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Abstract. The microservices architecture (MSA) is highly popular for
its scalability, deployability in the Cloud and compatibility with De-
vOps practices. Many companies are migrating their legacy systems to
an MSA. They need to rely on automatic approaches to ease their mi-
gration while taking into account their business features. Existing migra-
tion approaches to an MSA often focus on technical features but neglect
functional ones, which are essential for appropriate MS granularity. To
address this lack, we introduce BOAM (Business Oriented identification
Approach of Microservices), a hybrid approach that focuses on business
decomposition by leveraging not only technical features, such as source
code, but also business oriented artifacts, especially use cases. BOAM
thus leverages static and semantic analyses of source code using nanoen-
tities (data, operations or artifacts), followed by a semantic analysis of
use cases to capture business features. For that, BOAM leans on ma-
chine learning, particularly clustering methods, to identify microservices
through technical (source code) and business (use cases) artifacts. The
goal is to ensure that identified microservices are technically sound and
meet specific business features of the company. Our evaluation shows that
BOAM outperforms other literature approaches to identify microser-
vices, achieving an average precision of 74.51% and recall of 77.93%.

Keywords: Microservices · Migration · Legacy systems · business fea-
tures · Use cases · Static analysis · Semantic analysis · Clustering · Na-
noentities.

1 Introduction

Legacy systems are vital to many organisations, embedding valuable knowledge
and executing critical business logic. However, these systems often consolidate
all functionalities into a single monolith, leading to challenges like high mainte-
nance costs, limited scalability, and portability issues [18]. While new systems can
be designed with a microservices architecture (MSA) from the start, migrating
legacy systems is complex. This complexity includes identifying tightly coupled
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components, addressing data migration, and reorganizing processes. The pri-
mary challenge is identifying microservices within the legacy system [13,14,20],
which involves delineating functional components based on business features,
domain boundaries, or technical concerns to enhance scalability, flexibility, and
maintainability. Business features are functional capabilities which are specific
to a given company. They are defined to achieve the company’s objectives and
comply with various requirements, like for instance performance requirements or
regulatory compliance. For example, a business feature for a streaming service
might include high-performance video delivery, ensuring smooth playback with-
out buffering but also ensure to respect clients’ privacy. These features are gen-
erally tied to business artifacts, such as use cases. These lasts detail user-system
interactions and ensure that identified microservices align with both technical
and business requirements.
Most existing approaches of microservices identification focus on technical fea-
tures (source code), often neglecting the specific functionalities and responsibili-
ties to identify microservices that should align with business features [5,23]. This
strategy of identifying microservices with a purely technical approach without
considering business features fails to integrate use cases as business oriented arti-
facts, potentially leading to technically sound but business-misaligned microser-
vices [27, 28]. Taking business features into account ensures that microservices
are aligned with an organization’s strategic goals and operational requirements,
making them more valuable and effective. Ignoring these features can lead to
microservices that fail to support the business needs and may even hinder the
organization’s objectives. For example, if a business feature requires real-time
data processing for its e-commerce platform, a microservices that handles order
processing must meet performance constraints to ensure fast transaction times.
Ignoring this constraint could result in slow order processing, leading to poor
customer experience and potential loss of sales. Most approaches for identify-
ing microservices focus only on source code, with very few incorporating use
cases [13,14]. We propose BOAM (Business Oriented identification Approach of
Microservices) to fill this gap by considering use cases since they can play a crit-
ical role in aligning microservices with business features. It integrates business
oriented artifacts with source code for microservices identification, ensuring they
meet both business and technical requirements [25]. BOAM employs use cases to
represent business features, leading to business oriented microservices that bet-
ter meet operational needs [17]. Even when use cases are unavailable, they can be
derived from source code to bridge the gap between technical implementation
and business requirements as explained in Section 4.3. BOAM also leverages
machine learning and clustering of source code, integrating semantic analysis of
both source code and use cases to improve microservices identification precision.
We evaluate BOAM through experiments with eight systems of varying com-
plexity and size, showing an average precision of 74.51% and recall of 77.93%.
We compare these results with another literature approach, MicroMiner [23],
which does not use business artifacts but has been shown to outperform other
approaches in microservices identification. This comparison highlights the im-
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pact of incorporating business oriented artifacts into the process of identifying
microservices.

The paper is organized as follows: Section 2 presents related works and their
limitations. Section 3 presents our approach. Section 4 describes the empirical
evaluation. Section 5 discusses the results and future work. Finally, Section 6
concludes the paper.

2 Related Work

The identification of microservices within legacy software systems has been a
significant research focus, with various studies aiming to automate this process.
A common limitation is the minimal use of business-oriented artifacts in their
approach. We categorize these studies into two main categories of microservices
identification: technical-centric and business-oriented-centric. Technical-centric
approaches focus primarily on technical aspects such as code structure, perfor-
mance, and scalability. Business-oriented-centric approaches emphasize the use
of business artifacts such as use cases, business processes or domain models to
guide the migration.

Several studies of the first categorie focus on the identification of microser-
vices using diverse technical-centric approaches. Escobar et al. [8] proposed a
rule-based algorithm to extract microservices from JEE systems. Their method
involves static code analysis, associating each session bean with a cluster, which
are then aggregated based on a threshold criterion. This approach is efficient
for systems with well-defined session beans but may struggle with more loosely
coupled architectures where session beans are not as prominent.

Trabelsi et al. [23] introduced MicroMiner, a three-step approach that in-
tegrates static and semantic code analyses. It uses an SVM algorithm for class
classification and clustering techniques to form initial typed services, followed by
soft clustering to refine microservices. They later enhanced this approach with
MicroMatic [24], making the process more automated. While both methods
are technically robust, they share a common limitation: minimal use of business-
oriented artifacts such as use cases or business processes, which are crucial for
aligning microservices with business goals. Unlike Escobar et al.’s rule-based
approach, these methods incorporate semantic analysis for better contextual
understanding of the code but remain focused on technical aspects.

Gysel et al. [16] proposed ServiceCutter, a tool for segmenting monolithic
systems into microservices by analyzing code dependencies and data flows. It
optimizes service boundaries to reduce inter-service coupling and enhance co-
hesion. However, its strong emphasis on technical dependencies can overlook
business logic and user requirements, potentially resulting in microservices that
are well-structured technically but misaligned with business needs.

Dehghani et al. [6] proposed a reinforcement learning (RL) framework for mi-
croservices decomposition. It uses the ServiceCutter tool to identify services,
which are then processed by an RL algorithm to map methods to microservices.
This innovative approach leverages the adaptability of RL to optimize microser-
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vices boundaries dynamically. However, the complexity and computational re-
quirements of RL models might pose challenges for practical implementation in
large-scale systems, requiring substantial expertise and resources.

While several approaches for identifying microservices based on code depen-
dencies and technical metrics exist, the need for business oriented artifacts in
the microservices identification process has been often overlooked. Only a few
studies attempt to bridge this gap:

Tyszberowicz et al. [25] focused on analyzing use case specifications and de-
composing functional requirements to derive microservices. This method relies
on manual effort and tools for phrase extraction and clustering visualization,
emphasizing understanding system functionalities. However, it does not include
source code analysis, which is crucial for ensuring that the identified microser-
vices are compatible with the company’s existing system.

Zougari et al. [29] developed an automated approach to identify microservices
from business process models by analyzing control, information, and semantic
dependencies. Unlike Tyszberowicz et al.’s manual method, Zougari et al.’s ap-
proach is fully automated but is similarly limited in generalizability, having been
tested on a single case study that may not represent the complexity of real-world
business processes.

In contrast, Gouigoux et al. [13, 14] highlighted the importance of the func-
tional dimension in enterprise systems, advocating for the inclusion of functional
and semantic analysis in microservices identification. However, they offer high-
level guidance without detailed technical methods or tools.

Li et al. [19] developed RM2MS, which automates microservices identification
from requirements models by analyzing dependencies between functionalities and
data structures. Unlike Gouigoux et al., this approach offers a detailed framework
and technical methods but relies heavily on UML models, which are not always
available, and does not specify how to create these models, making it difficult to
implement in practice.

Our approach, BOAM, aims to bridge this gap integrating business ori-
ented artifacts directly into the microservices identification process. By com-
bining static and semantic code analyses with machine learning and business
oriented artifacts (use cases), BOAM aims to ensure that identified microser-
vices are aligned with both technical structure and business features. BOAM
takes into account both the structure of the system and its business objectives,
focusing on business functionalities to provide business oriented microservices.

3 Approach

We organize our approach BOAM in four steps illustrated in Fig. 1 and explained
hereafter.

3.1 Step 1: Use Cases Preparation

Input: Source Code.
Output: Use Cases.
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Fig. 1: Workflow of BOAM

Description: Use cases serve as essential blueprints for designing and develop-
ing microservices tailored to business features. They provide a clear represen-
tation of the system’s functionality and user interactions. Traditionally, UML
use cases are widely recognized and adopted for their simplicity and higher-level
abstraction. These use cases formalism, as illustrated in Fig.2a, illustrate inter-
actions between actors and the system, highlighting various use cases for each
actor. However, Gysel et al. [15,16] proposed a different formalism, the nanoen-
tity format as illustrated in Fig.2b , which offers a more granular representation
than UML. Each use case in this format includes information on attributes that
are read (nanoentitiesRead) and modified (nanoentitiesWritten). This formalism
allows for detailed analysis of use cases for the identification of microservices.
The nanoentity format provides advantages over traditional UML use cases. It
simplifies the analysis by explicitly showing the attributes involved in each use
case, making it easier to identify microservices. Additionally, it facilitates more
straightforward automation of the analysis process.
Implementation: Given these benefits, we adopt the nanoentity format for
our approach to analyze the system to identify key business features and user
scenarios, ensuring the use cases are consistent and align with our approach’s
standards. To validate and refine the use cases, we conduct manual inspections
and reviews, ensuring they accurately reflect the system’s intended behavior
and business logic. These iterative refinements help us understand the system’s
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(a) UML use cases (b) Nanoentity use cases

Fig. 2: Comparison between UML and nanoentity use cases

requirements better, ensuring that the resulting microservices effectively fulfill
the identified business features. This formalism is a systematic representation of
UML use cases, and the detailed procedure for translating UML use cases into
nanoentities is available in the replication package4.

3.2 Step 2: Typed Services Identification

Input: Source Code.
Output: Typed Services.
Implementation: Typed services serve as a foundational element, guiding the
microservices identification process. [1]. These types include Entity Services,
which are responsible for accessing and manipulating data for a specific en-
tity; Utility Services, which provide common, reusable functionality; and Ap-
plication Services, which coordinate calls to multiple services and implement
application-specific business logic. Identifying these types is crucial for under-
standing the role and responsibility of each service. We use the first two phases of
MicroMiner [23] (R2.7 Phase 1: Class typing and Phase 2: Typed services iden-
tification) to generate typed services because this approach outperforms other
literature approaches and typed services align closely with the system’s existing
structure and business logic, facilitating a smoother and simpler transition from
a monolithic to a microservices architecture.

3.3 Step 3: Semantic Analysis of Source Code and Use Cases

We perform a semantic analysis of the source code and use cases using a standard
Natural Language Processing (NLP) method based on semantic distance [7].

4 https://github.com/Brahim-Mahmoudi/BOAM_Repo/tree/main/BOAMWorkshops/UseCaseGeneration/
UseCaseGeneration.jpg

https://github.com/Brahim-Mahmoudi/BOAM_Repo/tree/main/BOAMWorkshops/UseCaseGeneration/UseCaseGeneration.jpg
https://github.com/Brahim-Mahmoudi/BOAM_Repo/tree/main/BOAMWorkshops/UseCaseGeneration/UseCaseGeneration.jpg
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Each use case is defined with associated nanoentities and names, which facilitates
the semantic analysis, as outlined in Steps 3.1, 3.2, and 3.3. The goal is to
transform the source code and use cases into a vector representation, allowing
us to analyze their semantic proximity.

Step 3.1: Preprocessing Phase.
Input: Typed Services, Source Code.
Output: Semantic Vectors (of each class of the system).
Implementation: We parse, tokenize, and clean elements of the system for
example class names, method names, variable names, code comments, which
are terms associated with programming languages, and we standardize terms
through lemmatization, which is often more precise than stemming, as it takes
into account the grammatical context of words [3]. Each term is then trans-
formed into a numerical representation using the Google Word2Vec model5. This
standardization results in a numerical representation that captures the seman-
tic and syntactic context. For each element, we average the embeddings of all
its associated terms to combine their semantic and syntactic information into
a representative vector. This is done because averaging allows us to combine
the semantic information of all terms into a vector that represents the entire
element.

Step 3.2: Use Cases Semantic Analysis.
Input: Semantic Vectors from Step 3.1, Use Cases.
Output: Similarity Scores between Use Cases and Typed Services.
Implementation: We calculate the similarity between the the two inputs using
cosine similarity, a method well-suited for capturing semantic similarity between
terms [21].

Cosine Similarity(S,UC) =

∑
Si · UCi

∥S∥ · ∥UC∥ (1)

where S and UC represent the lemmatized service and use case names, Si and
UCi are their respective vector terms, and |S| and |UC| are their magnitudes. The
final score is the average of all cosine similarities between the use case name and the
preprocessed classes of the typed service identified in Step 2. This score ranges from 0
to 1, with higher scores indicating stronger similarity.

Step 3.3: Nanoentities Semantic Analysis.
Input: Semantic Vectors from Step 3.1, Use Cases.
Output: Similarity Matrix between Use Cases and Typed Services.
Implementation: As detailed in Algorithm 1, we conduct a semantic analysis for
each nanoentity of the use case and each semantic vectors from Step 3.1. We
assign a higher semantic weight to the write nanoentities, using a designated
weight distribution (0.7 for nanoentitiesWritten and for nanoentitiesRead). This
is based on Tyszberowicz et al.’s approach [25], which introduces a differential
weighting factor for write and read nanoentities, emphasizing the greater impact
5 https://github.com/mmihaltz/word2vec-GoogleNews-vectors

https://github.com/mmihaltz/word2vec-GoogleNews-vectors
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of write operations on system functionality and cohesion. To achieve a compre-
hensive semantic analysis, we combine the results from Step 3.2 and Step 3.3 to
obtain a semantic similarity matrix between each use case name and each service
identified in Step 2.
Algorithm:
Algorithm 1: Nanoentities Semantic Analysis

Input: V: Semantic Vectors from Step 3.1, U : Use Cases
Output: S: Similarity Matrix between Use Cases and Typed Services

1 begin
2 foreach u ∈ U do
3 v

(3.3)
u ← 0;

4 foreach n ∈ u do
5 foreach v(c) ∈ V do
6 temp_sim ← cos(v(n),v(c)) · (0.7 · I(n.type =

"write") + 0.3 · I(n.type = "read"));
7 v

(3.3)
u ← v

(3.3)
u + temp_sim;

8 v
(3.3)
u ← v

(3.3)
u
|u| ;

9 vcombined
u ← α · v(3.2)

u + β · v(3.3)
u ;

10 foreach u ∈ U do
11 foreach s ∈ V do
12 vs ← 1

|s|
∑
c∈s

v(c);

13 final_simu,s ← cos(vcombined
u ,vs);

14 S[(u, s)]← final_simu,s;

15 return S;

3.4 Step 4: Clustering

Input: Similarity matrix from Step 3.
Output: Identified Business Oriented Microservices.
Implementation: We use the Fuzzy C-Means algorithm and the semantic sim-
ilarity matrix from the previous step to determine the degree of membership of
each service (composed of classes identified in Step 3) in each cluster. Unlike
K-means, Fuzzy C-Means allows for flexible assignment of services to clusters,
with each service potentially belonging to multiple clusters, which is useful when
services are associated with multiple business features [4]. We perform a single
iteration of the Fuzzy C-Means algorithm to fix cluster centers, corresponding
to each use case, maintaining a link between use cases and services to align with
business needs [25]. This clustering assigns each service identified in Step 3 of
BOAM to a cluster and quantifies the degree of service membership within that
cluster. The membership matrix U is calculated as follows:

Uij =
1∑M

k=1

(
dij
dik

) 2
m−1

(2)
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where Uij represents the degree of membership of the ith typed service in the jth cluster,
dij is the distance between the ith typed service and the center of the jth cluster (the use
case), M is the total number of clusters, and m is the fuzziness exponent that controls
the transition between true and false values, affecting the membership functions and
tolerance for ambiguity. We chose m = 2, chosen drawing on relevant works [10,23].

4 Evaluation

In this section, we evaluate BOAM by comparing it with the ground truth and an
other literature approach Microminer [23]. We introduce the case studies used in
our evaluation and discuss the creation of ground truths, which are crucial for the
quantitative assessment of microservices identification. We then present the metrics
used to measure the accuracy of our approach and the quantitative results obtained.
The tool and most of the data (as explained in Section 4.1) are available online6.

4.1 Case Studies

To gather our set of case studies, we established specific criteria: (1) open-source (OS),
(2) publicly available online, (3) written in Java, (4) have monolithic architecture and
above all (5) have use cases available. Despite our efforts, finding truly complex systems
that meet all criteria and provide corporate system access is challenging. Consequently,
we identified only one system (Cargo) that fully meets all criteria. Additionally, for our
evaluation, we included three other open-source systems commonly used in the litera-
ture for microservices identification [1,16,23]. We also used four projects from university
students enrolled in a Master’s degree analysis and modeling course. These students
manually constructed small systems from use cases to implementation. In total, we
have eight systems, as shown in Table 1, providing a diverse range for assessing the
scalability and accuracy of our approach. Due to confidentiality requirements imposed
by national regulations, we cannot share data related to these systems. Access to the
code requires signing a confidentiality agreement, as it constitutes intellectual property.
However, these systems are available upon request.

4.2 Ground truth: Expected Microservices

We created a ground truth for each system using two groups of three PhD students who
were not previously involved with the projects. Each student independently analyzed
the source code, class diagrams, and use cases to identify microservices. They then
cross-validated their findings to minimize bias, resolving discrepancies through mutual
agreement to strengthen the reliability of the ground truth. Details of the systematic
creation process are available online7. In the final step, the established ground truth
was reviewed by the authors. This additional analysis provided a broader perspective,
further enhancing the validity of the ground truth. Despite meticulous efforts, manu-
ally defining ground truth remains difficult. Identifying exact microservices in legacy
systems is challenging, as there can be various valid interpretations. Despite rigorous
analysis and cross-validation to reduce bias, the established ground truth is an ap-
proximation of reality. Nonetheless, following a systematic process ensures accurate
identification of microservices.
6 https://github.com/Brahim-Mahmoudi/BOAM_Repo.git
7 https://github.com/Brahim-Mahmoudi/BOAM_Repo/tree/main/BOAMWorkshops/GroundTruth

https://github.com/Brahim-Mahmoudi/BOAM_Repo.git
https://github.com/Brahim-Mahmoudi/BOAM_Repo/tree/main/BOAMWorkshops/GroundTruth
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Table 1: Overview of Case Studies
System Size Use Cases Ground Truth #Microservices

#Classes LOC Preparation Preparation

JForum (OS) 271 33837 7,5h 5h 20

Cargo (OS) 99 7336 Already Available 4h 9

POS (OS) 55 4037 2h 3h 5

PetClinic (OS) 52 3521 2h 2h 7

Powerlifting 41 3013 Already Available 2h 4

PoolPro 29 2795 Already Available 1,5h 4

MovieNight 24 1604 Already Available 1,5h 5

DestopWarold 18 3285 Already Available 1h 3

4.3 Required Use Cases

We designed our approach to gathering and creating use cases to reflect common in-
dustry practices [2]. In real-world scenarios, use cases often derive from various sources,
including existing documentation, team discussions, and hands-on development. We be-
gin by searching for online resources, as we did for Cargo, mirroring industry practice
where companies rely on existing documentation to understand system requirements.
Secondly, we organized a workshop for PetClinic and POS, reflecting industry brain-
storming and discussion sessions [11, 12]. Two teams of three students, not previously
involved with the projects, collaboratively developed use cases based on available re-
sources. They then cross-validated their findings. Details of the workshop are available
online8. These sessions facilitate the exchange of insights, leading to a more compre-
hensive understanding of the system’s requirements. Thirdly, for JForum, the first two
authors individually created use cases, following the same process as the second point
to ensure thorough analysis and validation. This method incorporated multiple view-
points for a comprehensive perspective on the system’s requirements. They took this
approach due to the substantial size of JForum, as shown in Table 1, which was too
demanding for volunteer students. Lastly, we included student projects, reflecting the
industry’s reliance on prototyping and iterative development. These projects, varying
in size and complexity, provide valuable hands-on experience applicable to real-world
software development.

4.4 Evaluation Metrics

In our evaluation of the microservices identification process, we use precision (P ),
recall (R), and F1-score (F1). Precision (P ) measures the accuracy of correctly
identifying microservices: P = TruePositives(TP )/(TP +FalsePositives(FP )); Re-
call (R) assesses the ability to capture all true microservices: R = TP / (TP +
FalseNegatives(FN)); F1-score (F1) combines precision and recall: F1 = (2PR) /
(P +R). We computed these metrics using the ground truths to quantitatively assess
the performance of our approach.

8 https://github.com/Brahim-Mahmoudi/BOAM_Repo/tree/main/BOAMWorkshops/UseCaseGeneration

https://github.com/Brahim-Mahmoudi/BOAM_Repo/tree/main/BOAMWorkshops/UseCaseGeneration
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4.5 Quantitative Results

Comparison We compare our results with MicroMiner [23], focusing on identifying
business oriented microservices. Direct comparisons with other literature approaches
are challenging due to differing goals, such as business vs. domain-oriented microser-
vices. However, MicroMiner already outperformed other literature approaches like
ServiceCutter and Topic Modeling9, making it a relevant benchmark. The re-
sults reveal that our approach outperforms MicroMiner in terms of precision and
recall, with an average value of 74.51% and 77.93% respectively, as detailed in Table
2. Our primary objective is to achieve higher precision in microservices identification
compared to approaches that do not consider business oriented artifacts. Emphasizing
precision is crucial for accurately identifying true microservices without excessive false
positives, where false positives refer to classes being assigned to a microservice when
they should not be. MicroMiner tends to be more inclusive, capturing a broader
range of services related to use cases, which results in lower precision as some identi-
fied services may not closely align with the business oriented focus of our approach.
BOAM, with its balanced precision and recall, shows better performance for our re-
search objectives. This indicates that using business oriented artifacts in microservices
identification improves their quality.

Results Results show that incorporating business oriented artifacts improves mi-
croservices identification, achieving an average precision of 74.51%, recall of 77.93%,
and F1-score of 76.10% (Table 2). For POS (55 classes, 5 microservices), precision is
69.63% and recall is 93.33%, indicating a high rate of correctly identified classes be-
longing to the right microservice but also more false positives. The smaller size and
complexity of POS may make it easier to identify microservices, but this also increases
the risk of including irrelevant ones. For JForum (271 classes, 20 microservices), preci-
sion is 77.67% and recall is 60.40%, showing very precise identification with fewer true
positives. The larger size and complexity of JForum likely make it more challenging
to identify all relevant microservices, resulting in a lower recall. Generally, high recall
identifies most true positives but may decrease precision, while high precision identifies
fewer false positives but may decrease recall.

Table 2: BOAM quantitative results compared with Microminer
Approach Metric Cargo POS PetClinic JForum Powerlifting DesktopWarold MoovieNight PoolPro Average

BOAM

Precision (%) 73.80 69.63 71.59 77.67 85.42 70.08 75.64 72.22 74.51

Recall (%) 68.35 93.33 75.78 60.40 54.40 83.64 100.00 87.50 77.93

F1-score (%) 71.01 79.76 73.63 66.46 66.47 76.26 85.55 79.64 76.10

MicroMiner

Precision (%) 68.15 72.01 71.41 53.89 81.50 76.30 72.80 68.90 70.75

Recall (%) 63.40 87.98 71.43 76.13 51.30 80.10 95.50 84.60 76.30

F1-score (%) 65.66 79.26 71.44 62.99 62.83 78.15 82.33 76.15 72.35

9 https://github.com/miguelfbrito/microservice-identification

https://github.com/miguelfbrito/microservice-identification.git
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5 Discussion and Future Work

We present Qualitative Results of our approach, followed by Threats to Validity of our
results. We conclude with a discussion on envisioned Future Works.

5.1 Qualitative Analysis

Business Feature Coherence: BOAM tends to produce microservices that are more
coherent in terms of business features, as demonstrated by our evaluation across mul-
tiple systems. For example, in the Cargo system, BOAM has shown the ability to
encapsulate business-oriented artifacts, clustering classes like Itinerary and RouteSpec-
ification into coherent microservices for the ViewCargos use case. This contrasts with
MicroMiner, which sometimes groups classes based on syntactic or technical similar-
ities without consideration of business features.
Class Distribution and Business Artifacts: The weighting method used by
BOAM, which assigns higher weights to classes associated with nanoentities marked
as written, has enabled more precise identification of microservices. Conversely, Mi-
croMiner has shown a tendency to include additional classes that are not directly
functional in some microservices, as observed in the HandleCargoEvent use case in the
Cargo system.
Balance Between Business Relevance and Functional Utility: The observations
show that BOAM achieves a better balance between business relevance and functional
utility of microservices. For instance, in the Powerlifting system, the microservices
identified by BOAM have a class distribution that better reflects the functional needs
of business artifacts, unlike MicroMiner which may sometimes sacrifice functional
coherence for broader business features coverage.

5.2 Threats To Validity

We now discuss threats to the validity of our evaluation.
Internal Validity. Our microservices identification approach and its validation pose
potential threats to internal validity due to reliance on metrics and thresholds. To mit-
igate these concerns, we incorporated threshold values sourced from previous studies.
The qualitative evaluation included four authors and one PhD student specializing in
microservices development. These participants were actively involved in general work
discussions and meetings related to our approach, potentially introducing bias. We ac-
knowledge this bias for two main reasons: (1) the authors are experts in microservices
development and (2) sourcing an independent expert for validation across multiple sys-
tems proved challenging.
External Validity. Our use of use cases presents a potential threat to external va-
lidity. The process described in Section 4.3 was driven by the scarcity of accessible
use cases in open-source monolithic legacy systems. To enhance our validation, we ex-
panded our research beyond publicly available sources by generating additional use
cases from existing code and documentation of other systems. This approach involved
two strategies: initially producing two use cases independently through a workshop,
and subsequently creating a use case for one additional system by the authors. We
followed the nanoentity format, which focuses on nanoentity interactions for specific
functions. This format is simplified compared to traditional use cases but is designed for
automated service identification. Traditional UML use cases can include information
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like business processes and user interactions, which were not our main focus here. Our
study, conducted with a select pool of suitable open source systems, lays a foundation
for further research in microservices identification. Recognizing the need to broaden
the range of systems studied and to innovate methodologies for deeper analysis, we
offer our data for future research in the replication package10. This provides a valuable
resource for others to expand on our findings and further progress in this field.

5.3 Future Work

Now that we can identify microservices aligned with specific use cases, our goal is to in-
tegrate Domain-Driven Design (DDD) principles [9] as advocated in [13,14], alongside
Bounded Contexts. These are widely used techniques for transitioning from monolithic
architectures to microservices [26]. Our challenge lies in establishing a clear relationship
between use cases and DDD principles within our microservices identification process.
Another potential direction is exploring whether descending to method-level granular-
ity could enhance the precision and utility of identified microservices. This shift towards
finer granularity at the method level might offer a more precise and functionally cohe-
sive representation. We will automate the threshold selection process for microservices
identification with machine learning algorithms to predict optimal thresholds based on
historical data and system characteristics. This automated approach, adaptable to each
system, will save time and effort for software experts. Additionally, we aim to generate
use cases for a system such as Compiere11, a Java-based open-source ERP system with
over 1000 classes. This endeavor would involve rigorously following the steps outlined
in Section 4.3. Finally, we aim to broaden our approach by using established models
in standard languages like UML [22], and possibly leveraging the RM2MS tool [19] as
mentioned in Section 2, this tool automates the identification and visualization of mi-
croservices from requirement models that include classes, use cases, sequence diagrams,
and OCL contracts..

6 Conclusion

In this paper, we introduced BOAM, a novel approach for microservices identification
that performs business oriented analysis of microservices in legacy systems. BOAM
uses static and semantic analyses of source code and use cases, incorporating machine
learning clustering methods to effectively identify microservices based on technical and
business oriented artifacts. We evaluated BOAM on eight systems—four real-world
legacy systems and four student legacy systems—comparing results with independently
established ground-truths. Results show that BOAM achieves an average precision of
74.51%, recall of 77.93%, and F1-score of 75.14%, outperforming MicroMiner with
average precision of 70.75%, recall of 76.30%, and F1-score of 72.35%.
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