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Abstract – Many models involve the Coulomb’s law in order to describe dynamical properties of friction phenomena. In order to generalize this 
Coulomb’s law and to deal with its correct mathematical expression, we study a nonlinear equation where we take into account a maximal monotone 
graph. In the particular case of Coulomb’s law, existence and uniqueness are proved. But in the general case, only existence persists. A counter-example 
to uniqueness is given. 

friction / Coulomb’s law / maximal monotone graph

1. Introduction

For twenty years, many studies have been devoted to nonlinear oscillations. Either they can deal with smooth

nonlinearities due to the geometry (oscillations of a pendulum or large flexural displacements of a beam), or

to constitutive laws (nonlinear elasticity, etc.), or to active forces (aeroelastic dry and lift forces depending on

velocity and displacement of a structure). They can also investigate non-smooth non-linearities that modelize

for example impacts (Whiston, 1987) or constitutive laws (Capecchi and Vestroni, 1995), or friction phenomena

(Jean and Pratt, 1985).

In this study, we only deal with mechanical models including dry friction. We consider two distinct classes

of models. A first class involves all the mechanical models with Coulomb’s friction, and a second one involves

all the other models: this last class contains all the models with a friction force which is not a constant during

the dynamical phase.

We consider the one-dimensional motion of a material point on a plane support moving at velocity v(t);

this point is submitted to a normal force directed downwards, Fn, which creates a longitudinal friction force.

Moreover, the material point is submitted to given dynamics. The mathematical formulation of this problem is

ẍ(t) = F
(

t, x(t), ẋ(t)
)

− µDFn sgn
(

ẋ(t) − v(t)
)

, if ẋ(t) − v(t) 6= 0, (1)

ẍ(t) = F
(

t, x(t), ẋ(t)
)

+ Fl, with Fl ∈ [−µSFn,µSFn], if ẋ(t) − v(t) = 0, (2)

where µD and µS are the dynamical and static friction coefficients; ẋ(t) denotes velocity relative to the support,

and F describe the longitudinal dynamics. We assume that F is a Lipschitz continuous function with respect

to its last arguments (x, ẋ).

* Correspondence and reprints. E-mail: claude.lamarque@entpe.fr
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This model had been studied for a long time because it is very simple, especially in the case of a spring-mass

system with a passive external solicitation. In such a case, F is written as

F(t, α,β) = −αβ − ω2α (3)

with specific (per unit mass) viscous damping a and eigenfrequency of the system ω.

Den Hartog (1956) studied the Coulomb’s model with a linear spring and viscous damping. This article

focused on the instability induced by friction. Other authors deal with friction coefficients µD and µS which are

constants (Awrejcewiczs and Delfs, 1990), which are increasing functions of time (Caudet, 1964; Baumberger,

et al. 1990) or which are functions of the relative velocity (Dowell and Schwarz, 1983; Popp, 1989; Rabinowicz,

1996). If µD is a constant equal to µD , a proof of existence and uniqueness of a solution has been given in

(Monteiro Marques, 1994). This paper by Monteiro Marques provides two sufficient conditions for uniqueness.

This article is organised as follows. In Section 2, we present a simple model where µD is a constant and µS

is an increasing function of time (this case includes Coulomb’s friction). In Section 3, we give an example of

non-uniqueness, and in Section 4 we give a numerical scheme which has the same non-uniqueness properties

as the continuous problem. Finally we draw conclusions.

2. Introduction of the model

Let us consider again Eqs (1) and (2). Let us choose Fn = 1. We intend to study a solid with abscissa x(t),

moving on a plane rigid support, with velocity v(t), submitted to an external smooth force F(t, x(t), ẋ(t)) and

to friction φ(t); ẋ(t) denotes the velocity relative to the referential. Thus this model can be expressed as

ẍ(t) = F
(

t, x(t), ẋ(t)
)

+ φ(t), (4)

x(0) = x0, (5)

ẋ(0) = ẋ0. (6)

Now let us describe the friction term: our model of friction takes into account the points of view of Caudet

(1964) and Baumberger et al. (1990). This model is based upon the motion of last blocking time. Let w be a

continuous function on [0, T ] and let

b(t,w) =

{

t, if w(t) 6= 0,

sup
{

s ∈ [0, t[ such that w(s) 6= 0
}

, if w(t) = 0.
(7)

This definition assumes that if w(0) = 0, a non positive b(0,w) is given. We consider the different phases:

static ones (ẋ(t) − v(t) = 0) and dynamic ones (ẋ(t) − v(t) 6= 0).

We introduce two coefficients: a dynamic friction coefficient µD and a static friction coefficient µS(t). The

coefficient µD is a strictly positive constant and µS(t) is an increasing positive function, bounded on every

static phase. So we have

{

φ(t) = −µD sgn
(

ẋ(t) − v(t)
)

, if ẋ(t) − v(t) 6= 0,

φ(t) ∈
[

−µS(t),µS(t)
]

, if ẋ(t) − v(t) = 0,
(8)

where

µS(t) = h
(

t − b(t, ẋ − v)
)

, (9)
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where h is an increasing bounded positive function from ]0,+∞[ to ]0,+∞[. We can simplify (8) and (9) by

setting

h(0) = µD (10)

with µD 6 µS , and we consider the maximal monotone graph σ defined by

σ (x) =







−1, if x < 0,

1, if x > 0,

[−1,1], if x = 0.

(11)

So (8) and (9) are equivalent to

φ(t) ∈ −σ
(

ẋ(t) − v(t)
)

h
(

t − b(t, ẋ − v)
)

. (12)

Thus, for given F , v, b, σ , h, x0, and ẋ0, we seak functions x and φ from [0, T ] to R, such that Eqs (4) and

(12) are verified with initial conditions (5) and (6). Let us observe that φ can be eliminated from (4) and (12)

ẍ(t) + σ
(

ẋ(t) − u(t)
)

h
(

t − b(t, ẋ − v)
)

∋ F
(

t, x(t), ẋ(t)
)

. (13)

If we assume that h is a positive constant µ = µD , (12) is equivalent to

{

φ(t) = −µ sgn
(

ẋ(t) − v(t)
)

, if ẋ(t) − v(t) 6= 0,

φ(t) ∈ [−µ,µ], if ẋ(t) − v(t) = 0
(14)

and we find again the particular case of Coulomb’s model. If velocity ẋ is denoted by y, Eqs (5), (6) and (13)

are equivalent to

ẏ(t) + σ
(

y(t) − v(t)
)

h
(

t − b(t, y − v)
)

∋ F

(

t, x0 +

∫ t

0

y(s)ds, y(t)

)

, (15)

where y verifies the initial condition

y(0) = ẋ0. (16)

3. Existence and uniqueness results: ill-posed model

F is continuous with respect to all its arguments and Lipschitz continuous with respect to its last two

arguments x and ẋ; then there exists a solution x to (5), (6) and (13). In the particular case of Coulomb’s

friction, x is unique. In the general case, uniqueness is not true. Moreover, one can exhibit an example with

non-uniqueness for the problem (15), (16). We assume now that

1. y(0) = 0, v = 0, (17)

2. h is increasing, continuous and strictly positive on R+, (18)

3. Let also F be defined by F(t, a, b) = h(t). (19)

A family of distinct functions {yu}u∈[0,T ] is defined as follows

∀t ∈ [0, u], yu(t) = 0, and ∀t ∈ [u,T ], yu(t) =

∫ t

u

h(s)ds − h(0)(t − u). (20)
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We verify readily that yu solves (15), (16). We also notice that yu 6= yv when u 6= v. Thus, the solution to Eqs

(15) and (16) is not unique.

By using the same idea, can show the sensitivity of the solutions to data. Let us set

∀t ∈ [0, T ], y0(t) =

∫ t

0

h(s)ds − h(0)t, and yT ≡ 0 (21)

and for every ε ∈ R

fε = h + ε. (22)

Consider functions {Yε}ε∈R such that for every ε ∈ R and for every t ∈ [0, T ]

Yε(t) =

{

y0(t) + εt, if ε > 0

0, if ε 6 0.
(23)

For every ε ∈ [−2h(0),+∞[, we have

Ẏε + σ
(

Yε(t)
)

h
(

t − b(t, Yε)
)

∋ fε, and Yε(0) = 0. (24)

But y0 and yT are two distinct solutions to (15), (16) and

lim
ε→0+

Yε = y0, lim
ε→0−

Yε = yT , lim
ε→0

fε = h, in C0
(

[0, T ]
)

. (25)

Thus the solutions are not continuous with respect to the data.

4. Numerical scheme

Let us consider the counter-example to uniqueness of Section 3 defined by Eqs (15) and (20) and assumptions

(17), (18) and (19). Its solutions can be approximated by a numerical scheme similar to the implicit Euler

scheme for first-order differential equations. Let δ ∈ [0, T ], let N be the integer part of T /δ and tn = nδ, for

every n ∈ {0, . . . ,N}. Define continuous and piecewise linear functions zδ on [0, T ] by their values at the nodes

tn

∀n ∈ {0, . . . ,N}, Zn = zδ(tn). (26)

Let Z0 = y0 and assume that the Zn’s satisfy the following relation

∀n ∈ {0, . . . ,N − 1},
Zn+1 − Zn

δ
+ σ (Zn+1)h

(

tn+1 − b(tn+1, zδ)
)

∋ h(tn+1). (27)

According to Brezis (1973), if A is a maximal monotone graph, for every λ > 0, I + λA is invertible; i.e., for

every y ∈ R, the equation

x + λA(x) ∋ y (28)

admits a unique solution, denoted

x = (I + λA)−1(y). (29)
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In the case of the Coulomb’s friction, we have h = µ > 0 and according to (27), (28) and (29) Zn+1 is defined

by

∀n ∈ {0, . . . ,N − 1}, Zn+1 = (I + µδσ)−1
(

δh(tn+1) + Zn

)

. (30)

Let us show that with assumptions (17), (18), (19), scheme (27) has several solutions.

Let us assume for n ∈ {0, . . . ,N − 1}, Z0 = · · · = Zn = 0.

(1) If Zn+1 = 0, we have according to Eq. (7)

b(tn+1, zδ) = 0 and h
(

tn+1 − b(tn+1, zδ)
)

= h(tn+1) (31)

and Eq. (27) is verified.

(2) If Zn+1 > 0, we have according to Eq. (7)

b(tn+1, zδ) = tn+1 and h
(

tn+1 − b(tn+1, zδ)
)

= h(0) (32)

and Eqs (27), (28), (29) imply

Zn+1 =
(

I + h(0)δσ
)−1(

δh(tn+1)
)

. (33)

Because σ is strictly increasing, one can verify that the value of Zn+1 given by (33) is strictly positive. Then

in both cases, Zn+1 is a solution of (27). This numerical scheme has therefore N solutions.

5. Conclusion

We have generalized Coulomb’s law into a law which involves the last blocking time. We have proved

existence for this model, and given a counter-example to uniqueness. Therefore the model under study is

defective, and other models which possess better properties should be considered. It would be an interesting

perspective to mathematically analyze models or which µS could depend on the relative abscissa, or the velocity

of the support.

Otherwise, in order to justify non-uniqueness of solutions to problem (15) in the general case, we can note

that this problem can be written in the form

ẏ(t) + At,y

(

y(t)
)

∋ F

(

t, x0 +

∫ t

0

y(s)ds, y(t)

)

, (34)

where at each given time t , the graph u → At,y(u) is maximal monotone one. But, the friction is no longer

maximal monotone when t is varying in [0, T ]. This remark can explain a posteriori the lack of uniqueness for

the studied problem.
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