Eπb(pg) ∅ {b}
srcπb(pg) ∅ → ∅ b 7→ srcg(b)
destπb(pg) ∅ → ∅ b 7→ destg(b)

b ∈ Npg ∪ Epg

labelsπb(pg) {b 7→ labels(type)}
propertiesπb(pg)

⋃
key∈keys(type) {(b, key) 7→ propertiesg(b, key)}

In the following, we want to check that extract(?source, build(πb(pg), pg, b), ctx(typeof (b))) properly returns
srcπb(pg). Proofs for ?destination / destπb(pg) and key ∈ keystypeofpg(b) / propertiesπb(pg)(b, key) are identical.
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The values set is filled by iterating on all tp such that unique(tp, tps) ∧ ?source ∈ tp. The no value loss criterion
ensures that at least one such template triple exists, so the loop in extract is iterated at least once.

Theorem 1 ensures that the built set samekappa in the loop of the extract function will always have 1 element,
that we name td. Error(Unique data triple is not unique) may never be raised if rdf was produced by PRSC. By
definition of the build function, ?source in tp and srcπb(pg) in td are at the same position.

After the loop, because only srcπb(pg) is added to values in the loop, Error(Not exactly one value for a placeholder)
may never be raised.

The last instructions differ for ?source / ?destination and P. In the case of ?source and ?destination, the obtained
value is directly the value of the PG node; in the case of P, the obtained RDF literal needs to be converted into the
proper PG property value, which is possible because toLiteral−1 is assumed to be computable in Section 4.5.

extract properly computes the values that are missing in πb(pg). When these values are extracted, they are directly
merged with the ∪ operator into the g property graph. Values that were already known or can be computed from the
values that were just extracted, i.e. labelsπm(pg) , Nπm(pg) and Eπm(pg), are also merged into g.

As all values of πb(pg) are merged into gbefore, gafter = gbefore ⊕ πm(pg)

Remark 15 (Completeness of buildpg). In the case where rdf is built from a PG pg, the value that a placeholder
is mapped to is the same everywhere, so we never run at the risk of encountering multiples values, i.e. Error(Not
exactly one value for a placeholder) is never raised. Furthermore, the proof of Lemma 5 shows that Error(Unique
data triple is not unique) may not be raised, because we know that each unique template triple has produced one
data triple.

Theorem 6 (Merging the projection of all PG elements to the reconstructed PG). Under the same assumptions as
Lemma 5, the PG returned by Algorithm 5 is the original pg, the PG that was used to produce the RDF graph
rdf = prsc(pg, ctx) .

Proof. The PG g in the algorithm is initialized to pg∅. Lemma 5 shows that after each iteration in the loop with an
element b, the PG g is ⊕-merged with the PG πb(pg). The loop iterates on all elements in the PG pg, so after all the
iterations, the PG g is equal to:

g = pg∅ ⊕
⊕

b∈Npg∪Epg

πb(pg)

=
⊕

b∈Npg∪Epg

πb(pg) [pg∅ is the neutral element of ⊕]

= pg [Theorem 5]

As buildpg in Algorithm 5 correctly reconstructs pg, and as its value is directly returned by the RDFToPG function
in Algorithm 2, we have finally proven that the latter is a sound and complete implementation of the prsc−1 function
for any well-behaved PRSC context ctx.

5.3.5. Complexity analysis
Let us now discuss the complexity of the RDFToPG function described in Algorithm 2. In this discussion, a new

metric is considered: the number of triples in the RDF graph: NbTriples = |rdf |. It is assumed that we have first
checked if the context ctx is a well-behaved PRSC context, and computed the signctx function so it can now be called
in constant time.

Extracting the list of blank nodes of an RDF graph on line 2 has a linear complexity of O(NbTriples).
The FindTypeOfElements function in Algorithm 3 uses three nested loops and only uses constant time operations:

its complexity is O(NbOfPGElements ∗ NbTriples ∗ NbTypes).
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Trivially, Algorithm 4 has a complexity of O(NbOfPGElements + NbTriples).
In Algorithm 5:

– Calls to extract(placeholder, tds, tps) have a complexity of O(|tps|2 ∗ |tds|):

* It loops all triples in the template graph tps such that they are unique. Evaluating unique(tp, tps) itself
has an O(|tps|) complexity so the overall complexity of evaluating all tp ∈ tps | unique(tp, tps) is
O(|tps|2).

* Inside the loop, building the samekappa set forces to loop on all tds, multiplying the complexity by a
|tds| factor.

In the context of the buildpg function, the extract function is always called with a template graph tps from the
PRSC context and a sub-graph of the RDF graph rdf as tds. the complexity of the calls of the extract function
in the buildpg function is O(BiggestTemplateSize2 + NbTriples)11.

– The buildpg function loops on all PG elements.

* Notice that while ctx(typeof(b)) is called multiple times, it can be called once and then its value can be
cached. Its cost is O(TypeComplexity ∗ ln(TypeComplexity)) as mentioned in Section 4.6.3.

* There are at most 2 + TypeComplexity calls of the extract function. All of them have a
O(BiggestTemplateSize ∗ NbTriples) complexity.

* The complexity of each iteration is O(TypeComplexity ∗ ln(TypeComplexity) + TypeComplexity ∗
BiggestTemplateSize2 ∗ NbTriples))

– The overall complexity of the buildpg function is
O(NbOfPGElements ∗ TypeComplexity ∗ (ln(TypeComplexity) + BiggestTemplateSize2 ∗ NbTriples))

The overall complexity of the RDFToPG function presented in Algorithm 2 presented in this section for an RDF
graph produced from a PG and a well-behaved PRSC context is:

O(NbTriples

+ NbTypes ∗ NbTriples ∗ BiggestTemplateSize

+ NbOfPGElements + NbTriples

+ NbOfPGElements ∗ TypeComplexity ∗ (ln(TypeComplexity) + BiggestTemplateSize2 ∗ NbTriples))

=O(NbTypes ∗ NbTriples ∗ BiggestTemplateSize

+ NbOfPGElements ∗ TypeComplexity ∗ (ln(TypeComplexity) + BiggestTemplateSize2 ∗ NbTriples))

The RDFToPG function is computable in polynomial time w.r.t. all the considered metrics, and is therefore
considered as tractable. Furthermore, in our implementation, the algorithm has been optimized to significantly lower
the complexity. However, for the sake of concision, we do not describe these optimizations in this paper.

5.4. Edge-unique extension

In many cases, there is only one edge of certain types between two nodes, like the “TravelWith” edge in our
running example or for relationships like knowing someone, a parental relationship. . . For this type of edges, it is
more intuitive to represent them with a simple RDF triple, and get rid of the blank node corresponding to the edge.
However, Well-Behaved PRSC contexts require ?self in edge templates. In this section, we propose an extension to
allow ?self to be missing in edge templates and still produce reversible conversions.

11Note that if rdf has been generated by the prsc function, the number of triples in the graph tds is inferior or equal to the number of triples
in the template graph tps as tds has been generated from tps. In this case, the complexity of calling extract in the context of the buildpg function
is O(BiggestTemplateSize3).
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Table 12
A context for the Tintin PG with the “since" property

type ctx(type)

(“node”, {“Person”} , {“name”, “job”})
(?self , rdf :type, ex:Person)

(?self , foaf :name, “name”valueOf )

(?self , ex:profession, “job”valueOf )

(“node”, ∅, {“name”}) (?self , foaf :name, “name”valueOf )

(“edge”, {“TravelsWith”} , {“since”})
(?source, ex:isTeammateOf , ?destination)

((?source, ex:isTeammateOf , ?destination), ex:since, “since”valueOf )

Consider the Tintin PG exposed in Figure 1 and the context exposed in Table 12, which uses RDF-star to convert
the “since” property. The output of PRSC from those two inputs is exposed in Listing 4. By looking at the produced
RDF graph, it appears that the RDF graph captures all the information of the PG. More generally, RDF graphs pro-
duced by this context would always be reversible as long as the source PG does not contain multiple “TravelsWith”
edges between two given nodes.

Listing 4 The output of PRSC for the Tintin PG and the context exposed in Table 12
1 % Tintin node
2 _:n1 rdf:type ex:Person .
3 _:n1 foaf:name "Tintin" .
4 _:n1 ex:profession "Reporter" .
5 % Snowy node
6 _:n2 foaf:name "Snowy" .
7 % TravelsWith edge
8 _:n1 ex:isTeammateOf _:n2 .
9 << _:n1 ex:isTeammateOf _:n2 >> ex:since 1978 .

Definition 28 (Edge-unique extension).
a) In a context ctx, an edge-unique type edgeunq is an edge type such that:

– ctx(edgeunq) complies with the no value loss criterion (as per Definition 24-3) and is not empty.
– For all template triples tp ∈ ctx(edgeunq):

* ?source ∈ tp and ?destination ∈ tp
* tp is a signature template triple (as per Definition 24-2), i.e. no other type has a template triple that

shares its value through κ.
* tp is a unique template triple, i.e. no other template triple in ctx(edgeunq) shares its value through κ.

b) A PG pg is said edge-unique valid for a context ctx if for all edge-unique types in the context, there is at most
one edge of this type between two given nodes:

∀e ∈ Epg, typeofpg(e) is an edge-unique type⇒(∀e′ ∈ Epg,

 typeofpg(e) = typeofpg(e′)
∧ srcpg(e) = srcpg(e′)
∧ destpg(e) = destpg(e′)

⇒ e = e′)

c) The prscEdgeUnique function is introduced to serve as a proxy to the prsc function to be applied only if the
given PG is edge-unique valid relatively to the given context:

prscEdgeUnique(pg, ctx) =
{

prsc(pg, ctx) if pg is edge-unique valid for ctx
undefined otherwise
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Theorem 7 shows that prscEdgeUnique is reversible up to an isomorphism.

Theorem 7. Let ctx be a context such that each type either a) matches the constraints of a type in a well-behaved
PRSC context in Definition 24 or b) is an edge-unique type.

– For every two BPGs, pg′ and pg′′, such that prscEdgeUnique(pg′, ctx) = prscEdgeUnique(pg′′, ctx), pg′ and
pg′′ are isomorphic.

– There is an algorithm such that for all BPGs pg, from the RDF graph prscEdgeUnique(pg, ctx) and the context
ctx, the algorithm computes a PG pg′ such that prscEdgeUnique(pg, ctx) = prscEdgeUnique(pg′, ctx), i.e.
from the produced RDF graph and the context, it is possible to compute a PG that is isomorphic to the
original one.

Proof. (Sketch) The context ctx is composed of two parts: a) the well-behaved part and b) the edge-unique part. The
well-behaved part has been proved to be reversible. As template triples used for edge-unique types are signatures,
their value trough κ is different from the triples produced from the value through κ of the triples of the well-behaved
part: triples produced from edge-unique types are distinguishable from the rest of the RDF graph.

Denote W the set of all types in the well-behaved part and U the types in the edge-unique part. Let pg be a PG
such that rdf = prscEdgeUnique(pg, ctx) exists. It is possible to split pg using W and U:

pg =
⊕

m∈Npg∪Epg|typeofpg(m)∈W

πm(pg)

︸ ︷︷ ︸
pgW

⊕
⊕

u∈Epg|typeofpg(u)∈U

πu(pg)

︸ ︷︷ ︸
pgU

It is also possible to split rdf by defining an isWellBehaved predicate that uses κ to filter triples that come from
types in the well-behaved part:
∀td ∈ RdfTriples, isWellBehaved(td)⇔ ∃type ∈ W,∃tp ∈ ctx(type), κ(td) = κ(tp).

rdf = {td ∈ rdf | isWellBehaved(td)}︸ ︷︷ ︸
rdfW

∪{td ∈ rdf | ¬isWellBehaved(td)}︸ ︷︷ ︸
rdfU

From all the theorems on well-behaved contexts, there is a bijection between pgW and rdfW .
All template triples used in the template graph of edge-unique types are both signature and unique: from any

triple in rdfU , it is possible to find which template triple produced it. Consider an arbitrary edge u, whose type is an
edge-unique type, i.e. typeofpg(u) ∈ U. As edge-unique template graphs must also comply with the no value loss
criterion, all properties, the source node and the destination node of u can be found in a non-ambiguous manner in
rdfU . The only missing information is the edge identity, i.e. the blank node u itself.

By using a fresh blank node for u, it is possible to build a PG isomorphic to πu(pg) from rdfU , by extension, a PG
isomorphic to pgU from rdfU , and by extension a PG isomorphic to pg from rdf .

5.5. Discussion about the constraints on well-behaved PRSC contexts

In this section, we discuss the acceptability of the different constraints posed by PRSC well-behaved contexts in
terms of usability. In other words, to what extent do they limit what can be achieved with PRSC?

The no value loss criterion on well-behaved contexts ensures that the data are still present and can be found
unambiguously: as its name implies, this constraint is obviously required to avoid information loss. Therefore, it
should not be perceived as overly constraining when building PRSC contexts.

The signature template triple is a method to force the user to type the resources, which is usually considered to
be good practice. The type can either be explicit, through a triple with rdf :type as the predicate, or implicit through
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a property that is only used by this type. For example, the template graph for a type Person could contain a template
triple for the form (?self , :personId, “pid”valueOf ). The constraint of a signature composed of only one triple can be
considered too strong: one may want to write a context that works for all PGs. For example, many authors [8, 14]
propose to map each label to an RDF type or a literal used as the object of a specific predicate like pgo:label.
More generally, users may want to use a composite key to sign their types. For these kinds of mappings, our ap-
proach of identifying the type by finding a single signature template is not sufficient. It requires finding all the
signature template triples and deciding to which type they are associated, for example through a Formal Concept
Analysis process. This could be studied as a future extension of the PRSC reversion algorithm.

The element provenance constraint may hinder the integration of RDF data coming from a PG with regular
RDF data: it forces the user to keep the structure exposed in the PG, with blank nodes representing the underlying
structure of the PG. The edge-unique extension enables to leverage this constraint, by avoiding representing PG
edges as RDF nodes.

6. Related works

Many works already exist to address the interoperability between PGs and RDF.

A common pivot for PGs and RDF To achieve interoperability, some authors propose to store the data into an-
other data model, and then expose the data through usual PG and RDF APIs. Angles et al. propose multilayered
graphs [19], for which the OneGraph vision from Lassila et al. [10] is a more concrete version. These works propose
to describe the data with a list of edges, with the source of the edge, a label and the destination of the edge. All edges
are associated with an identifier, that can be used as the source or the destination of other edges. However, authors
note that several challenges are raised about the way to implement the interoperability between the OneGraph model
and the existing PG and RDF APIs.

In a Unified Relational Storage Scheme [13], Zhang et al. propose to store the data in relational databases. While
they specify how to store both models in a similar relational database structure, they do not mention how they align
the data that come from one model with the data that come from another, for example to match the PG label “Person”
with the RDF type foaf:Person.

The Singleton Property Graph model proposed by Nguyen et al. [20] is an abstract graph model that uses the RDF
Singleton Property pattern that can be implemented both with a PG and an RDF graph. They also describe how to
convert a regular RDF graph or a regular PG into a Singleton Property Graph. But the use of the Singleton Property
pattern induces the creation of many different predicates, which hinders the performance of many RDF database
systems as shown by Orlandi et al. [21].

From PGs to RDF In terms of PG to RDF conversion, the most impactful work is probably RDF-star [8, 9, 22, 23],
an extension of the RDF model originally proposed by Olaf Hartig and Bryan Thompson to bridge the gap between
PGs and RDF by allowing the use of triples in the composition of other triples. Indeed, the most blatant difficulty
when converting PG to RDF is converting the edge properties. However, most PG engines support multi-edges, i.e.
two edges of the same type between the two same nodes. On the other hand, the naive approach consisting in using
the source node, the type of the edge and the destination node as respectively the subject, the predicate and the
object of an RDF triple would collapse the multi-edges. Converting each edge property to an RDF-star triple that
uses the former triple as its subject would lead to the properties of each multi-edge to be merged. Khayatbashi et
al. [24] study on a larger scale the different mappings described by Hartig and benchmark them. By allowing triples
to be used as the subject and the object of other triples, it is possible to emulate the edge properties of PGs. While
these mappings allow some kind of user customization, by letting them choosing the used IRIs, they never consider
using different model structures for different PG types during the same conversion. For example, consider a PG
with two types of edges: one edge type with the “knows" label and one with the “marriedTo" label. The mappings
described in this paper do not enable the user to model edges with the “knows" label as a predicate and edges with
the “marriedTo" label as a proper RDF resource. To tackle the edge property problem, Das et al. study how to use
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already existing reification techniques to represent properties [25]: the modelings that do not rely on quads can be
used when writing a PRSC context.

Tomaszuk et al. propose the Property Graph Ontology (PGO) [14], an ontology to describe PGs in RDF. As this
solution only describes the structure of the PG in RDF, the produced data is forced to use this ontology, with the
exception of other already existing RDF ontologies without further transformations. Thanks to the Neosemantics12

plugin developed by Barrasa, Neo4j is able to benefit from RDF related tools like ontologies, and performs a 2-way
conversion from and to RDF-star data. However, the PG to RDF conversion performed by Barrasa tends to affirm
all triples it can, even for PG edges that may describe facts with a probability or that are time restricted: if the
marriage between Alice and Bob has ended in 2017, the triple :Alice :marriedto :Bob should probably
not be produced.

Gremlinator [26] allows users to query a PG and an RDF database by using the SPARQL language. This is a first
step towards federated queries. However, it supposes that data stored in the PG and data stored in the RDF graph
have a similar modeling, and it does not support RDF-star.

Instead of having a fixed mapping, our work on PREC [16] propose a mapping language named PREC to drive
the conversion from PG to RDF. Delva propose RML-star [27], an extension of RML [11] and R2RML [28] that
introduces new RML directives to generate RDF-star triples. As discussed in Section 2, the format in which the
template triples are described in this work is closer to the produced triples, at the cost of reducing the ability to
produce templated IRIs or terms.

To leverage the requirement for users to manually write the mapping, Fathy et al. proposed ProGoMap [15], an
engine that first generates a putative ontology for the terms in a PG, aligns this ontology with a real world ontology,
and finally converts the PG to an RDF graph with an RML mapping generated from the alignment. The authors
motivate the choice of automating the ontology alignment process by mentioning that writing mapping manually
can be time-consuming. While this may be true, we do not think that this hinders PRSC usefulness as 1) the schema
part of a PRSC context may be generated automatically, and nothing prevents a tool from generating the template
triples automatically, 2) a PG schema for which writing template triples is time-consuming may be an indicator that
the schema is too complex, and therefore that the structure of the data stored in the PG should be cleaned, not only
to make the conversion to RDF easier, but also as a benefit for the PG itself, and 3) while the process of aligning
terms of the putative ontologies to terms of real ontologies indeed increase data interoperability, it still relies on
the idea that the structure of the PG is somewhat close to the structure of the desired RDF graph. However, in this
paper, we advocate that it may not be the case, and that the desired method to model each edge type depends on the
semantics of held by each edge type.

In general, to the best of our knowledge, most existing works only tackle the syntactic aspect of converting PG to
RDF data. While this level of interoperability is appreciated, it is not enough to be able to properly use the converted
data in any existing RDF application without further modification of the RDF graph. Other existing works provide a
level of semantic interoperability. However, they tend to choose one of the many syntactic representations of edges
that exist, despite RDF ontologies having a great variety of patterns to model knowledge. PRSC gives full control
to the user, by letting them choosing both the syntactic representation and use shared vocabularies in the produced
RDF graph. The use of PG schemas in PRSC contexts guides users in the process of writing the context. The study
on PRSC well-behaved contexts, and the related discussion on their constraints in Section 5.5, provide information
on if the PRSC context written by the user leads to a reversible conversion or not, and by consequence, if any
information is lost in the process of converting the data stored in the PG into RDF.

From RDF to PGs Abuoda et al. [29] study the different RDF-star to PG approaches and identified two classes: the
RDF-topology preserving transformation which converts each term into a PG node, and the PG transformation that
converts literals into property values. They also evaluate the performance of these different approaches. The PRSC
reversion algorithm, and the general philosophy of this work clearly falls under the latter category. The former can
be considered as using a PG database to store RDF data.

Angles et al. [30] discuss different methods to transform an RDF graph into a PG. They propose different map-
pings, including an RDF-topology preserving one and a PG transformation. Atemezing and Hyunh [31] propose to

12https://github.com/neo4j-labs/neosemantics

https://github.com/neo4j-labs/neosemantics


J. Bruyat et al. / PRSC 37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

use a mapping similar to the former to publish and explore RDF data with PG tools, namely Neo4j. However, these
works offer little customization for the user.

With G2GML [32], Chiba et al. propose to convert RDF data by using queries: the output of the query is trans-
formed into a PG by describing a template PG, similar to a Cypher insert query. This approach can be considered to
be a counterpart of PRSC, but to convert RDF into PG.

PG schemas Finally, the “Property Graph needs a Schema” Working Group propose a formal definition of PG
schemas [33]. Some PG engines, like TigerGraph, are based on the use of schemas. For PG engines that do not
enforce a schema at creation, like Neo4j or Amazon Neptune, the schema may be extracted from the data, as
proposed by Bonifati et al. [34] or Beereen [35]. As PRSC uses schemas for mapping between PGs and RDF
graphs, these approaches may be used to automatically list the types existing in the PG to convert i.e. the target of
the rule part in Listing 2. Then the user would only have to provide the way to convert these types into RDF, i.e. the
template graph part.

7. Conclusion

This work improves interoperability between the two worlds of Property Graphs and RDF graphs. We have
presented PRSC, a mapping language to convert PGs into RDF graphs. A mapping, named PRSC context, is written
by the user and is driven by a schema: PG elements are converted according to their type. By letting the user
configure the conversion, we aim to better integrate PG data into already existing RDF graphs: the produced RDF
graphs can be made to use a specific vocabulary, or comply with specific shapes.

We have also proved that some PRSC contexts, named well-behaved PRSC contexts, are reversible: they do not
induce any information loss, and therefore it is possible to reverse back to the original PG from the produced RDF
graph. Finally, we broaden the realm of reversible contexts with the edge-unique extension. Other existing works
focus either on describing a syntactic construction, or providing a semantic construction that relies on a specific
syntactic pattern. PRSC lets the user specify the semantics, and proved the reversibility for the two most popular
methods to model edges: as an RDF resource in PRSC well-behaved contexts, and as a predicate through the edge-
unique extension.

For big PGs, fully converting them into RDF may not scale. For this reason, future works include studying how
to use PRSC context not only for PG conversion but also to convert SPARQL queries into the usual PG query
languages Cypher and Gremlin. This would not only address the scalability issues, but also avoid data duplication
and help for federated queries.

The expressiveness of PRSC contexts could also be extended. As it is currently presented, PRSC contexts are
unable to reproduce RDF graphs complying with some ontologies, for example the PG ontology [14]. To solve this
issue, PRSC contexts should be able to introduce new blank nodes, and not be limited to the ones in the original
PG. This would lead to new challenges, as the presented reversion algorithm relies on the fact that all blank nodes
are PG elements.

Other extensions on expressiveness may also be interesting. For examples, types in PRSC contexts are closed, in
the sense that a complying element must have exactly the properties of the type, barring any other. Allowing extra
properties in elements of the PGs would be useful, but raises the challenge of converting properties that are not
known in advance.

To let PG data further benefit from the tools that have been developed around RDF, PRSC could also be explored
in two directions. The use of blank nodes for the PG elements may not be suitable in all cases, especially in a linked
data context. PRSC could be extended to mint IRIs for nodes and edges of the PG, but this would require to extend
the mapping language to be able to express these template IRIs. It would also require an adaptation of the reversion
algorithm to be able to differentiate the minted IRIs from the “static" IRIs of the template, which would require
additional precautions on well-behaved contexts.

The provided reversion algorithm does not only work for RDF graphs that were produced by PRSC, but can
work on any compatible RDF graph. One way to use it would be to use PRSC to convert a PG to an RDF graph,
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modify the produced RDF graph with RDF-specific tools, e.g. by using a reasoner designed for RDF graphs, and
then transform back the RDF graph into a PG, which could be considered as equivalent as using a reasoner on a PG.
However, this requires to formally characterize the modifications that can be performed on the RDF triples while
maintaining the ability to convert it back to a PG.

Appendix A. Proof of projecting and merging back a Property Graph

In this section, we expose the proof for Theorem 5

A.1. Extra mathematical elements

Definition 29 (Restriction). For all functions f , for all sets X, f |X = {(x, f (x)) | x ∈ X ∩ Dom( f )}. f |X is called
the restriction of the function f to the set X. In other words, the restriction of a function by a set X is equal to a
function in which the domain is restricted to the elements of the set X.

Remark 16. The restriction of a function to its domain is equal to the function itself:
f |Dom( f ) = {(x, f (x)) | x ∈ Dom( f )} = f .

Remark 17. A functional definition of Definition 29 would be, for all functions f , f |X : x 7→ f (x) if x ∈ X ∩
Dom( f ), undefined otherwise.

Lemma 6. For all functions f , for all sets X1 and X2, the union of the function restricted by the two sets is equal to
the function restricted by the union of the two sets: f |X1

∪ f |X2
= f |X1∪X2

.

Proof.

f |X1
∪ f |X2

= {(x, f (x)) | x ∈ X1 ∩ Dom( f )} ∪ {(x, f (x)) | x ∈ X2 ∩ Dom( f )}

= {(x, f (x)) | x ∈ (X1 ∩ Dom( f )) ∪ (X2 ∩ Dom( f ))}

= {(x, f (x)) | x ∈ (X1 ∪ X2) ∩ Dom( f )}

= f |X1∪X2

Remark 18. For all function f , for all sets X1 and X2, f |X1
and f |X2

are always compatible.

Theorem 8. If the union of the sets Xi is a super-set of the domain of a function f , then the union of the function f
restricted by each set Xi is equal to the function f itself: (Dom( f ) ⊆

⋃n
i=1 Xi)⇒ (

⋃n
i=1 f |Xi

= f ).

Proof.

n⋃
i=1

f |Xi
=

n⋃
i=1

{(x, f (x)) | x ∈ Xi ∩ Dom( f )}

=

{
(x, f (x)) | x ∈

n⋃
i=1

(Xi ∩ Dom( f ))

}
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=

{
(x, f (x)) | x ∈ (

n⋃
i=1

Xi) ∩ Dom( f )

}
= {(x, f (x)) | x ∈ Dom( f )} = f

A.2. Redefinition of the projection

Remark 19. srcπm(pg), destπm(pg) and propertiesπm(pg) can be redefined by using the restriction:

– srcπm(pg) = srcpg|{m}
– destπm(pg) = destpg|{m}
– propertiesπm(pg) = propertiespg|{(m,str)|str∈Str}

Proof. For nodes, m ∈ Npg cannot be in the domain of srcpg, as their domain is a subset of Epg. Therefore,
srcpg|{m} = ∅ → ∅ = srcπm(pg).

For edges, m ∈ Epg is forced to be in the domain of srcpg, and its value is srcpg(m). Therefore, srcpg|{m} = (m 7→
srcpg(m)) = srcπm(pg)

The same reasoning applies for destpg.
The new definition of propertiesπm(pg) that uses restrictions is immediate from the definition of the restriction.

A.3. Proof of Theorem 5

Remark 20. The property graphs used in the following proof are described with formula. To help readability, for a
given PG x, we allow ourselves to use the notation N(x) instead of Nx. Similar notation will be used for E(x), src(x),
dest(x), labels(x) and properties(x). For example, N⊕

m∈Npg∪Epg
πm(pg) will instead of noted N(

⊕
m∈Npg∪Epg

πm(pg)).

Proof. We first need to check if we can apply the ⊕ operator, i.e. if the three conditions of Definition 27 are met:

– When the π function is applied, nodes remain nodes and edges remain edges. The ⊕ operator also conserves
this property. As ∀m,Nπm(pg) ⊆ Npg and Eπm(pg) ⊆ Epg, the first condition is met.

– The definition of π (restriction of the original function), the definition of ⊕ (union of the functions) and the
Lemma 6 (the union of two restriction is a restriction) imply that the src, dest and properties are compatible.

As ⊕ is commutative and associative, we can write the following decomposition:
⊕

m∈Npg∪Epg
πm(pg) =

(
⊕

m∈Npg
πm(pg))⊕ (

⊕
m∈Epg

πm(pg))
To prove the theorem, we are going to check if it is true for all functions related to pg.

Edges (Epg):

E(
⊕

m∈Npg∪Epg

πm(pg)) =
⋃

m∈Npg∪Epg

E(πm(pg)) [Definition of ⊕ on E]

= (
⋃

m∈Npg

E(πm(pg))) ∪ (
⋃

m∈Epg

E(πm(pg)))

= (
⋃

m∈Npg

∅) ∪ (
⋃

m∈Epg

{m}) =
⋃

m∈Epg

{m} [Definition of π on E]

= Epg
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Nodes (Npg):

N(
⊕

m∈Npg∪Epg

πm(pg))

= (
⋃

m∈Npg

N(πm(pg))) ∪ (
⋃

m∈Epg

N(πm(pg)))

= Npg ∪ (
⋃

m∈Epg

N(πm(pg)))

To prove that the last expression above is equal to Npg, we need to prove that (
⋃

m∈Epg
N(πm(pg))) ⊆ Npg:

∀m ∈ Epg,N(πm(pg)) = {srcpg(m), destpg(m)} ⊆ Npg ⇒
⋃

m∈Epg

N(πm(pg)) ⊆
⋃

m∈Epg

Npg = Npg

Source of the edges (srcpg):

src(
⊕

m∈Npg∪Epg

πm(pg))

=
⋃

m∈Npg∪Epg

srcpg|{m}

= srcpg [per Theorem 8, since
⋃

m∈Npg∪Epg

{m} ⊇ Epg = Dom(srcpg)]

Destination of the edges (destpg): The proof for destpg follows the same steps as the proof for srcpg.

Properties (propertiespg) The proof is very similar to srcpg.
Noticing that:

– ∀m ∈ Npg ∪ Epg, properties(πm(pg)) = propertiespg|{(m,str)|str∈Str}
–
⋃

m∈Npg∪Epg
{(m, s) | s ∈ Str} = {(m, str) | m ∈ Npg ∪ Epg ∧ str ∈ Str} = (Npg ∪ Epg)× Str

⊇ Dom(propertiespg)

we can reapply the same reasoning as for srcpg to find

properties(
⊕

m∈Npg∪Epg

πm(pg)) = propertiespg

Labels (labelspg) The domain of definition of labels(
⊕

m∈Npg∪Epg
πm(pg)) is:

N(
⊕

m∈Npg∪Epg

πm(pg)) ∪ E(
⊕

m∈Npg∪Epg

πm(pg)) = Npg ∪ Epg

The value of this function is ∀x ∈ Npg ∪ Epg,

labels(
⋃

m∈Npg∪Epg

πm(pg))(x) =
⋃

m ∈ Npg ∪ Epg

if labels(πm(pg))(x) is defined

labels(πm(pg))(x)
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From the definition of π applied on labels, two outcomes are possible for labels(πm(pg))(x):

– For m = x, labels(πm(pg))(x) = labelspg(x).
– For all other m ̸= x, labels(πm(pg))(x) is either the empty set or undefined. In both cases, no extra value is

contributed to labels(
⋃

m∈Npg∪Epg
πm(pg))(x).

It can be concluded that labels(
⋃

m∈Npg∪Epg
πm(pg))(x) = labelspg(x), so labels(

⊕
m∈Npg∪Epg

πm(pg)) = labelspg.

Conclusion : We have demonstrated that
∀pg ∈ PGs,∀ f ∈ {Npg, Epg, srcpg, destpg, labelspg, propertiespg} , f (pg) = f (

⊕
m∈Npg∪Epg

πm(pg)) therefore
∀pg ∈ PGs, pg =

⊕
m∈Npg∪Epg

πm(pg)
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