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Symbolic Graph Query Solving ?

Dominique Duval and Rachid Echahed

CNRS and University Grenoble Alpes, Grenoble, France
dominique.duval@imag.fr and rachid.echahed@imag.fr

Abstract. Property graphs play an important role in representing data
bases in modern graph query languages. In this paper we focus on a
particular class of graph queries known as Graph-to-Graph or CON-
STRUCT queries. Such queries return graphs instead of tables when
applied to actual Property Graphs. We propose a symbolic graph query
solving procedure which combines rewriting techniques for goal solving
as well as graph transformation techniques. The proposed procedure is
proven sound and complete.

Keywords: Operational semantics, Rewrite systems, Graph query lan-
guages

1 Introduction

Graph database systems are becoming more and more in demand thanks to their
legibility and high flexibility. Several graph query languages have been proposed
recently or being developed such as Cypher [8], PGQL1, GSQL2 and G-CORE
[1], inducing an ISO project to standardize a graph query language. Two separate
standards are being issued3 : GQL and SQL/PGQ.

The aforementioned languages are based on a particular definition of graphs
called property graphs. These graphs feature nodes and edges that can be typed
by means of labels and can also be endowed with finite records. Such graphs
provide great flexibility in data representation.

Property graphs are also used to formulate queries. We focus in this paper
on a special kind of graph queries, known as graph-to-graph queries or CON-
STRUCT queries [11, 1], which yield a graph as a result, when applied to a
graph data, instead of classical tables. This is by no means a limitation since it
is well know that tables can easily be encoded as graphs (see, e.g. [5]).

The semantics of graph queries are based on variables bindings in general
[2, 8]. Such semantics are not appropriate to handle easily query nesting. Re-
cently, we proposed in [7], in the context of RDF-graphs [12], a kernel query
language whose semantics is based on graph homomorphisms. Composition of

? Partly supported by the French ANR project VERIGRAPH # ANR-21-CE48-0015
1 https://pgql-lang.org/
2 https://www.tigergraph.com/gsql/
3 https://www.gqlstandards.org/
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homomorphisms ensures in an obvious way query nesting or more precisely pat-
tern nesting. In the present paper we follow such semantics and consider a core
query language which allows nesting of patterns in the context of the rich struc-
tures of property graphs. We also propose a new symbolic procedure based on a
rewriting system which incorporates operators that have been tailored expressly
for property graph structures. The proposed procedure, which is proven to be
deterministic, terminating, sound and complete, solves queries in a way close
to narrowing-based procedures [3], but limited to specific operators over data
graphs represented as property graphs.

The paper first defines, in the next section, the data graphs considered in
the paper together with some additional definitions. In Section 3, the notions
of patterns and CONSTRUCT queries are introduced by their syntax and se-
mantics. Then, in Section 4, a rewriting system defining a procedure to solve
patterns and queries is introduced and the main properties of the procedure are
stated. Concluding remarks are provided in Section 5.

2 Data Graphs

In this section, we start by fixing some definitions of the data structures used
in this paper. We assume given a finite set Lab of labels, a finite set Prop of
properties and a possibly infinite set V al of values (integers, booleans, strings,
etc.). In the rest of the paper we assume that all expressions are well typed. Let

A be a possibly infinite set, we denote by P̂(A) the set of finite subsets of A.
Below, we provide the definition of property graphs we consider in this paper.

Definition 1 (Property Graph).
A property graph G is a tuple G = (N,E, src, tgt, λ, π) where N is a finite set of
nodes, E is a finite set of edges such that N ∩E = ∅. src (resp. tgt) is a function
src : E → N (resp. tgt : E → N) defining the source (resp. target) of edges. The
function λ : N ∪E → P(Lab) specifies, for every node or edge, possible labels in

Lab. The function π : N ∪E → P̂(Prop× V al) specifies, for each node or edge,
the possible finite property-value associations.

Example 1. We introduce here a running example of a property graph represent-
ing the authorship relation between persons and papers. The proposed sample
graph G1 = (N1, E1, src1, tgt1, λ1, π1), depicted in Fig. 1, is such that: N = {ni |
1 ≤ i ≤ 6}, E1 = {ei | 1 ≤ i ≤ 5}, λ1(n1) = λ1(n2) = λ1(n3) = {person} and
λ1(n4) = λ1(n5) = λ1(n6) = {paper}. λ1(ei) = {author} for 1 ≤ i ≤ 5. The
function π1 does not assign any data to edges, i.e., π1(ei) = ∅ for 1 ≤ i ≤ 5.
However, the definition of π1 is a bit long to write. It can be deduced easily from
Fig. 1. For instance π1(n1) = {(name, PaulErdős), (Inst, Univ.Manchester),
(Inst, IAS(Princeton))}.

The notion of paths plays a significant role in graph queries.

Definition 2 (Paths).
Let G = (N,E, src, tgt, λ, π) be a property graph. A path p in G is a string
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Fig. 1. Sample Property Graph, G1, of authors and papers

over N ∪ E of the form n1e1n2 . . . nkeknk+1 for some k ≥ 0 such that for
all j, 1 ≤ j ≤ k, src(ej) = nj and tgt(ej) = nj+1. We denote by Pth(G)
the set of paths of graph G. The source (resp. target) of a path of the form
n1e1n2 . . . nkeknk+1 is n1 which is equal to src(e1) (resp. nk+1, which is equal to
tgt(ek)). The concatenation of two paths p1 and p2 is written p1+p2 and assumes
that src(p2) = tgt(p1). That is, (n1e1n2 . . . nkeknk+1) + (n′1e

′
1n
′
2 . . . n

′
qe
′
qn
′
q+1) =

n1e1n2 . . . nkekn
′
1e
′
1n
′
2 . . . n

′
qe
′
qn
′
q+1 if nk+1 = n′1.

Definition 3 (Property Graphs with Paths(PGP)).
A property graph with paths (PGP) G is a tuple G = (N,E, P, src, tgt, λ, π)
where (N,E, src, tgt, λ, π) is a property graph and P is a finite subset of Pth(G).

Notice that we assume the set of paths P to be finite in the definition above
only for decidabilty reasons of the operational semantics presented later.

Let fi : Ai → Bi for i ∈ {1, 2} be two functions. We say that f1 and f2

are joinable if f1(x) = f2(x) for all x in A1 ∩ A2. The two following definitions,
which are used later, define the union of graphs and graph quotients.

Definition 4 (Graph Union). Let Gi = (Ni, Ei, Pi, srci, tgti, λi, πi) for i ∈
{1, 2} be two PGPs such that the functions src1 and src2 (resp. tgt1 and tgt2)
are joinable and Ni ∩Ej = ∅ for i, j in {1, 2}. We denote by G1 ∪G2 the graph
G1 ∪ G2 = (N1 ∪N2, E1 ∪ E2, P1 ∪ P2, src∪, tgt∪, λ∪, π∪) such that : (i) for all
x in N1 ∪N2 ∪E1 ∪E2, λ∪(x) = λ1(x)∪ λ2(x) and π∪(x) = π1(x)∪ π2(x), and
(ii) for all x in E1 ∪E2, src∪(x) = src1(x) (resp. tgt∪(x) = tgt1(x)) if x in E1,
otherwise src∪(x) = src2(x) (resp. tgt∪(x) = tgt2(x)).

Definition 5 (Graph equivalence, Quotient graph).
Let G = (N,E, P, src, tgt, λ, π). A graph equivalence ∼= is a pair (∼=n,∼=e) of

equivalences on nodes ∼=n and on edges ∼=e such that, for all e1, e2 in E, e1
∼=e e2

implies that src(e1) ∼=n src(e2) and tgt(e1) ∼=n tgt(e2). The quotient graph G∼= =
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(N∼=n
, E∼=e

, P∼=, src, tgt, λ̄, π̄) is such that N∼=n
, E∼=e

, P∼= are the intended quotient
sets and for all ē in E∼=e

, src(ē) = (src(e)) and tgt(ē) = (tgt(e)) where x̄ denotes
the equivalence class of element x. For all ȳ ∈ (N∼=n ∪E∼=e), λ̄(ȳ) = ∪i∈ȳλ(i) and
π̄(ȳ) = ∪i∈ȳπ(i).

The notion of homomorphism below is quite direct. One just has to deal
carefully with all different notions involved in a property graph.

Definition 6 (PGP Graph homomorphism).
Let Gi = (Ni, Ei, Pi, srci, tgti, λi, πi) for i ∈ {1, 2} be two PGPs. A graph homo-
morphism from graph G1 to graph G2, denoted m : G1 → G2, is defined by two
functions mn : N1 → N2 and me : E1 → E2 such that:

1. For all a in E1, src2(me(a)) = mn(src1(a)) and tgt2(me(a)) = mn(tgt1(a)).
2. For all b in N1, λ1(b) ⊆ λ2(mn(b)) and For all a in E1, λ1(a) ⊆ λ2(me(a))
3. For all b in N1, π1(b) ⊆ π2(mn(b)) and For all a in E1, π1(a) ⊆ π2(me(a))
4. For all p in P1, mp(p) is in P2 where mp is defined as follows :

mp(n1e1n2 . . . nkeknk+1) = mn(n1)me(e1)mn(n2) . . .mn(nk)me(ek)mn(nk+1)

Basic graph queries could be expressed by means of PGPs. For that, PGP
graphs have to be endowed with variables which can be instantiated while solving
graph queries. In the definition of homomorphisms above, elements in N1 (resp.
E1) may be matched by any element in N2 (resp. E2). However, elements in Lab,
Prop and V al behave as constants. Therefore, we assume in the sequel given four
sets of variables, elements of which can be used in PGPs. These sets of variables
are Vv (resp. Vp, Vl and Vpth) which represent sets of variables ranging over the
set of values V al (resp. of properties Prop, of labels Lab and of paths Pth(G)).

We call path expression a path which may include variables in Vpth and call
open PGP a PGP including variables.

Definition 7 (Path Expression).
Let G be a property graph. A path expression over G and Vpth is an expression
generated by the following grammar where p is a path in Pth(G), x is a path
variable in Vpth and + stands for the concatenation of paths : S → p | x | S+S.
A path expression, of the form p1 + p2, resulting of the concatenation of the
paths p1 and p2 is such that the target of p1 equals the source of p2. We write
Pth(G,Vpth) the set of path expressions over graph G.

Definition 8 (Open PGP).
A PGP graph G = (N,E, P, src, tgt, λ, π) is said to be an open PGP if the set
P can include path expressions (i.e. P ⊆ Pth(G,Vpth)) and the target sets of
functions λ and π can include variables. That is λ : N ∪ E → P(Lab ∪ Vl) and

π : N ∪ E → P̂((Prop ∪ Vp)× (V al ∪ Vv)).

Now we are ready to define the notion of match between open PGPs. A
match is a homomorphism based on instantiations of variables. We denote by
V(G) the set of all variables appearing in graph G, Vpth(G) = V(G)∩Vpth the set
of path variables occurring in G, Vlab(G) = V(G) ∩ Vl, the set of label variables
appearing in G, Vprp(G) = V(G)∩Vp, the set of property variables appearing in
G and Vval(G) = V(G) ∩ Vv the set of value variables appearing in G.
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Definition 9 (Match).
Let L and G be two open PGP, L = (NL, EL, PL, srcL, tgtL, λL, πL) and G =
(NG, EG, PG, srcG, tgtG, λG, πG). A match m : L → G is defined by six func-
tions mn : NL → NG, me : EL → EG, mlab : Vlab(L) → Lab ∪ Vlab(G),
mval : Vval(L) → V al ∪ Vval(G), mprp : Vprp(L) → Prop ∪ Vval(G) and mpth :
Vpth(L)→ Pth(G,Vpth(G)) such that:

1. For all a in EL, srcG(me(a)) = mn(srcL(a)) and tgtG(me(a)) = mn(tgtL(a)).
2. For all b in NL, m(λL(b)) ⊆ λG(mn(b)) and m(πL(b)) ⊆ πG(mn(b)).
3. For all a in EL, m(λL(a)) ⊆ λG(me(a)) and m(πL(a)) ⊆ πG(me(a)).
4. For all p in PL, m(p) is in PG.

Where

– m(F ), with F ⊆ (Lab ∪ Vlab(L)), is defined as m(F ) = {m(f) | f ∈ F}
such that m(f) = f if f is a label in Lab and m(f) = mlab(f) if f is a label
variable in Vlab(L).

– m(U), with U ⊆ P̂((Prop∪Vprp(L))×(V al∪Vval(L))), is defined as m(U) =
{(m(up),m(uv)) | (up, uv) ∈ U} with m(up) = up if up is a property in
Prop and m(up) = mprp(up) if up is a property variable in Vprp(L) and
m(uv) = uv if uv is a value in V al and m(uv) = mval(uv) if uv is a value
variable in Vval(L).

– m(p), with p being a path expression, is defined as follows: m(p) = m(u) +
m(w) if p is the concatenation of two paths p = u+w ; m(p) = mpth(p) if p is
a path variable and m(p) = mn(n1)me(e1)mn(n2) . . .mn(nk)me(ek)mn(nk+1)
if p is of the form n1e1n2 . . . nkeknk+1.

In the sequel, we will drop subscripts and simply write m(t) for the appli-
cation of a match or a homomorphism m on item t when it is clear from the
context.

Definition 10 (compatible matches). Two matches m1 : L1 → G1 and m2 :
L2 → G2 are compatible, written as m1 ∼ m2, if m1(x) = m2(x) for each
x ∈ V(L1) ∩ V(L2). Given two compatible matches m1 : L1 → G1 and m2 :
L2 → G2, let m1 ./ m2 : L1 ∪ L2 → G1 ∪G2 denote the unique match such that
m1 ./ m2 ∼ m1 and m1 ./ m2 ∼ m2 (which means that m1 ./ m2 coincides with
m1 on L1 and with m2 on L2).

Definition 11 (set of matches). Let L be an open PGP and G a PGP. A set
m of matches, all of them from L to G, is denoted m : L⇒ G. The image of L by
m is the subgraph m(L) = ∪m∈m(m(L)) of G. We denote Match(L,G) : L⇒ G
the set of all matches from L to G. When L is the empty graph ∅, the set
Match(∅, G) : ∅ ⇒ G has one unique element which is the inclusion of ∅ into G,
then we denote iG = Match(∅, G) : ∅ ⇒ G this one-element set and ∅G : ∅ ⇒ G
its empty subset.

Example 2. Let L1 be the following open PGP consisting of two nodes x and y
of label person and one node z of label paper, in addition to two edges x1 and
y1 of label author.
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L1 = (x:person)-[x1:author]->(z:paper)

(y:person)-[y1:author]->(z:paper)

The set of matches m = Match(L1, G1) from L1 to graph G1 of Example 1
consists of 9 matches m = {mi | 1 ≤ i ≤ 9} whose variable assignements are
depicted in the following table.

x y z x1 y1
m1 n1 n2 n5 e2 e3
m2 n2 n1 n5 e3 e2
m3 n2 n3 n6 e4 e5
m4 n3 n2 n6 e5 e4
m5 n1 n1 n4 e1 e1
m6 n1 n1 n5 e2 e2
m7 n2 n2 n5 e3 e3
m8 n2 n2 n6 e4 e4
m9 n3 n3 n6 e5 e5

Definition 12 (Canonical match and Graph equivalence).
If h : L→ G is a match and ∼= a graph equivalence on G, we write h∼= : L→ G∼=
the canonical match obtained from h and ∼=. If h : L → G is a set of matches.
We write h∼= : L→ G∼= the set of matches h∼= : L→ G∼= for every match h in h.

3 Patterns and Queries

In this section we introduce the class of queries we tackle in this paper, namely
the CONSTRUCT queries. As said earlier, such queries easily encode SELECT
or MATCH queries since tables can be translated into graphs. We start by in-
troducing some basic notions such as expressions and some basic operators on
graphs that contribute to define the syntax and the semantics of patterns and
queries.

3.1 Expressions

Queries can be endowed with classical expressions on integers, strings, booleans
etc. which contribute to filtering solutions or computing parts of them such as
aggregation operations.

Let Op1 = {−,NOT, . . .}, Op2 = {+,−,×, /,=, >,<,AND,OR, . . .} and
Agg = {MAX,MIN,SUM,AVG,COUNT,SHORTEST,SIMPLE,TRAIL, . . .}. be
sets of unary operations (resp. binary operations and aggregation operations).

An Expression e and its set of variables V(e) are defined recursively as follows,
where c ∈ V al, x ∈ Vval, y is a node, p ∈ (Prop ∪ Vprp), op1 ∈ Op1, op2 ∈ Op2,
agg ∈ Agg :

e ::= c | x | y.p | op1 e | e op2 e | agg(e1).
V(c) = ∅, V(x) = {x}, V(op1 e) = V(e), V(e1 op2 e2) = V(e1) ∪ V(e2),

V(agg(e)) = V(e), V(y.p) = {y} ∪ ({p} ∩ Vprp).
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The value of an expression with respect to a set of matches m (Definition 13)
is a family of values ev(m, e) = (ev(m, e)m)m∈m indexed by the set m. When the
expression e is free from any aggregation operator then ev(m, e)m is simply m(e).
But in general ev(m, e)m depends on e and m and it may also depend on other
matches in m when e involves aggregation operators. To each basic operator op
is associated a function JopK (or simply op) from values to values if op is unary
and from pairs of values to values if op is binary. To each aggregation operator
agg in Agg is associated a function JaggK (or simply agg) from multisets of
values to values. Note that each family of values determines a multiset of values:
for instance a family c = (cm)m∈m of values indexed by the elements of a set
of matches m determines the multiset of values {|cm | m ∈ m|}, which is also
denoted c when there is no ambiguity.

Definition 13 (evaluation of expressions). Let L be a graph, e an expression
over L and m : L⇒ G a set of matches. The value of e with respect to m is the
family ev(m, e) = (ev(m, e)m)m∈m defined recursively as follows. It is assumed
that each ev(m, e)m in this definition is a value (constant).

– ev(m, c)m = c,
– ev(m,x)m = m(x),
– ev(m, y.p)m = ev(m, e1)m if (m(p), e1) ∈ πG(m(y)),
– ev(m, op e1)m = JopK ev(m, e1)m ,
– ev(m, e1 op e2)m = ev(m, e1)m JopK ev(m, e2)m ,
– ev(m, agg(e1))m = JaggK(ev(m, e1)).

3.2 Operations over Data Graphs and Matches

In graph-to-graph queries, one may have to construct new graphs during the
resolution process. Below we define the canonical match Build(m,R) : R →
G ∪Hm,R which builds, from a match m : L → G, a new match starting from
a given graph R by adding, to graph G, the image of R via m, namely Hm,R.
Intuitively, Hm,R is obtained from R by renaming the nodes and edges and the
variables which are not instantiated by m. Hm,R may share nodes and edges
with G according to the definition of m.

Definition 14 (building a match). Let m : L → G be a match and R an
open PGP with possible expressions as values such that Vpth(R) ⊆ Vpth(L),
Vlab(R) ⊆ Vlab(L) and Vprp(R) ⊆ Vprp(L); that is, the path variables, the label
variables and the property variables appearing in R also occur in L. The match
Build(m,R) : R → G ∪ Hm,R is the unique match (up to variable renaming)
based on the following six functions hn, he, hlab, hval, hprp and hpth where R =
(NR, ER, PR, srcR, tgtR, λR, πR) and Hm,R = (NH , EH , PH , srcH , tgtH , λH , πH)
such that:

– hn : NR → NH such that hn(x) = m(x) if x ∈ NR ∩NL ; otherwise hn(x) =
x′ where x′ is a fresh node.
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– he : ER → EH such that he(x) = m(x) if x ∈ ER ∩ EL ; otherwise he(x) =
x′ where x′ is a fresh edge with srcH(x′) = hn(srcR(x)) and tgtH(x′) =
hn(tgtR(x))

– hlab : Vlab(R)→ Lab∪Vlab(Hm,R) such that hlab(x) = m(x) if x is a variable
label in Vlab(R) (recall that we assume Vlab(R) ⊆ Vlab(L)) .

– hval : Vval(R)→ V al ∪ Vval(Hm,R) such that hval(x) = m(x) if x is a value
variable in Vval(R) ∩ Vval(L) ; otherwise hval(x) = x′ where x′ is a fresh
value variable.

– hprp : Vprp(R) → Prop ∪ Vprp(Hm,R) such that hprp(x) = m(x) if x is a
property variable in Vprp(R) (recall that we assume Vprp(R) ⊆ Vprp(L)).

– hpth : Vpth(R) → Pth(Hm,R,Vpth(Hm,R)) such that hpth(x) = m(x) (recall
that we assume Vpth(R) ⊆ Vpth(L)).

– λH(hn(x)) = {hlab(z) | x ∈ NR and z ∈ λR(x)}.
– λH(he(x)) = {hlab(z) | x ∈ ER and z ∈ λR(x)}.
– πH(hn(x)) = {(m(p),m(e)) | x ∈ NR and (p, e) ∈ πR(x)}.
– πH(he(x)) = {(m(p),m(e)) | x ∈ ER and (p, e) ∈ πR(x)}.

Example 3. Let m1 : L1 → G1 be the match as defined in Example 2 (cf., the
first column of the table) where
L1 = (x:person)-[x1:author]->(z:paper)<-[y1:author]-(y:person) andG1
the graph defined in Example 1. Let R3 = (x) -[u:coauthor]-> (y).

The match Build(m1, R3) : R3 → G1 ∪ Hm1,R3 is rather straightforward.
The graph G1 ∪Hm1,R3 is obtained from graph G1 by simply adding one edge
with label coauthor from node n1 to node n2. Notice that when one considers
all the 9 matches of Example 2 and apply Build(mi, R3) for each match mi with
1 ≤ i ≤ 9, one gets graph G3 as illustrated in Example 4.

Notation: Let G = (N,E, P, src, tgt, λ, π) be a PGP and x an element in
N ∪E, p a property in Prop and v a value in V al. We denote by G[x.p← v] the
PGP (N,E, P, src, tgt, λ, π′) such that for all i in N ∪ E, π′(i) = π(i) if i 6= x
and π′(x) = π(x) ∪ {(p, v)}.

Hereafter, we define the main operations over graphs and sets of matches
that we use in the definition of the semantics of patterns and thus for queries.

Definition 15 (Operations over Graphs and Sets of Matches).

– For all open PGP graph L and PGP graph G:
Match(L,G) : L⇒ G is the set of all matches from L to G.

– For every set of matches m : L⇒ G and every expression e:
Filter(m, e) = {m | m ∈ m ∧ ev(m, e)m = true} : L⇒ G.

– For all sets of matches m : L1 ⇒ G1 and h : L2 ⇒ G2:
Join(m,h) = {m ./ p | m ∈ m ∧ p ∈ h ∧ m ∼ p} : L1 ∪ L2 ⇒ G1 ∪G2.

– For every set of matches m : L⇒ G from an open PGP graph L to a PGP
graph G. For all x, a node or an edge, in L, p a property in Prop∪ Vprp(L)
and v a value in V al:

Set(m, e, x, p) : L⇒ ∪m∈mG[m(x).m(p)← ev(m, e)m]
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– For every set of matches m : L ⇒ G from an open PGP graph L to a
PGP graph G and every open PGP graph R such that Vpth(R) ⊆ Vpth(L),
Vlab(R) ⊆ Vlab(L) and Vprp(R) ⊆ Vprp(L):

Build(m,R) = {Build(m,R) | m ∈ m} : R⇒ G ∪ ∪m∈mBuild(m,R)(R).
Let ∼= be a graph equivalence on G ∪ ∪m∈mBuild(m,R)(R). Then

Buildeq(m,R,∼=) = Build(m,R)∼= : R⇒ [G ∪ ∪m∈mBuild(m,R)(R)]∼=.

3.3 Patterns and CONSTRUCT Queries

Patterns are the main building blocks of queries. They can be nested. The se-
mantics of a pattern Patt is defined as a set of matches. The source graph of such
matches is a graph called scope graph of pattern Patt and denoted by [Patt].

Definition 16 (syntax of patterns). Patterns Patt and their scope graphs
[Patt] are defined recursively as follows.

– The symbol � is a pattern, called the empty pattern, and [�] is the empty
graph ∅.

– If L is an open property graph with paths then Patt = BASIC(L) is a pattern,
called a basic pattern, and [Patt] = L.

– If P1 is a pattern and e a boolean expression such that V(e) ⊆ V([P1]) then
Patt = (P1 FILTER e) is a pattern and [Patt] = [P1].

– If P1 and P2 are patterns then Patt = P1 JOIN P2 is a pattern and [Patt] =
[P1] ∪ [P2].

– If P1 is a pattern, e a value expression such that V(e) ⊆ V([P1]), x a node in
[P1] and p is a property (in Prop∪Vprp([P1])) then Patt = (P1 SET x.p = e)
is a pattern and [Patt] = [P1].

– If P1 is a pattern, R an open PGP such that Vpth(R) ⊆ Vpth(P1), Vlab(R) ⊆
Vlab(P1) and Vprp(R) ⊆ Vprp(P1), that is the path variables, the label vari-
ables and the property variables appearing in R also occur in P1, x ∈ NR
and p is either a property (∈ Prop) or a star ?, then
Patt = (P1 BUILD R [GROUP x.p]∗) is a pattern and [Patt] = R.

Definition 17 (evaluation of patterns, set of solutions). The set of so-
lutions or the value of a pattern Patt over a PGP, G, is a set of matches
JPattKG : [Patt] ⇒ G(Patt) from the scope graph [Patt] of Patt to a graph
G(Patt) that contains G. This value JPattKG : [Patt]⇒ G(Patt) is defined induc-
tively as follows:

– J�KG = ∅G : ∅ ⇒ G.
– JBASIC(L)KG = Match(L,G) : L⇒ G.
– JP1 FILTER eKG = Filter(JP1KG, e) : [P1]⇒ G(P1).

– JP1 JOIN P2KG = Join(JP1KG, JP2KG(P1)) : [P1] ∪ [P2]⇒ G(P1)(P2)
.

– JP1 SET x.p = eKG =
Set(JP1KG, e, x, p) : [P1]⇒ ∪m∈JP1KGG

(P1)[m(x).m(p)← ev(JP1KG, e)m].
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– JP1 BUILD R [GROUP x.p]∗KG =
Buildeq(JP1KG, R,∼=[x.p]∗) : R⇒ [G(P1) ∪ (Build(JP1KG, R)]∼=[x.p]∗ .

The BUILD clause is key in the construction of new data. The evaluation
of a pattern of the form P1 BUILD R with respect to a graph G, generates a
new copy of graph R for every match mi in the set of matches JP1KG. However,
there are situations where the generation of new copies of R may go beyond
the desired output data mainly due to duplication of nodes(cf. the institution
nodes in Example 7). To overcome such a situation, we provide a declarative
way to specify graph congruences, the role of which is to make equal some of the
nodes which have been generated separately by the BUILD clause. For that
we use the GROUP clause, inspired from [1], to specify graph congruences.
In a pattern P1 BUILD R [GROUP x.p]∗, the optional clause [GROUP x.p]∗

provides the possibility to equate or merge some nodes, image of given nodes
x in R, by using an induced graph equivalence, ∼=[x.p]∗ . Two different nodes u
and v are ∼=[x.p]∗ equivalent if u and v are both images of one node x in R via

two different matches m1 and m2 in G(P1), say m1(x) = u and m2(x) = v,
such that u and v share a common value for property p. That is, there exists
a value c with (p, c) is in π(m1(x)) ∩ π(m2(x)). Whenever p is a star, all nodes
images of a node x in R are equivalent regardless the values associated to the
properties. Recall that the equivalence ∼=[x.p]∗ is such that x represents a node
and p a property. Hence, ∼=[x.p]∗ does not equate edges, i.e., two edges e1 and
e2 are ∼=[x.p]∗ equivalent if and only if e1 and e2 are identical (e1 = e2). We do
not allow x to be an edge because otherwise the generated equivalence, ∼=[x.p]∗ ,
would not be a graph equivalence in general (Definition 5), that is, two edges
may be equivalent but not their sources or targets.

Example 4. We consider pattern BASIC(L1) where L1 is the graph defined in
Example 2 and define two new patterns L2 and L3. The role of L2 is to select
only matches that maps different authors, that is the matches which satisfy
the condition x <> y. These matches JL2KG1 are {m1,m2,m3,m4} seen in
Example 2. Pattern L3 constructs the relationship coauthor deduced from the
evaluation of pattern L2 by building graph R3 = (x) -[u:coauthor]-> (y).

L2 = BASIC(L1) FILTER x <> y

L3 = L2 BUILD R3

The evaluation of pattern L3, JL3KG1 : R3⇒ G3, transforms graph G1 into
graph G3, depicted in Fig. 2, by adding the coauthor edges.

Example 5. To illustrate the use of JOIN operation to build a pattern, we
reconsider pattern L2 again. L2 can be reformulated as a join of two basic
patterns before the filter clause.

L2bis = (BASIC( (x:person)-[x1:author]->(z:paper)) JOIN

BASIC((y:person)-[y1:author]->(z:paper)))

FILTER x <> y
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Fig. 2. Property Graph G3, target of JL3KG1

Example 6. We illustrate here the use of aggregation and path variables in a
pattern. We define pattern L4 which consists of a path variable w. The source
of the path variable w is a node of label person, (x:person) and its target
is the node corresponding to the author P. Erdős, (y: person) where y.name

= Paul Erdos. Two properties are required from path w: (i) to be a trail (no
edge can occur twice in w). This condition makes finite the possible paths in
the considered graph to match with. (ii) to be shortest. An additional condition
over w requires that all edges composing w have labels coauthor, written as
w : coauthork. Then, for each author, the length of such path w provides the
Erdős number which states the collaboration distance between an author and P.
Erdős. We write pattern L4 as follows:

L4 = BASIC((x:person) -[w:<Shortest, Trail> coauthor^k] (y:person))

WHERE k>=0, y.name = Paul Erdos

SET x.Erdos number = length(w)

The evaluation of JL4KG3 is obvious. Its target graph G4 is illustrated in
Fig. 3 where properties Erdos number have been filled.

Example 7. We illustrate here the use of the GROUP clause. We define pattern
L5 which builds, for each author, new nodes corresponding to the institutions
the author worked at. Such nodes should be grouped by their names. That is,
two nodes representing the same institution should be merged. An edge of label
worked-at is added between authors and their institutions. Pattern L5 can be
defined as follows:

L5 = BASIC((x:person)) BUILD (x) -[v:worked-at]->(i:institution)

SET i.name = x.inst

GROUP i.name

The evaluation of pattern L5 over graphG4, JL5KG4, is a set of matches whose
target graph G5 is depicted in Fig 4. Notice that node n8 has been generated
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Fig. 3. Graph G4 illustrating the computation of Erdős numbers

only once instead of three thanks to the clause GROUP i.name which grouped all
nodes with the same institution name. The three authors of the running example
did work at IAS (Princeton).

Fig. 4. Graph G5 with new institution nodes grouped by names

Below we define the CONSTRUCT queries.

Definition 18 (CONSTRUCT Queries). Let L be a pattern, R an open
PGP, x a node in R and p a property. A CONSTRUCT query, Q,is of the form

CONSTRUCT R [GROUP x.p]∗ WHERE L

The GROUP clause is optional. The result of a query Q over a graph G, denoted
ResultC(Q,G), is the subgraph of G(P ) image of R by the set of matches JP KG
where P is the pattern P = L BUILD R [GROUP x.p]∗ .
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From the definition of CONSTRUCT queries, we notice that a query spec-
ifies only the part (graph R) of the target graph to be displayed. Hence, the
main important syntactic notion is that of patterns. In the following section, we
investigate an operational semantics for patterns and queries.

4 A Rule-based Operational Semantics

In this section we use rewriting techniques to define an operational semantics
to solve patterns and queries. In classical declarative programming languages,
goal solving procedures are based on some well known techniques such as nar-
rowing [3] or resolution [9]. Solving a goal g0 consists in developing derivations
of the form

g0  [σ0] g1  [σ1] g2 . . . gn  [σn] gn+1

where gn+1 is a “terminal” goal such as the empty clause, unifiable equations or
the constant true. A solution is obtained by simple composition of local substi-
tutions σn ◦ . . . σ1 ◦ σ0 with restriction to variables of the initial goal g0. In this
paper, g0 is a pattern or a query and the underlying program is a graph (i.e.,
a database) augmented by a set of rewriting rules defining the behavior of two
functions Solve (for patterns) and SolveQ (for queries). Due to the use of aggre-
gation operators in the patterns, one has to compute all solutions simultaneously
and thus handle a set of substitutions or matches instead of one substitution at
each step as in classical declarative languages. In order to have an easy way to
handle such sets of matches, we introduce below the notion of configuration.

Definition 19 (configuration). Let m : L⇒ G be a set of matches from L to
G and P a pattern. A configuration is denoted using a mixfix notation as a pair
[P,m : L⇒ G] or simply [P,m]. An initial configuration is a configuration of the
form [P, iG : ∅ ⇒ G] where iG = Match(∅, G) is the set with one unique element
that is the inclusion of the empty graph, ∅, into G. A terminal configuration is
a configuration of the form [�,m : L⇒ G].

A configuration [P,m : L ⇒ G] represents a state where P is a pattern to
solve with respect to the current database G. G is the target of the current
set of matches m : L ⇒ G. Finding solutions of a pattern P over a graph G
consists in starting from the term Solve([P, iG : ∅ ⇒ G]) which applies the
function Solve to an initial configuration by performing appropriate rewriting
rules to transform configurations until reaching a terminal configuration of the
form [�,m : L⇒ G′] where m : L⇒ G′ represents the expected set of matches
(solutions) of P over G and where G′ is the graph obtained after solving the
pattern P over G. Notice that G′ contains G but they are not necessarily equal.

In Fig. 5, we provide a rewriting system, RPG
gq , which defines the function

Solve. This function is defined by structural induction on the first component
of configurations, i.e., on patterns. The second argument of configurations, i.e.,
the sets of matches, in the left-hand sides defining the function Solve are always
variables of the form m : L ⇒ G or simply m and thus can be handled easily
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in the pattern-matching process of the left-hand sides of the proposed rules (no
need to higher-order pattern-matching nor unification). In the rules of RPG

gq , the
variable P ranges over patterns while variables L,G and R are ranging over PGP
graphs and ∅ is the constant denoting the empty graph. Symbol e is a variable
over value expressions and x (resp. p) is a variable ranging over nodes (resp.
over properties) while m and h are variables ranging over sets of matches. Some
constraints of the rules use operations already introduced in Definition 15, such
as Match, Set, Filter, Buildeq.

Fig. 5. RPG
gq : Rewriting rules for patterns

r0 : Solve ( [�, m ] ) → [�, ∅G : ∅ ⇒ G ]

r1 : Solve ( [ BASIC(L), m ] ) → [�, h : L⇒ G ]
where h = Match(L,G)

r2 : Solve ( [P SET x.p = e, m ] ) → SolveST (Solve ( [P, m ] ), e, x, p)
r3 : SolveST ( [�, m ], e, x, p) → [�, h ]

where h = Set(m, e, x, p)

r4 : Solve ( [P FILTER e, m ] ) → SolveFR (Solve ( [P, m ] ), e)
r5 : SolveFR ( [�, m ], e) → [�, h ]

where h = Filter(m, e)

r6 : Solve ( [P BUILD R [ GROUP x.p]∗, m ] ) → SolveBU (Solve ( [P, m ] ), R, [x.p]∗)
r7 : SolveBU ( [�, m ], R, cong) → [�, h ]

where h = Buildeq(m,R,∼=cong)

r8 : Solve ( [P1 JOIN P2, m ] ) → SolveJL (Solve ( [P1, m ] ), P2)
r9 : SolveJL ( [�, m ], P ) → SolveJR (m,Solve ( [P, m ] ))
r10 : SolveJR (m, [�, m′ ] ) → [�, h ]

where h = Join(m,m′)

In the sequel, we write Pgq(X ) for the term algebra over the set of variables
X generated by the operations occurring in the rewriting system RPG

gq .

Rule r0 considers the degenerated case of the empty pattern �. In this case
there is no solution and the empty set of matches ∅G is computed.

Rule r1 is key in this system because it considers basic patterns of the
form BASIC(L) where L is a PGP graph with possible variables to be in-
stantiated. In this case Solve ( [ BASIC(L), m ] ) consists in finding all matches
from L to G. These matches instantiate variables in L thanks to the constraint
h = Match(L,G) of rule r1. This variable instantiation process is close to the
narrowing-based procedures [3]. In this paper, we do not need all the power of
narrowing procedures because manipulated data are mostly flat (mainly con-
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stants and variables). Thus the unification process used at every step in the
narrowing relation is beyond our needs. On the other hand, the classical rewrit-
ing relation induced by the above rewriting system is not enough since variables
occurring in patterns have to be instantiated and such an instantiation cannot
be done by simply rewriting the initial term Solve([P, iG : ∅ ⇒ G]). Therefore,
we propose hereafter a relation induced by the above rewriting system that we
call gq-narrowing. Before defining this relation, we recall some notations about
first-order terms. Readers not familiar with such notations may consult, e.g., [4].

Definition 20 (position, subterm replacement, substitution, t ↓gq). A
position is a sequence of positive integers identifying a subterm in a term. For
a term t, the empty sequence, denoted Λ, identifies t itself. When t is of the
form g(t1, . . . , tn), the position i.p of t with 1 ≤ i ≤ n and p is a position in ti,
identifies the subterm of ti at position p. The subterm of t at position p is denoted
t|p and the result of replacing the subterm of t at position p with term s is written
t[s]p. t↓gq is the term obtained from t after evaluation of all expressions (i.e.,
operations such as Filter, Match, Buileq etc.). A substitution σ is a mapping
from variables to terms. When σ(x) = u with u 6= x, we say that x is in the
domain of σ. We write σ(t) to denote the extension of the application of σ to a
term t which is defined inductively as σ(c) = c if c is a constant or c is a variable
outside the domain of σ. Otherwise σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

Definition 21 (gq-narrowing  ). The rewriting system RPG
gq defines a bi-

nary relation  over terms in Pgq(V) that we call gq-narrowing relation. We
write t  [u,lhs→rhs,σ] t

′ or simply t  t′ and say that t is gq-narrowable to t′

iff there exists a rule lhs → rhs in the rewriting system RPG
gq , a position u in

t and a substitution σ such that σ(lhs) = t|u and t′ = t[σ(rhs)↓gq]u. Then  ∗

denotes the reflexive and transitive closure of the relation  .

Notice that in the definition above of term t′ = t[σ(rhs)↓gq]u, the substi-
tution σ is not applied to t as in narrowing (σ(t[rhs]u ↓gq) but only to the
right-hand side (σ(rhs)). This is mainly due to (i) the fact that the unifica-
tion process is pushed back into rules’ constraints and (ii) the fact that aggre-
gations require local instantiations only. Therefore there is no need to prop-
agate variable instantiations. Actually, If we consider again rule r1, t′ would
be of the form t′ = t[�, (Match(σ(L), G) : σ(L)⇒ G)↓gq]u where the evalua-
tion of the Match operation instantiates variables occurring in the pattern (or
goal to solve) BASIC(σ(L)) just like classical narrowing procedures when rules
such as f(t1, . . . , tn) → r are transformed or flattened into f(x1, . . . , xn) → r |∧n

1 Unif(xi, ti).

Definition 22 (gq-narrowing derivations). Let G be a graph, P a pattern
and m a set of matches. The evaluation of P over G consists in computing
gq-narrowing derivations of the form:

Solve([P, iG : ∅ ⇒ G]) ∗ [�,m]
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Notice that Solve([P, iG : ∅ ⇒ G]) is intended to find both the solutions
(matches) of pattern P over graph G and the graph G′ obtained after trans-
forming graph G along the evaluation of the sub-patterns of P .

Example 8. We consider pattern L3 as defined in Example 4. L3 = L2 BUILD R3
where L2 = BASIC(L1) FILTER x <> y.

The expected gq-narrowing derivation over G1 is as follows:

Solve ( [L3, iG1 ] )
 r6 SolveBU (Solve ( [L2, iG1 ]), R3, id )
 r4 SolveBU (SolveFR (Solve ( [BASIC(L1), iG1 ]), x <> y), R3, id )
 r1 SolveBU (SolveFR ( [�, Match(L1, G1) ], x <> y), R3, id )
 r5 SolveBU ([�, Filter(Match(L1, G1), x <> y) ], R3, id )
 r7 [�, Buildeq(Filter(Match(L1, G1), x <> y), R3, id) ]

The expression Buildeq(Filter(Match(L1, G1), x <> y), R3, id) evaluates to
a set of matches whose codomain is exactly the graph displayed in Fig.2. Notice
that when the GROUP clause is empty, the equivalence on nodes is the identity
(reflexivity) denoted by the symbol id in the third argument of the Buildeq
operator.

Proposition 1 (termination). The relation  is terminating.

Proposition 2 (determinism). Let t0  t1  . . .  tn be a gq-narrowing
derivation with t0 = Solve([P, iG]). For all i ∈ [0..n], there exists at most one
position ui in ti such that ti can be gq-narrowed into ti+1.

Theorem 1 (soundness). Let G be a graph, P a pattern and m a set of
matches such that Solve([P, iG])  ∗ [�,m]. Then for all morphisms m in m,
there exists a morphism m′ equals to m up to renaming of variables such that
m′ is in JP KG.

Theorem 2 (completeness). Let G1, G2 and X be graphs, P a pattern and
h : X ⇒ G2 a match in JP KG1

. Then there exist graphs G′2 and X ′, a set
of matches m : X ′ ⇒ G′2, a derivation Solve([P, iG1

]  ∗ [�,m] and a match
m : X ′ ⇒ G′2 in m such that m and h are equal up to variable renaming.

In Fig. 6, we enrich the rewriting system RPG
gq by means of two additional

rules which tackle CONSTRUCT queries. the result of a CONSTRUCT query
Q over a graph G is a graph ResultC(Q,G). The specification of the display
function PrintC is out of the scope of the present paper. The Soundness and
completeness of the calculus with respect to CONSTRUCT queries are direct
consequences of Theorems 1 and 2.

5 Conclusion and Related Work

We proposed a symbolic procedure based on rewriting techniques to solve pat-
terns or CONSTRUCT graph queries for a core graph query language. The
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Fig. 6. RPG
gq (continued): Rewriting rules for queries

r11 : SolveQ(CONSTRUCT R [GROUP x.p]∗ WHERE P,G) → DisplayC(R,Solve( [P BUILD R [GROUP x.p]∗, iG ] ) )
r12 : DisplayC(R, [�, m ]) → PrintC(R,m)

considered data graphs are represented by the so-called property graphs. The
proposed procedure is deterministic, sound and complete. By the nature of the
considered graphs, our procedure differs from the one presented for RDF graphs
in [7]. The operators on property graphs feature new needs such as SET or
GROUP clauses in addition to the way paths play an important role in queries.

The notion of pattern present in this paper is close to the syntactic notions of
clauses in [8] or graph patterns in [2]. For such syntactic notions, some authors
associate as semantics sets of variables bindings (tables) as in [8, 10] or simply
graphs as in [1]. In our case, we associate both variable bindings and graphs
since we associate sets of graph homomorphisms to patterns. This semantics
is borrowed from a first work on formal semantics of graph queries based on
category theory [6]. Our semantics allows composition of patterns in a natural
way. Such composition of patterns is not easy to catch if the semantics is based
only on variable bindings but can be recovered when queries have graph outcomes
as in G-CORE [1].
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