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We present a special class of mechanical systems that could be written as Chua circuits with
discontinuities. We recall the general frame for the study of such models. Results of existence
and uniqueness are given. Then numerical results obtained via piecewise analytical expressions
are presented. We discuss some bifurcation diagrams, phase portraits. Chaos is characterized
by computing Lyapunov exponents. We analyze the global behavior in a special case where
discontinuity stabilizes the trivial equilibrium solution.

1. Introduction

Many works have been devoted to the study of
the global behavior of smooth nonlinear oscilla-
tors (Duffing oscillator [Ueda, 1979], shallow arches
[Szemplinska-Stupnicka et al., 1989; Lamarque &
Malasoma, 1992; Malasoma et al., 1994], Lorentz’s
system [Lorentz, 1963; Sparrow, 1982], etc.) or
smooth maps (logistic map [Coullet & Tresser,
1984; Feigenbaum, 1978], etc.): Both periodic,
quasi periodic or chaotic behavior have been in-
vestigated, bifurcations, transitions, universal be-
havior have been studied. At the same time a
number of papers deal with “simpler, integrable”
systems which seem to be “paradigms”: Unimodal
maps [Collet & Eckmann, 1980; Li & Yorke, 1975;
Sharkovski, 1964], Lozi’s attractor [Lozi, 1978],
Chua’s double scroll circuit [Madan, 1993], etc. In-
deed the latter are concerned with piecewise-linear
dynamics exhibiting chaotic behavior via analyti-
cally built Poincaré maps [Lozi, 1978; Chua et al.,
1986; Komuro et al., 1991], etc.
But few studies deal with the bifurcations and

the global behavior of unsmooth systems, i.e. sys-
tems with mathematical difficulties such as discon-
tinuities and, or multivalued differential equations.
Such models are interesting from the point of view

of applications: Impacts, friction and constitutive
laws provide unsmooth models of that type [Paoli,
1993; Paoli et al., 1992; Monteiro Marques, 1994;
Deimling, 1992; Popp & Stelter, 1990; Pfeiffer &
Prestl, 1994; Whiston, 1987; Shaw, 1986; Shaw
& Shaw, 1989; Dowell & Schwartz, 1983; Ferri &
Bindemann, 1995; Moreau, 1988; Awrejcewicz &
Delfs, 1990a; Awrejcewicz & Delfs, 1990b; Capecchi
& Vestroni, 1995; Mahla & Badan Palhares, 1993]
etc.
Mathematical results are sometimes available

for studying existence and uniqueness of such non-
linear dynamical systems [Brezis, 1973; Schatzman,
1978; Deimling, 1992; Monteiro Marques, 1994;
Moreau, 1988], but generally such results are not
followed by correct numerical investigations if the
exact integration of the nonlinear system is not pos-
sible (a correct mathematical frame work is given
in for example [Paoli, 1993; Paoli & Schatzman,
1993]).
Our intention here is to generalize the Chua

double scroll model to a kind of “unsmooth”
paradigm. In Sec. 2, we introduce a model with
a finite number of discontinuities. In Sec. 3, we
describe the mechanical point of view. In Sec. 4,
we present the mathematical frame, study existence
and uniqueness of solutions in the general case, and
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apply the previous results to particular cases of dis-
continuities (at zero, and both −1 and 1). In Sec. 5,
we show how to analytically build the solutions for
the two previous cases. In Sec. 6, we present numer-
ical results for two particular cases. In the first case
two discontinuities at −1 and 1 are considered: Bi-
furcation diagrams are presented and transition to
chaos via a bifurcation cascade is investigated. In
the second case, discontinuity is located at 0. Bifur-
cation diagrams are illustrated by phase portraits,
Poincaré sections and global behavior. Trapping ar-
eas for the trivial equilibrium are studied. Chaos is
pointed out by using the computation of Lyapunov
exponents. Then in the last section we draw conclu-
sions from our work and point out some extensions.

2. Generalized Double Scroll
Chua Circuit

Let us introduce Chua’s system and its generaliza-
tion. Chua’s system is a paradigm [Madan, 1993].
It is related to the behavior of an electrical circuit
possessing a diode with a nonlinear response [Chua
et al., 1986; Komuro et al., 1991]. It is a system
of three differential equations of first order usually
written as











Ẋ = α(Y − h(X))

Ẏ = X − Y + Z

Ż = −βY

(1)

with α and β two positive parameters, and h : R→
R concentrates the nonlinearities. This system can
be given in the form

ẏ = Ly − αH(y) (2)

with

y =





X
Y
Z



 , L =





0 α 0
1 −1 1
0 −β 0



 ,

H





X
Y
Z



 =





h(X)
0
0





(3)

so that we distinguish the linear part from the non-
linear one. The function h is a piecewise-linear func-
tion that is expressed as follows:

h(X) =











m1X + (m0 −m1) if X ≥ 1

m0X if |X| ≤ 1

m1X − (m0 −m1) if X ≤ −1

(4)

with m0 < 0 and m1 > 0. Here we consider gener-
alizations of Chua’s circuit by introducing disconti-
nuities in the frame of multivalued differential equa-
tions. In the previous classical Chua circuit, we only
modify function h. The system we are dealing with
is written as











Ẋ = α(Y − δ(X))

Ẏ = X − Y + Z

Ż = −βY

(5)

where δ(X) = l(X) + m(X). Function l denotes
a piecewise-linear continuous function and m de-
notes a function with a finite number N of dis-
continuities. Indeed, at every point of discontinu-
ity Xj , j = 1, . . . , N we assume that m(Xj) =
[m(X−j ); m(X

+
j )] with

lim
X→Xj
X<Xj

m(X) = m(X−j )

and

lim
X→Xj
X>Xj

m(X) = m(X+j ) (and m(X
+
j ) > m(X−j ))

Thus we obtain a new differential equation (or
rather differential inclusion) of the form

ẏ −Ly + α∆(y) ∋ 0 (6)

with

∆ :



















R
3 → R3






X

Y

Z






7→







δ(X)

0

0







(7)

and ∆ = L+M where

L :



















R
3 → R3






X

Y

Z






7→







l(X)

0

0







M :



















R
3 → R3






X

Y

Z






7→







m(X)

0

0







(8)

For the numerical study, we deal with two par-
ticular cases: First a symmetric discontinuity both
in −1 and 1 added to the classical Chua system, and
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second a single discontinuity in 0 similarly added to
the Chua system. The first case corresponds to

l = h m(X) =











−ε if X < −1

0 if − 1 < X < 1

ε if 1 < X

(9)

The second case corresponds to

l(X) =











m1X +m0 −m1 − 2ε if X ≥ 1

(m0 − ε)X − ε if − 1 ≤ X ≤ 1

m1X −m0 +m1 if X ≤ −1
(10)

and the discontinuous function m is defined by

m(X) =

{

0 if X < 0

2ε if X > 0
(11)

It can be noticed that in the case of disconti-
nuity at 0, the slopes of the initial “unperturbed”
Chua circuit are modified. But in the case of dis-
continuity at −1 and 1 these initial slopes remain
unchanged.

3. Mechanical Point of View

Let us show that the Chua circuit corresponds to a
special mechanical system with a particular nonlin-
ear constitutive law. Let us consider the following
one degree of freedom mechanical system:

mẅ + gẇ + kw = −τ(w, ẇ) (12)

Note that [m] = kg, [g] = Ns, [τ ] = Nm−1 and
that w is a nondimensional deformation. Assume
that

τ(w, ẇ) = τ0Ψ(S)

where [τ0] = Nm
−1 and Ψ(S) is nondimensional of

the form

Ψ(S)=























(1+F )S+E−F−Ω for S≥1

(1+E)S−Ω for 0<S≤1

(1+E)S+Ω for − 1≤S<0

(1+F )S−E+F+Ω for S≥1
(13)

where E, F and Ω are nondimensional. S(w, ẇ) is
a nondimensional form of the tension

S =
τ1
τ0
+
τ2
τ0
+
τ3
τ0

where

τ1 = a
′
1w τ2 = a

′
2ẇ τ3 = b

′
1

∫ t

0
w(e)de

Thus we have

S(w, ẇ) = a1w + a2ẇ + b1

∫ t

0
w(e)de

where

a1 =
a′1
τ0

a2 =
a′2
τ0

b1 =
b′1
τ0

and [a1] nondimensional, [a2] = s, [b1] = s
−1. After

introducing the nondimensional time q =
√

(k/m)t,
we get

S

(

w,
dw

dq

)

= a1w + a2

√

k

m

dw

dq
+ ν2

∫ q

0
w(e)de

(14)
Setting

a1 = 1 , a2

√

k

m
= 1 , ν2 =

b1
√

k

m

E = a , F = b , Ω = c

we obtain function ψ of Chua’s equations:

ψ(r) =























(1 + b)r + a− b− c r ≥ 1

(1 + a)r − c 0 < r ≤ 1

(1 + a)r + c −1 < r ≤ 0

(1 + b)r − a+ b+ c r ≤ −1

Our “rheological” nondimensional equation

m





√

k

m





2

d2w

dq2
+ g

√

k

m

dw

dq
+ kw = −τ0Ψ(S)

(15)
corresponds to Chua’s equation

z̈ + ż + (ν2 − ν1)z = −ν1ψ(z̃) (16)

with ˙̃z = z. Comparing (15) and (16) we get

m

√

k

m
g

= 1 ,
k

√

k

m
g

= ν1 − ν2 ,
τ0

√

k

m
g

= ν1

which leads to the equation

k = τ0 − gb1 .
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Fig. 1. Rheological model corresponding to Chua circuit.

Fig. 2. Piecewise-linear characteristic Ψ(s).

This mechanical system is described in Fig. 1
and corresponds to the piecewise-linear characteris-
tic Ψ(s) presented in Fig. 2.
We have introduced several parameters in or-

der to describe our mechanical model. In the next
sections, we deal with the Chua circuit. This Chua
circuit is defined by several parameters: α, β, m0,
m1, ε. Indeed the occurrence of the following rela-
tions allows us to transform our mechanical model

into a Chua circuit:

α=ν1 , β=ν2 , ε=−c , m1=1+b , m0=1+a−c .

4. Existence and Uniqueness
of Solutions

4.1. Usual Chua’s system

Let T ∈ R+⋆ and Ω = [0, T ]. Let us consider the
following ordinary differential equation
{

ẏ(t) = Ly(t)− αH(y(t)) = f(t, y(t)) ∀t ∈]0, T ]

y(0) = y0 ∈ R
3

(17)

Here f ∈ C0(Ω × R3) because L is linear and
H continuous. Moreover, h is piecewise-linear and
then Lipschitz-continuous with Lipschitz constant

K = max(m1 − 2m0, 2m1 −m0) .

So f is Lipschitz continuous with Lipschitz constant

L =
√

max(3 + 2α2K2, 3 + 2α2 + β2) .

The system of Eqs. (17) verifies assumptions of
the Cauchy–Lipschitz theorem that provides exis-
tence and uniqueness of the solution of this system
for every T .

4.2. Mathematical background:
Maximal monotonous operators

Let us recall some useful results that will be used to
prove existence and uniqueness of solutions of the
generalized Chua system.
Let H be a real Hilbert space with scalar prod-

uct (., .) and norm ‖ · ‖.

Definition 1. A multivalued operator A on H is a
map from H to P(H) the set of the subsets of H.
Let us define D(A) = {x ∈ H, Ax 6= ∅}. D(A) is
called the domain of A.

An operator A is identified to its graph inH×H
that is defined by

{(x, y), x ∈ H, y ∈ Hx} .

Definition 2. An operator A on H is monotonous
iff

∀x1, x2 ∈ D(A) (Ax1 −Ax2, x1 − x2) ≥ 0

4
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or exactly

∀x1, x2 ∈ D(A) ∀y1 ∈ Ax1 ∀y2 ∈ Ax2

(y1 − y2, x1 − x2) ≥ 0 .

It can be seen that if A is singlevalued this last
definition actually means that A is increasing. So
a simple example of monotonous operator on R is
given by

f̃ :

{

R→ P(R)

x 7→ [f(x−), f(x+)] ∩ R

with f : R→ R an increasing function.

Definition 3. An operator on H is said to be max-
imal monotonous iff it is maximal in the set of the
monotonous operators on H.
One can notice that “maximal” here refers to

the inclusion of graphs: For two operators A and
B, A ⊂ B iff ∀x ∈ H, Ax ⊂ Bx.

Now let us recall some properties and theorems
that give existence and uniqueness results in the
cases we are dealing with. Proofs and details can
be found in [Brezis, 1973]. Understanding of multi-
valued differential equations can be found in [Deim-
ling, 1992].

Theorem 1. Let A be a maximal monotonous op-
erator. Let D(B) be a convex subset of H and B a
semi-continuous monotonous singlevalued operator
from D(B) to H. Let us assume that D(A) ⊂ D(B)
and that there exists k < 1 and θ a continuous func-
tion so that ∀x ∈ D(A), ‖Bx‖ ≤ k‖A0x‖ + θ(‖x‖)
where A0x is equal to the projection of 0 onto Ax
(we write A0x = ProjAx0). Then A+B is a maxi-
mal monotonous operator.

Let us recall results that link the theory of max-
imal monotonous operators to ordinary differential
equations.

Theorem 2. Let A be a maximal monotonous op-
erator with domain D(A). For all u0 ∈ D(A), there
exists a unique function u : [0, +∞[→ H which
verifies:

(1) ∀t > 0 u(t) ∈ D(A)
(2) u is Lipschitz continuous on [0, +∞[ and
‖du/dt‖L∞([0,+∞[,H) ≤ ‖A

0u0‖

(3) (du/dt)(t) +Au(t) ∋ 0
(4) u(0) = u0
(5) at any t ∈ [0, +∞[, u possesses a right deriva-
tive and we have

∀t ∈ [0, +∞[
d+u

dt
(t) +A0u(t) = 0 .

Property (5) is very important because it is
verified everywhere whereas relationship (3) is only
verified almost everywhere.

Theorem 3. Let A be a maximal monotonous op-
erator with domain D(A). Then for every f ∈
L1([0, T ], H) and every u0 ∈ D(A), there exists a
unique weak solution u of the equation (du/dt) +
Au ∋ f verifying u(0) = u0.

In order to obtain a result similar to property
(5) of Theorem 2, some assumptions have to be
added. We have:

Theorem 4. Let A be a maximal monotonous
operator of H, f ∈ L1([0, T ], H) and let u ∈
C([0, T ], H) be a weak solution of equation
(du/dt) + Au ∋ f . Let t0 ∈ [0, T [ a right Lebesgue
point of f (resp. t0 ∈]0, T [ a Lebesgue point of f).
Let us set

f(t0 + 0) = lim
hց0

1

h

∫ t0+h

t0

f(s)ds

Then the following properties are equivalent:

(i) u(t0) ∈ D(A)
(ii) lim infhց0(1/h)|u(t0+h)−u(t0)| < +∞ (resp.
lim inf h→0

h6=0

(1/h)|u(t0 + h)− u(t0)| < +∞)

(iii) u has a right derivative at t0 and (d
+u/

dt)(t0) = f(t0 + 0)− ProjAu(t0)f(t0 + 0)

The next result leads to a strong solution under
convenient assumptions.

Theorem 5. Let H be a finite dimensional Hilbert
space. Let A be a maximal monotonous operator so
that Int(D(A)) 6= ∅. Let f belong to L1([0, T ], H).
Then every weak solution of the equation (du/dt)+
Au ∋ f is a strong solution.

Indeed a strong solution is a function
u ∈ C([0, T ], H) absolutely continuous on every

5
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compact subset of ]0, T [ verifying:

u(t) ∈ D(A) and almost everywhere in ]0, T [

du

dt
(t) +Au(t) ∋ f

A function u ∈ C([0, T ], H) is a weak solution
if and only if there exists series fn ∈ L

1([0, T ], H)
and un ∈ C([0, T ], H) so that un is a strong solu-
tion of equation (dun/dt)(t) +Aun(t) ∋ fn(t), with
limn→+∞ fn = f in L

1([0, T ], H) and uniformly on
[0, T ]: limn→+∞ un = u.
Hence it can be seen that if f ∈ L1([0, T ]), u

is a strong solution iff u is a weak solution and u
is absolutely continuous on every compact subset of
]0, T [.

Theorem 6. [Brezis, 1973, p. 105]. Let A be a
maximal monotonous operator on H. Let us choose
ω > 0, f ∈ L1([0, T ], H) and u0 ∈ D(A). Then
there is a unique weak solution of the equation







du

dt
(t) +Au(t)− ωu(t) ∋ f

u(0) = u0

One can derive from Theorem 5 and from the
proof of Theorem 6 that if dim(H) < +∞ and
Int(D(A)) 6= ∅ then the weak solution of Theorem 6
is a strong solution.

4.3. Existence and uniqueness for
the generalized Chua circuit

The Usual Cauchy–Lipschitz theorem does not work
in the generalized case. It is not possible to use the
theorem of Caratheodory (see [Crouzeix & Mignot,
1974]) either, which possesses assumptions weaker
than the assumptions of the Cauchy–Lipschitz the-
orem. We apply the results of the theory of maxi-
mal monotonous operators to the generalized Chua
system. Let us consider the following problem:

{

ẏ = Ly − αM(y)− αL(y)

y(0) = y0
(18)

where L is defined in Sec. 1, M denotes a maximal
monotonous operator on R3 and L a Lipschitz con-
tinuous map of R3. The following claim provides
existence and uniqueness of the solution for a sys-
tem even more general than system (18).

Theorem 7. Let A be a maximal monotonous op-
erator on R3 and F a Lipschitz continuous function

on R3. Then system (19) has a unique strong solu-
tion on [0, T ] for every T > 0 where:

{

ẏ +Ay + Fy ∋ 0

y(0) = y0
(19)

Moreover, we have:

∀t0 ∈ [0, T ],
dy+

dt
(t0) = −Proj(A+F )y(t0)(0) . (20)

The proof is obtained by using Theorem 6. Let
us define the Lipschitz continuous operator G on
R
3 as follows: G(y) = F (y) − F (0) and let us set

f ≡ −F (0). Now system (19) is equivalent to (21):

{

ẏ +Ay +Gy ∋ f

y(0) = y0
(21)

Assumptions of Theorem 5 are verified (f ∈
L1([0, T ], R3) and R3 is a Hilbert space of finite di-
mension!). Moreover every t0 ∈ [0, T ] is a Lebesgue
point here because f is constant. So we apply The-
orem 4 to the weak solutions we have just obtained.
Let p be the Lipschitz constant of F . G has the

same Lipschitz constant. By assumption G(0) = 0,
hence we have:

∀x ∈ R3 ‖G(x)‖ ≤ p‖x‖ (22)

Let us set B = G+ pI. We have

∀x ∈ R3 ‖Bx‖ ≤ ‖G(x)‖ + p‖x‖ (23)

and then

∀x ∈ R3 ‖Bx‖ ≤ 2p‖x‖ (24)

B is a monotonous operator: for x1, x2 ∈ R
3 we see

that

(Bx1 −Bx2, x1 − x2) = (G(x1)−G(x2), x1 − x2)

+ p‖x1 − x2‖
2 . (25)

Because

|(G(x1)−G(x2), x1 − x2)|

≤ ‖G(x1)−G(x2)‖ ‖x1 − x2‖

≤ p‖x1 − x2‖
2 (26)

we get

(G(x1)−G(x2), x1 − x2) + p‖x1 − x2‖
2 ≥ 0 (27)

6
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and B is monotonous. We apply Theorem 1, here
with D(A) = D(B) = H = R3, k = 0 and the
continuous function θ is defined by

θ :

{

R
+ → R+

x 7→ 2px
(28)

We obtain A+B maximal monotonous so A+G+
pI = A1 is maximal monotonous. Now we apply
Theorem 6 to A1 and ω = p. There is a unique
weak solution of

{

ẏ +A1y − py ∋ 0

y(0) = y0
(29)

which is indeed a strong solution.
We have

dy+

dt
(t0) = f(t

+
0 ) + py(t

+
0 )

−ProjA1y(t0)(f(t
+
0 ) + py(t

+
0 )) (30)

Because of the equalities A1 = A + G + pI =
A + F − F (0) + pI and f ≡ F (0), we express the
previous relationship in the form:

dy+

dt
(t0) = −F (0) + py(t0)

−Proj(A+F )y(t0)−F (0)+py(t0)

(−F (0) + py(t0))

= −Proj(A+F )y(t0)(0) (31)

Now we can affirm that the problem
{

ẏ +Ay + Fy ∋ 0

y(0) = y0

has a unique strong solution on [0, T ], ∀T > 0. This
solution verifies:

∀t0 ∈ [0, T ],
dy+

dt
(t0) = −Proj(A+F )y(t0)(0) . (32)

We have just proved existence and uniqueness of
the solution of system (18).
One can note that indeed we have proved exis-

tence and uniqueness of the solution of any problem
of the kind of system (18) submitted to a Lipschitz
continuous perturbation.
It is clear that because the solution obtained is

continuous, (18) provides Y and Z in C1(R+) and
X only C1-piecewise because defects of continuity
of Ẋ occur at times t when X(t) is a point of dis-
continuity of function m.

4.4. Applications to two
particular cases

4.4.1. Chua’s system with discontinuities
at −1 and 1

We deal with the system











Ẋ = α(Y − δ(X))

Ẏ = X − Y + Z

Ż = −βY

(33)

with δ(X) = h(X) + m(X). m can be written in
the following form

m(X) =



































{−ε} if X < −1

[−ε, 0] if X = −1

{0} if − 1 < X < 1

[0, ε] if X = 1

{ε} if X > 1

(34)

so that it is a multivalued operator. We assume
that 0 ≤ ε ≤ −m0.
Thus we deal with the system

ẏ − (L − αH)y + αMy ∋ 0 (35)

where operator −(L − αH) is Lipschitz continuous
on R3. It is clear that M is monotonous iff

∀X1, X2 ∈ R, (m(X1)−m(X2), X1 −X2) ≥ 0 .

We can assume for instance that X1 < X2. Then
M is monotonous iff

∀S1 ∈ m(X1), ∀S2 ∈ m(X2), S1 − S2 ≤ 0 .

We can distinguish between five cases: X1
∈] − ∞, −1[, X1 = −1, X1 ∈] − 1, 1[, X1 = 1,
X1 ∈]1, +∞[. Let us discuss the first one for
example, the four other cases being similar. If
X1 ∈]−∞, −1[, we have m(X1) = {−ε}. And

∀X ∈ R, m(X) ∈ [−ε, ε]→ ∀S2 ∈ m(X2),

S2 ≥ −ε

Then it is clear that in this casem(X1)−m(X2) ≤ 0.
Moreover it is easy to see that M is maximal.

We have Im(I + M) = R3 = H. Theorem 3.2
of [Brézis, 1973] provides ∆ maximal monotonous.
Because α > 0, αM is maximal monotonous too.
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Thus system (35) verifies all the assumptions
of Theorem 7. It possesses a unique strong solution
on [0, T ] for every T > 0.
It is convenient to apply the second part of this

theorem to obtain the value of ẏ at the crossing of
X = 1. For t0 so that X(t0) = 1 we get:

dy+

dt
(t0) = −Proj(αM−L+αH)y(t0)(0)

=





S
U
V



 ∈ (−αM + L − αH)y(t0) (36)

Let us set

y(t0) =





1
Y
Z



 (37)

We have

Ly(t0) =





αY
1− Y + Z
−βY





αMy(t0) =





αm(1)
0
0





(38)

Hy(t0) =





h(1)
0
0



 =





m0
0
0



 (39)

and then






S − αY + αm0

U − 1 + Y − Z

V + βY






∈ −α







[0, ε]

{0}

{0}






(40)

that yields






α(Y −m0 − ε) ≤ S ≤ α(Y −m0)

U = 1− Y + Z

V = −βY






(41)

Because of the definition of the projection,
(S, U, V )t has the smallest norm. Here this means
that x2 has to be minimal. We distinguish between
three cases:

— if Y < m0, minα(Y−m0−ε)≤S≤α(Y−m0) S
2 corre-

sponds to S = α(Y −m0). So we obtain

dy+

dt
(t0) =







α(Y (t0)−m0)

1− Y (t0) + Z(t0)

−βY (t0)






(42)

— if Y > m0+ε, minα(Y −m0−ε)≤S≤α(Y−m0) S
2 cor-

responds to S = α(Y −m0 − ε). So we obtain

dy+

dt
(t0) =







α(Y (t0)−m0 − ε)

1− Y (t0) + Z(t0)

−βY (t0)






(43)

— ifm0≤Y ≤m0+ε, minα(Y −m0−ε)≤S≤α(Y−m0) S
2

corresponds to S = 0. So we obtain

dy+

dt
(t0) =







0

1− Y (t0) + Z(t0)

−βY (t0)






(44)

It can be noticed that the values Ẏ (t+0 ) and

Ż(t+0 ) provided by this procedure can be direcly de-
rived from system (33).
It is necessary to assume that α > 0 in order to

apply this method.

Note. One can think of other methods to prove
existence and uniqueness results. For example it
would be possible to smooth the discontinuity by
using piecewise-linear continuous functions or C∞

functions. But it seems difficult to have a priori
estimations that allow to control the limits in the
smooth systems of differential equations.
Another method is to take into account the par-

ticular form of the system. It deals with joining
pieces of solutions of linear system of differential
equations. The difficulty is to write the crossing
of discontinuity plane in order to obtain piecewise
C1 solutions. In our cases this method is avail-
able. But it is clear that if we slightly modify the
Lipschitz continuous part (small smooth perturba-
tions so that explicit calculation of solutions is not
possible), it becomes necessary to use the theory of
maximal monotonous operators.

4.4.2. Chua’s system with discontinuity at 0

In this case the starting system of equations is











Ẋ = α(Y − δ(X))

Ẏ = X − Y + Z

Ż = −βY

(45)

where δ(x) = l(x) +m(x) (see Sec. 2). The multi-
valued function m is defined according to

m(x) =











{0} if x < 0

[0, 2ε] if x = 0

{2ε} if x > 0

(46)
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We write again this system in the form

ẏ − (L − αL)y + αMy ∋ 0 (47)

Because L is linear and then is Lipschitz continuous,
and L is Lipschitz continuous (l is piecewise-linear),
operator −(L − αL) is Lipschitz continuous on R3.
It is easy to prove that M is monotonous: This

is similar to the previous case. As we did in the
previous subsection for the first example, we deduce
that αM is a maximal monotonous operator.
It is clear that assumptions of Theorem 7 are

verified by system (45): It possesses a unique strong
solution on [0, T ] for every T > 0.
Moreover, let us pay attention to the second

part of the result of Theorem 7 and calculate ẏ at
X = 0 crossing. For t0 so that X(t0) = 0 we have

dy+

dt
(t0) = −Proj(αM−L+αL)y(t0)(0)

=





S
U
V



 ∈ (L − αM − αL)y(t0) (48)

Let us set

y(t0) =





0
Y
Z



 (49)

We have

Ly(t0)=





αY
−Y +Z
−βY



 , αMy(t0)=





m(0)
0
0



 (50)

Ly(t0) =





l(0)
0
0



 =





−ε
0
0



 (51)

Hence we obtain






S − αY − αε

U + Y − Z

V + βY






∈ −α







[0, 2ε]

{0}

{0}






(52)

that yields















α(Y − ε) ≤ S ≤ α(Y + ε)

U = −Y + Z

V = −βY

(53)

Because of the definition of the projection, the solu-
tion (S, U, V )t has the smallest norm i.e. again S2

has to be the smallest.

We can divide the calculation into three cases:
— if Y < −ε, minα(Y−ε)≤S≤α(Y+ε) S

2 corresponds
to S = α(Y + ε). Hence we get

dy+

dt
(t0) =







α(Y (t0) + ε)

−Y (t0) + Z(t0)

−βY (t0)






(54)

— if Y > ε, minα(Y −ε)≤S≤α(Y+ε) S
2 corresponds to

S = α(Y − ε). Hence we get

dy+

dt
(t0) =







α(Y (t0)− ε)

−Y (t0) + Z(t0)

−βY (t0)






(55)

— if −ε ≤ Y ≤ ε, minα(Y−ε)≤S≤α(Y+ε) S
2 corre-

sponds to S = 0. Hence we get

dy+

dt
(t0) =







0

−Y (t0) + Z(t0)

−βY (t0)






(56)

5. Analytical Calculation of
the Solution

We build analytical solutions for the two partic-
ular cases that we have considered in the previ-
ous section from the point of view of existence and
uniqueness.

5.1. Discontinuity crossing

5.1.1. Case 1: Discontinuity at −1 and 1

Because of the symmetry of the system of Eqs. (33)
it is sufficient to study the case X = 1. Let us set
D1 =]1, +∞[×R

2 and D0 =]− 1, 1[×R
2.

We determine the necessary conditions of cross-
ing into the different areas D0, D1 and X = 1. Let
us assume that for a given t0 we have X(t0) = 1.
One can already notice that if Y < m0 or Y >
m0 + ε, then we can conclude from (42) and (43).

(1) The trajectory runs into D1:

In this case one has X(t+0 ) > 1 and X is locally

increasing after t0 that yields Ẋ(t0 + η) > 0
for η small enough. We get Ẋ(t0 + η) =
α(Y (t0 + η) − δ(X(t0 + η))) > 0. Because of
continuity of X and Y we write

Y (t0 + η) −→
ηց0

Y (t0) X(t0 + η) ց
ηց0
1

9
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and then

δ(X(t0 + η)) −→
ηց0

m0 + ε

So we get Y (t0) ≥ m0 + ε.
(2) The trajectory runs into D0:

Here we have X(t+0 ) < 1 and X is locally de-

creasing after t0 that yields Ẋ(t0 + η) < 0 for
η small enough. We get Ẋ(t0 + η) = α(Y (t0 +
η) − δ(X(t0 + η))) < 0. Because of continuity
of X and Y we write

Y (t0 + η) −→
ηց0

Y (t0) X(t0 + η) ր
ηց0
1

and then

δ(X(t0 + η)) −→
ηց0

m0

So we get Y (t0) ≤ m0.
(3) Trajectory runs into X = 1:

X is constant and C1 on an open set of nonzero
measure. Consequently we have Ẋ = 0 on this
open set, hence Y (t) ∈ δ(1) = [m0, m0 + ε]. So
the trajectory stays in X = 1 as long as we have
Y (t) ∈ [m0, m0 + ε].
Two cases have to be taken into account:

Y (t0) = m0 and Y (t0) = m0 + ε.

(a) If Y (t0) = m0, the trajectory can either stay
in X = 1 or go into D0. In order that it
stays in X = 1 we need Ẋ(t0 + η) = 0 for
η > 0 small enough, hence from (33) Y (t0+η) ∈
δ(X(t0 + η)) = δ(1) = [m0, m0 + ε]. The latter
leads to Y (t0 + η) ≥ Y (t0) and then Ẏ (t0) ≥ 0.
This inequality provides a condition for Z co-
ordinate: Z(t0) ≥ m0 − 1.
Let us look for a necessary condition of

passing into D0. We have Ẋ(t
+
0 ) = 0. Let us

calculate Ẍ(t+0 ). One has Ẍ(t
+
0 ) = α(Ẏ (t0) −

m0Ẋ(t
+
0 )). We conclude that Ẍ(t

+
0 ) = α(1 −

m0+Z(t0)). It is necessary to have Ẋ(t0+η) <
0 = Ẋ(t+0 ) so Ẍ(t+0 ) ≤ 0. Then we have
Z(t0) ≤ m0 − 1.
We have to consider the last situation:

Z(t0) = m0 − 1.
Let us assume that Z(t0) = m0 − 1, and

that the trajectory goes into D0. We can write











Ẋ(t+0 ) = 0 and Ẍ(t+0 ) = 0

Ẏ (t0) = 0

Ż(t0) = −βm0 > 0

(57)

Let us calculate
...
X(t

+
0 ). For η > 0 small enough

we have
...
X(t0 + η) = α(Ÿ (t0 + η)− Ẍ(t0 + η)m0)

and then
...
X(t0 + η) = α(Ẋ(t0 + η)− Ẏ (t0 + η)

+ Ż(t0 + η)− αm0(Ẏ (t0 + η)

− m0Ẋ(t0 + η)))

That yields
...
X(t

+
0 ) = α[(1 + αm

2
0)Ẋ(t

+
0 )

− (1 + αm0)Ẏ (t0) + Ż(t0)]

that is
...
X(t

+
0 ) = −αβm0 > 0. This situation

cannot occur because X(t0 + η) < 0 has to
be verified for every η small enough. Thus it
is clear that the trajectory cannot go into D0,
which means that it stays in X = 1.

(b) If Y (t0) = m0+ε, the trajectory can either stay
in X = 1 or reach D1.
Let us look for a necessary condition for it

to stay in X = 1: Some calculations lead to
Z(t0) ≤ m0 + ε− 1.
Let us look for a necessary condition for it

to run into D1: We find Z(t0) ≥ m0 + ε− 1.
Then we have to study the last case Z(t0) =

m0 + ε− 1.
If Z(t0) = m0 + ε− 1 one has











Ẋ(t+0 ) = 0

Ẏ (t+0 ) = 0

Ż(t0) = −β(m0 + ε) > 0

and

Ÿ (t0)=Ẋ(t
+
0 )−Ẏ (t0)+Ż(t0) = −β(m0+ε) > 0

Hence Ẏ is strictly increasing after t0, and then
Y (t0 + η) > Y (t0) = m0 + ε for η small enough
and the trajectory goes into D1.
We can sum up the different behaviors of

the trajectory at the crossing of X = 1:

— The trajectory goes intoD1 if Y (t0) > m0+

ε or (Y (t0) = m0+ε and Z(t0) ≥ m0+ε−1)

— The trajectory goes into D0 if Y (t0) < m0
or (Y (t0) = m0 and Z(t0) < m0 − 1)

— the trajectory stays in X = 1 if m0 <
Y (t0) < m0 + ε or (Y (t0) = m0 + ε and
Z(t0) < m0 + ε − 1) or (Y (t0) = m0 and
Z(t0) ≥ m0 − 1).

10
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Let us notice that we have only established nec-
essary conditions: The same calculations provide
the sufficient conditions.

5.1.2. Case 2: Discontinuity at 0

In this second example it is sufficient to deter-
mine the crossing at X = 0. Let us introduce
D−0 =] − 1, 0[×R

2 and D+0 =]0, 1[×R
2. Starting

from a given t0 so that X(t0) = 0, it is possible to
study three cases (the trajectory goes into D−0 or
D+0 , or it stays in X = 0). Calculations are sim-
ilar to the previous example. The results can be
summed up as follows:

— The trajectory runs into D+0 if Y (t0) > ε or

(Y (t0) = ε and Z(t0) > ε)

— The trajectory runs into D−0 if Y (t0) < −ε or

(Y (t0) = −ε and Z(t0) < −ε)

— The trajectory stays inX = 0 if−ε < Y (t0) < ε
or (Y (t0) = ε and Z(t0) ≤ ε) or (Y (t0) = −ε
and Z(t0) ≥ −ε)

5.2. Analytical calculation
of the solution

5.2.1. Discontinuity at −1 and 1

We define u1, C1, C0, L1 and T1 according to Ap-
pendix 1. We assume that the numerical values
of the parameters provide one real eigenvalue and
two complex conjugate ones [Kuznetsov et al., 1996]
(this is verified by every parameter that will be used
for numerical examples).
We have to solve the following problem:











ẏ = C1y + u1 on D1 =]1, +∞[×R
2

ẏ = C0y on D0 =]− 1, 1[×R
2

ẏ = C1y − u1 on D−1 =]−∞, −1[×R
2

(58)

Each equation is a linear one: It is easy to find the
solution whatever the initial condition. The key
point is to find successive times when the coordi-
nate X(t) crosses a plane of discontinuity X = −1
or X = 1. This is done by solving scalar nonlinear
equations depending on t and by using the results
of Sec. 5.1.1.

5.2.2. Discontinuity at 0

We introduce C ′0, u
′
1, L0 and T0 according to Ap-

pendix 2. We assume that the numerical values of
the parameters provide one real eigenvalue and two

complex conjugates ones [Kuznetsov et al., 1996]
(this is again verified by every parameter that will
be used for numerical examples).
We have to solve the following problem:























ẏ = C1y + u
′
1 on D1 =]1, +∞[×R

2

ẏ = C ′0y + u0 on D+0 =]0, 1[×R
2

ẏ = C ′0y − u0 on D−0 =]− 1, 0[×R
2

ẏ = C1y − u
′
1 on D−1 =]−∞, −1[×R

2

(59)

Again each linear equation can be solved. Scalar
nonlinear equations depending on t have to be
solved to determine the crossing of X = 0. Re-
sults of Sec. 5.1.2 are used to calculate the solution
after the meeting of discontinuity.

6. Numerical Results

6.1. First example: Discontinuities
at −1 and 1

6.1.1. Bifurcation diagram

In order to test the occurrence of chaos, we study
bifurcation diagrams. In Fig. 3, such a bifurcation
diagram is presented for the following parameter
values:

m0 = −
1

7
m1 =

2

7
α = 3.612 β = 4.4

and ε varies from 0. to 1/7. In this diagram

Fig. 3. Bifurcation diagram for α = 3.612 and β = 4.4 for
the system with discontinuities at −1 and 1.
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Table 1. Analysis of the bifurcation cascade.

Period Parameter, εk Ratio, δk−2

1 ε0 = 0.1425252608 ± 10
−10

2 ε1 = 0.115436145850 ± 10
−12

4 ε2 = 0.105493669499 ± 10
−12 δ0 = 2.725

8 ε3 = 0.102879706220 ± 10
−12 δ1 = 3.804

16 ε4 = 0.102286178168 ± 10
−12 δ2 = 4.404

32 ε5 = 0.102155640398 ± 10
−12 δ3 = 4.547

64 ε6 = 0.102126753995 ± 10
−12 δ4 = 4.519

128 ε7 = 0.102120342667 ± 10
−12 δ5 = 4.506

256 ε8 = 0.10211894039545 ± 10
−14 δ6 = 4.572

512 ε9 = 0.10211858239154 ± 10
−14 δ5 = 3.917

1024 ε10 = 0.1021185049383287 ± 10
−16 δ5 = 4.622

we do not plot transient i.e. we plot ‖y(t)‖ =
√

X(t)2 + Y (t)2 + Z(t)2 such as X(t) = 1 for
3000 ≤ t ≤ 4000. Obviously chaos seems to oc-
cur and after some chaotic and periodic windows,
chaos disappears via a cascade.

6.1.2. Analysis of the cascade

Here we test numerically the first terms of the
series (introduced by Feigenbaum [1978]) δk−1 =
(εk−εk−1)/(εk+1−εk) with εk−1 the value of ε such
as a bifurcation from a 2k−1 cycle to a 2k one. The
results are presented in Table 1. Periodic solutions
are searched for t ≥ 50 000.
It seems that these results are slowly converging

to the universal value 4.66920 . . . .

6.2. Second example:
Discontinuities at 0

6.2.1. Bifurcation diagram

This section is devoted to the bifurcation diagrams
obtained for different values of the pair (α, β). In
Fig. 4, such a bifurcation diagram is presented
for α = 3.612, β = 4.4 with ε varying from 0.
to 0.025. Again ‖y(t)‖ is plotted versus ε for
3000 ≤ t ≤ 4000 when X(t) = 1. In this di-
agram several attractors seem to coexist: In the
first two periodic windows, bifurcation branches
show jumps. Just before ε reaches the value 0.025
the point (0., 0., 0.) captures the solutions. In-
deed the trajectory issued from the initial condi-
tions (X0, Y0, Z0) = (1.4, −0.3, −1.) is trapped by
(0., 0., 0.) for t ≥ 100 000 if ε ≥ 0.024882.

Fig. 4. Bifurcation diagram for α = 3.612 and β = 4.4 for
the system with discontinuity at 0.

Such a coexistence is clearer if we choose α =
15.6, β = 28.58. In Figs. 5(a) and 5(b) where ε
varies from 0. to 0.055, we can see two parts of the
same diagram: Chaos and periodic solutions coex-
ist for ε = 0.0005 and ε = 0.009 for example. Phase
portraits are showed in the next subsection in order
to clarify this point.

6.2.2. Phase portraits

Let us consider the first case (α = 3.612, β = 4.4):
Several phase portraits are presented in Figs. 6(a)–
6(l) for ε = 0. , ε = 0.0027, ε = 0.005, ε = 0.008,
ε = 0.0103, ε = 0.016, ε = 0.018, ε = 0.0205,
ε = 0.0227, ε = 0.02488, ε = 0.02489, Y (t) is plot-
ted versus X(t) except for Fig. 6(l) ε = 0.02489
where Y (t) is plotted versus Z(t). Both chaotic
and periodic solutions are obtained. For the last
two graphics of this figure, we can see that after a
rather long and chaotic-like transient (t = 41969)
the solution is trapped to (0., 0., 0.). It means that
when exerting a friction-like action on the Chua os-
cillator we obtain a passive control of nonlinear os-
cillations. We shall investigate the area of control
in phase space in another section.
Now let us consider the second case associated

with α = 15.6, β = 28.58. In Figs. 7(a) and 7(b)
phase portraits of the two different attractors ob-
tained for ε = 0.005 are plotted: Y (t) is plotted
versus X(t). One is chaotic and the other one is
periodic. The same kind of behavior is obtained for
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(a) (b)

Fig. 5. Bifurcation diagrams (a) and (b) for α = 15.6 and β = 28.58 for the system with discontinuity at 0.

(a) (b)

Fig. 6. (X, Y )-phase portrait for α = 3.612, β = 4.4 and (a) ε = 0., (b) ε = 0.0027, (c) ε = 0.005, (d) ε = 0.008,
(e) ε = 0.0103, (f) ε = 0.016, (g) ε = 0.018, (h) ε = 0.0205, (i) ε = 0.0227, (j) ε = 0.02488, (k) ε = 0.02489, (Y, Z)-phase
portrait for α = 3.612, β = 4.4 and (l) ε = 0.02489.
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(c) (d)

(e) (f)

Fig. 6. (Continued )
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(g) (h)

(i) (j)

Fig. 6. (Continued )

15



Acc
ep

te
d 

M
an

us
cr

ip
t

(k) (l)

Fig. 6. (Continued )

(a) (b)

Fig. 7. (X, Y )-phase portrait for α = 15.6, β = 28.58 and ε = 0.0005, with initial conditions (a) X0 = 1, Y0 = 0.096,
Z0 = −1.815 and (b) X0 = 1.4, Y0 = −0.3, Z0 = −1 for the system with discontinuity at 0.

16



Acc
ep

te
d 

M
an

us
cr

ip
t

(a)

(b)

Fig. 8. (X, Y )-phase portrait for α = 15.6, β = 28.58 and
ε = 0.0009, with initial conditions (a) X0 = 1, Y0 = 0,
Z0 = −1.74 and (b) X0 = 1.4, Y0 = −0.3, Z0 = −1 for
the system with discontinuity at 0.

ε = 0.009: In Fig. 8 one can see one periodic attrac-
tor and one chaotic attractor. In these two cases the
periodic and the chaotic attractor are quite “close”
to each other in phase space.

6.2.3. Poincaré maps and trapping area

Here we deal with Poincaré maps corresponding to

(α = 3.612, β = 4.4) and ε = 0., ε = 0.0027,
ε = 0.005, ε = 0.008, ε = 0.0103, ε = 0.016,
ε = 0.018, ε = 0.0205, ε = 0.0227, ε = 0.02488,
ε = 0.02489 as in the previous subsection. In Fig. 9
such sections are plotted in the plane X = 0 to-
gether with the trapping area of (0., 0., 0.). This
yellow area has been calculated numerically. Any
trajectory crossing through this area will not be
able to escape and will converge to the equilibrium
point (0., 0., 0.).
We can see that the trapping phenomenon is

not related to the intersection between the trap-
ping area and the “transient attractor”. It seems
that friction provides the beginning of intermittent
behavior that is suppressed by the trapping: Once
a trajectory enters the trapping area it can never
go out anymore.

6.2.4. Trapping solutions and basins
of attraction

We have seen previously that for values of ε large
enough, the trajectories starting from some initial
conditions are trapped to (0., 0., 0.). In order to
determine whether that is the case for every ini-
tial condition, we have used a cell-mapping method
[Hsu, 1987] to compute the set of initial conditions
included into X = 0 that lead to a trapping phe-
nomenon. This method consists in defining a grid
in {0} × [−2, 2] × [−2, 2]. Then for each cell on
this grid we take the center as an initial condition,
calculate the flow and determines where it hits on
the plane X = 0 again. That gives a map from
{0}× [−2, 2]× [−2, 2] to {0}×R2. This map is iter-
ated (and restrained to {0}× [−2, 2]× [−2, 2] at ev-
ery iteration) 1000 times. Results for ε = 0.02 and
ε = 0.04 are shown in Figs. 10(a) and 10(b). The
black area corresponds to trapped solutions and the
white area stands for divergent solutions. The two
colours (blue and red) distinguish the solutions that
start from X = 0 and then go to the domain D+0
from solutions that start from X = 0 and then go
to the domain D−0 .
It can be seen that before (ε = 0.02) the critical

parameter ε ≃ 0.02488, the trapping area is small
and concentrated in the neighborhood of (0., 0., 0.).
After (ε = 0.04) the critical parameter, the whole
nondivergent area is caught by (0., 0., 0.) (for the
same time interval): It means that every trajectory
starting from any initial condition in R3 will either
be trapped to (0., 0., 0.) or diverge to infinity.
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(a) (b)

(c) (d)

Fig. 9. Poincaré section in the plane X = 0 with trapping area, for α = 3.612, β = 4.4 and (a) ε = 0, (b) ε = 0.0027,
(c) ε = 0.005, (d) ε = 0.008, (e) ε = 0.0103, (f) ε = 0.016, (g) ε = 0.018, (h) ε = 0.0205, (i) ε = 0.0227, (j) ε = 0.02488,
(k) ε = 0.02489 for the system with discontinuity at 0.
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(e) (f)

(g) (h)

Fig. 9. (Continued )
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(i) (j)

(k)

Fig. 9. (Continued )

6.2.5. Lyapunov exponents

6.2.5.1. Methods

In the special case of piecewise-linear differential
systems, four methods at least could be used to
compute Lyapunov exponents.

The first one consists in estimating analyti-
cally the value Dϕ/DX0 for on each area where
the system is linear, the flow ϕ can be expressed
analytically as a function of the initial condition.
With the second method, the flow is still calculated
analytically but the differentiation is this time a
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(a)

(b)

Fig. 10. Trapping area in the plane X = 0 for α = 3.612, β = 4.4 and (a) ε = 0.02, (b) ε = 0.04.
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Table 2. Largest Lyapunov
exponent for α = 3.612 and
β = 4.4 after T = 100 000.

Epsilon λmax

0 0.04777

0.0027 0.00027

0.005 0.03800

0.008 0.00005

0.0103 0.03970

0.016 0.00002

0.018 0.02792

0.0205 0.00008

0.0227 0.01507

0.02488 0.03226

numerical one. A third method uses numerical
schemes to build the flow, but then it requires an
analytical differentiation of the estimated flow. The
last method is fully numerical: Both the trajectory
and the differential Dϕ/DX0 are estimated by nu-
merical devices.
The method that we have chosen here is the

second one. Indeed, the first method is very time
expensive, and the last two were not used because
they do not benefit from the piecewise linearity of

the system, which allows analytical calculation of
the trajectories.
The method used consists in starting with

two very close initial conditions and building an-
alytically their trajectories. At regular intervals,
the trajectories are rescaled and a computation of
Dϕ/DX0 is performed. This method provides an
estimation of the biggest Lyapunov exponent of the
dynamical system, which is enough to check the
presence of chaos.

6.2.5.2. Results

The largest Lyapunov exponent λmax was computed
for several parameter values which have already
been used in Secs. 6.2.2 and 6.2.3. Table 2 shows
the results corresponding to Figs. 6(a)–6(j): We
can see a good correlation between phase portrait
and Lyapunov exponents, except for the case ε =
0.02488 where phase portrait and Poincaré section
suggest that there is a periodic attractor, whereas
λmax seems to be clearly positive [see Fig. 11(c)].
In Figs. 11(a)–11(c) we have plotted the value

of λmax as a function of time to check the stabiliza-
tion of calculations. It appears that at t = 100 000,
λmax has only small variations so that we can give
its final value with a 10−3 uncertainty at most.

(a) (b)

Fig. 11. Evolution of the largest Lyapunov exponent versus time for α = 3.612, β = 4.4 and (a) ε = 0.008, (b) ε = 0.0227,
(c) ε = 0.02488 for the system with discontinuity at 0.
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(c)

Fig. 11. (Continued )

Fig. 12. Evolution of the largest Lyapunov exponent versus
ε for α = 3.612, β = 4.4 and for the system with discontinuity
at 0.

Finally, in Fig. 12 the value of λmax for t = 40000
was plotted as a function of ε, with the same pa-
rameter values as in Fig. 4. Both figures show good
correlation, every periodic window corresponding to
values λmax ≤ 0.001 and every chaotic one to values
more clearly positive.
Finally, we present the computation of

Lyapunov exponents split into four parts: The

Table 3. Partial Lyapunov exponents
for α = 15.6, β = 28.58 and ε = 0.
(a) X0 = −0.002, Y0 = 0.014, Z0 = 0.010,
(b) X0 = −0.008, Y0 = 0.020, Z0 = 0.028.

Exponent Time

λ1 = −0.09435 T1 = 40181

λ0+ = −0.04497 T0+ = 9591

(a) λ0− = −0.21074 T0− = 10179

λ−1 = 0.22839 T−1 = 40053

λmax = 0.02780 T = 100004

λ1 = 0.38000 T1 = 39644

λ0+ = −1.01647 T0+ = 9169

(b) λ0− = −1.00361 T0− = 9161

λ−1 = 0.37334 T−1 = 39657

λmax = 0.11632 T = 97631

calculation is made up to T = 100 000, and every
time the trajectory enters a domain (D1, D0+ , D0−
or D−1) we keep the time spent in that domain and
the contribution to the calculation of the largest
Lyapunov exponent. Thus we define λ1, λ0+ , λ0−
or λ−1 as follows:

λi =
1

∑

n

tin
ln

(

∏

n

∆yin
∆yin−1

)

(60)

where tn is the nth time spent in domain Di,
∆yin/∆y

i
n−1 the corresponding contribution to

λmax, and i ⊂ {1, 0
+, 0−, −1}. Results are shown

in Table 3, together with every Ti =
∑

n t
i
n, for

α = 15.6, β = 28.58 and ε = 0 with two differ-
ent initial conditions. It appears that these partial
exponents are good indicators of the symmetry of
attractors which is not obvious at first sight: For
symmetric ones, we have λ1 = λ−1 and λ0+ =
λ0− , whereas for nonsymmetric ones, all λi are
different. Moreover, an averaging formula holds for
the calculation of the largest Lyapunov exponent:
one has

λmax =
T1λ1 + T0+λ0+ + T0−λ0− + T−1λ−1

T1 + T0+ + T0− + T−1
(61)

7. Conclusion

In this paper, we have investigated a mechani-
cal model which can be written as a Chua circuit
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with discontinuities. Existence and uniqueness have
been obtained in the frame of monotonous maximal
operators. Then analytical procedures have been
developed in order to track the discontinuity times.
Thus numerical results are provided including the
detection of discontinuity with a very high accuracy.
Discontinuities seem to provide symmetry breaking.
Chaos has been observed. It has been characterized
by positive Lyapunov exponent.
Discontinuities may correspond to a kind of

friction from the mechanical point of view. We have
shown that it is possible to control the Chua circuit:
If the discontinuity is strong enough, every initial
condition starting from a neighborhood of (0, 0, 0)
is trapped to this equilibrium point.
Now some extension can be easily pointed

out. From the mechanical point of view, one could
consider external excitation. Hence it would be in-
teresting to deal with Eq. (15) modified by an ex-
ternal field of the form γ cos(Ωt) and to investi-
gate controlability. Another point of view has not
been taken into account here: Our numerical pro-
cedures are based upon analytical calculation and
they are not pure numerical schemes. Thus it is
possible to locate “exactly” discontinuity times and
to calculate the values of the coordinates at these
times. It would be interesting to investigate nu-
merical schemes that can be provided by the math-
ematical frame and to compare the results with
those of the previous sections. Indeed, analytical
calculations are not always possible, for instance
when smooth polynomial nonlinearities perturb the
equations of the Chua system. Then numerical
accurate detection of domain transitions would be
necessary.
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Appendix 1
Analytical Calculation
Discontinuities at −1 and 1

u1 =





−α(m0 −m1 + ε)
0
0





C1 =





−αm1 α 0
1 −1 1
0 −β 0





C0 =





−αm0 α 0
1 −1 1
0 −β 0





Let us assume that the eigenvalues of C0 are
σ1± iω1 (complex conjugate) and γ1 (real). We can
find L1

L1 =





σ1 −ω1 0
ω1 σ1 0
0 0 γ1





and T1 that are defined by

L1 = T
−1
1 C1T1

— The first column of T1 is the real part of the

eigenvector associated with σ1 + iω1.

— Its second column is the imaginary part of the

same eigenvector.

— Its third column corresponds to the eigenvector

associated with γ1.

— We decide that the first line of T1 is

[m0/m1 0 m0/m1].

Appendix 2
Analytical Calculation
Discontinuity at 0

u′1 =





−α(m0 −m1)
0
0





u0 =





−αε
0
0





C ′0 =





−α(m0 − ε) α 0
1 −1 1
0 −β 0




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Let us assume that the eigenvalues of C ′0 are
σ0± iω0 (complex conjugate) and γ0 (real). We can
find L0

L0 =





σ0 −ω0 0
ω0 σ0 0
0 0 γ0





and T0 that are defined by

L0 = T
−1
0 C0T0

— The first column of T0 is the real part of the

eigenvector associated with σ0 + iω0.

— Its second column is the imaginary part of the

same eigenvector.

— Its third column corresponds to the eigenvector

associated with γ0.

— We decide that the first line of T0 is [m0/(m0−

ε) 0 m0/(m0 − ε)].
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