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How to insulate a pipe?

Fabien Caubet∗, Carlos Conca†, Marc Dambrine‡, and Rodrigo Zelada§

November 6, 2024

Abstract

This paper focuses on the problem of finding the optimal distribution of a thermal insulator
around a pipe. We consider the framework of one fluid inside a pipe of thin width and
surrounded by a thermal insulator. We use an asymptotic model to avoid dealing with the
thin layer, leading to non-standard transmission conditions which involve discontinuities and
second order tangential derivatives. We thus consider the shape optimization problem that
aims to minimize the heat flux outside an insulator with a given volume. Then we characterize
the shape derivative of the objective functional and perform 3D numerical simulations using
the level set evolution method.

Keywords: Shape optimization, asymptotic model, Ventcel conditions, transmission condi-
tions, Navier-Stokes equations, thermal insulation

AMS Classification: 49Q10, 35Q79, 80M50, 76D55

1 Introduction and setting of the problem

1.1 Motivations
In our daily lives, reducing heat loss is of great importance from an ecological perspective.

Indeed this problem appears in various contexts and applications such as hot water pipes, buildings,
or electric kettles, for example. A typical question involves optimizing the thermal insulation
around a pipe containing hot water, subject to a volume constraint on the insulator. Insulation
problems have been studied for a long time. Here are a few recent advances (see, e.g., [7, 8]). In
particular, in [7], two thermal insulation problems were addressed by parametrizing the insulator
material by means of the tangential and normal coordinates on the boundary of the the hot body
(not a fluid) and minimizing with respect to the variable thickness: it was shown that under certain
conditions, when the hot body is inside a ball, then the optimal insulator is a ball. Regarding the
numerics, in [29], different configurations were compared and a heuristic was proposed to optimize a
polygon satisfying certain geometrical constraints, providing insights into how the insulator should
be configured.

In this work, we aim to provide pratical numerical solutions of the optimal insulator. We there-
fore first perform a theoretical sensitivity analysis of the problem of insulating a pipe containing a
hot fluid and then implement a descent method -here the null-space algorithm [20]- using the level
set framework (see, e.g., [3]).
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In many practical applications (see figure 1) the wall thickness of the tube (in red in the figure)
is very small compared to its length and also small compared to the insulator thickness. For

Figure 1: The thermal insulation of a pipe (photo by Sönke Kraft aka Arnulf zu Linden on com-
mons.wikimedia.org).

obvious computational reasons, it makes sense not to mesh it. One possibility would be to ignore
it. In this work, we propose to take it into account by means of an interface condition written at
the edge of the domain occupied by the fluid, obtained by an asymptotic model of order one with
respect to the small parameter (i.e. the ratio between this thickness and the length of the pipe).
The novelties of this work are: first, the model takes into account the motion of the fluid and thus
a convection term appears in the heat equation in the fluid zone; second, the pipe is considered
through an interface term rather than with the usual model of insulation.

1.2 The physical context
As previously mentioned, we consider in this work a given pipe, with a known geometry on

which the thickness of the wall of the pipe is very small compared to the length of the pipe.
Moreover, we assume that this pipe is surrounded by an insulator.

More precisely, the problem can be stated as follows. Let ϵ > 0 the given thickness of the wall
of the pipe. Let Ωϵ

1, Ωϵ
m, Ωϵ

2 open bounded domains in Rd (d = 2, 3), such that the whole domain
is Ωϵ := Ωϵ

1 ∪Ωϵ
m ∪Ωϵ

2. The subset Ωϵ
1 is the part physically occupied by the fluid, Ωϵ

m corresponds
to the wall of the pipe, and finally Ωϵ

2 corresponds to the insulating material we will be looking
to place to reduce heat loss. The interfaces between the domains have two connected components
denoted by Γϵ

i := ∂Ωϵ
i ∩ ∂Ωϵ

m, i = 1, 2, and we also assume that Γϵ
1 ∩ Γϵ

2 = ∅. Figure 2a illustrates
the geometry of our problem.

As the pipe may have a complex geometry, the flow of the heat transfer fluid is described by the
Navier-Stokes equations (rather than the Stokes equations). We precise that we consider here the
steady state case and we denote by uϵ the velocity of the fluid and pϵ the pressure. Let ν > 0 be
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the kinematic viscosity. The boundary of the fluid region Ωϵ
1 is assumed to be composed by three

disjoint regions: ∂Ωϵ
1 =: Γϵ

D∪Γϵ
1∪Γϵ

N, where Γϵ
D is the input of the fluid with a given velocity (non

homogeneous Dirichlet boundary condition) and where Γϵ
N contains the outlet-pressure condition

(Neumann boundary condition). The classical non-slip condition uϵ = 0 is imposed on Γϵ
1. To

summarize, the motion of the fluid is described by the following equations:
−ν∆uϵ + (∇uϵ)uϵ +∇pϵ = 0 in Ωϵ

1,
div(uϵ) = 0 in Ωϵ

1,
uϵ = uD on Γϵ

D,
σ(uϵ, pϵ)n = 0 on Γϵ

N,
uϵ = 0 on Γϵ

1,

(1.1)

where uD is a given inlet velocity, where n denotes the exterior unit normal, and where σ(u, p) is
the fluid stress tensor defined by

σ(u, p) := 2νε(u)− pI,

with ε(u) := 1
2 (∇u+∇ut) the symmetric gradient and I the identity matrix, and where the

superscript t denotes the transpose matrix.

Concerning the temperature, we consider the stationary heat equation in the whole domain Ωϵ

with a Fourier-Robin condition on the outer boundary of the insulating material stating that
the heat flux there is proportional to the gap of temperatures with a given rate α > 0. Notice
that the temperature field inside the pipe Ωϵ

1 is determined in terms of the velocity uϵ through a
convection–diffusion equation. It is convenient to decompose the temperature field into

Tϵ = Tϵ
11Ωϵ

1
+ Tϵ

m1Ωϵ
m
+ Tϵ

21Ωϵ
2
,

where Tϵ is the solution of the stationary convection-diffusion equation in Ωϵ and where Tϵ
i is

its restriction to Ωϵ
i , for i = 1, 2,m. Here 1 denotes the indicator function of a domain. The

physical parameters are the given thermal diffusivity κ1, κ2, κm that are assumed to be positive
numbers. The boundary of Ωϵ

2 is the disjoint union ∂Ωϵ
2 =: Γϵ

2 ∪ Γϵ
R and the boundary of Ωϵ

m is
given by ∂Ωϵ

m =: Γϵ
1∪Γϵ

2∪Γϵ
m,N. On the Dirichlet part Γϵ

D, a given temperature is imposed, and the
previously mentioned Fourier-Robin condition is imposed on Γϵ

R. Moreover, we impose Neumann
boundary conditions on Γϵ

m,N∪Γϵ
N. Finally, classical transmission conditions are assumed on Γϵ

1∪Γϵ
2

and we obtain the following system:

−div(κ1∇Tϵ
1) + uϵ · ∇Tϵ

1 = 0 in Ωϵ
1,

−div(κm∇Tϵ
m) = 0 in Ωϵ

m,

−div(κ2∇Tϵ
2) = 0 in Ωϵ

2,

Tϵ
1 = TD on Γϵ

D,

κ1
∂Tϵ

1

∂n
= 0 on Γϵ

m,N ∪ Γϵ
N,

κ2
∂Tϵ

2

∂n
+ αTϵ

2 = αText on Γϵ
R,

Tϵ
1 = Tϵ

m on Γϵ
1,

Tϵ
2 = Tϵ

m on Γϵ
2,

κ1
∂Tϵ

1

∂n
= κm

∂Tϵ
m

∂n
on Γϵ

1,

κ2
∂Tϵ

2

∂n
= κm

∂Tϵ
m

∂n
on Γϵ

2,

(1.2)

where TD is a given input temperature and Text is the given exterior temperature.
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1.3 Setting of the approximated and the shape optimization problems
As exposed above, the actual configuration involves three inseparable parts: the fluid, the

wall of the pipe, and the insulator. However, the wall thickness is very small compared to the
other dimensions, and keeping this wall in a numerical model requires the use of very refined and
therefore very expensive meshes, especially in dimension three, to compute the temperature field.

The approximated domains. We therefore propose, in a classical way since the work of Enquist
and Nedelec [17], to forget this zone in the geometrical description of the problem, but to take into
account its impact on the thermal properties through artificial transmission conditions at the new
fluid-insulator interface. We thus obtain, at the cost of a systematic model error, an approximate
solution whose calculation is much less costly since it only requires a much coarser mesh (adapted
to the internal diameter of the pipe and no longer to the wall thickness). Our idea is to use this
inexpensive approximate model to optimize the shape of the insulation around the pipe. Figure 2
illustrates this geometric approximation.

Ωϵ
2Ωϵ

mΩϵ
1

(a) The real domain Ωϵ.

Ω2Ω1

Γ

(b) The approximated domain.

Figure 2: Approximation of the domain from three to two layers (cross-section view)

Thus, in the following, we only consider a two layer domain: one occupied by the fluid (denoted
by Ω1) and one by the insulator (denoted by Ω2), separated by the interface Γ := ∂Ω1 ∩ ∂Ω2 (see
Figure 2b). We then define Ω := Ω1 ∪ Ω2. All along the paper, the domains are assumed to be
smooth. In a similar way to above, ∂Ω1 and ∂Ω2 are respectively decomposed as ∂Ω1 =: ΓD∪Γ∪ΓN

and ∂Ω2 =: Γ∪ΓR. Moreover, we assume that Γ∩ΓD ̸= ∅ and Γ∩ΓN ̸= ∅. Finally we assume in the
following that nΓN

and nΓD
are respectively unit tangent vectors to Γ on ∂Γ∩ ∂ΓN and ∂Γ∩ ∂ΓD.

Figure 3 illustrates our configuration.

The approximated equations. We can now specify the boundary values problems that we will
consider in the following. Concerning the fluid, the system is similar since the equations are not
affected by this reduction of the domain. Hence, we consider

−ν∆u+ (∇u)u+∇p = 0 in Ω1,
div(u) = 0 in Ω1,

u = uD on ΓD,
σ(u, p)n = 0 on ΓN,

u = 0 on Γ,

(1.3)

where uD ∈ H1/2(ΓD)
d is the given inlet velocity. It is well-known that theses stationary Navier-

Stokes equations are well-posed if ν is large enough (see, e.g., [21, 28]), which we will assume in
the remainder of this work.
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Figure 3: Configuration of the 3D thermal insulation problem

As far as the thermal equations are concerned, the omission of the wall of the pipe has a
significant impact on the equations. We use the approach introduced in [17] based on now classic
asymptotic techniques. This approach and technical implementation are explained in detail and
pedagogically in Vial’s thesis [30]. We also mention the work [13] dealing with generalized boundary
conditions for an interface problem. As previously, we use the following decomposition:

T = T11Ω1 + T21Ω2 , κ = κ11Ω1 + κ21Ω2 .

Then doing similar computations to what we have done in [11], when ϵ is sufficiently small, the
following approximate problem of order one is obtained:

−div(κ1∇T1) + u · ∇T1 = 0 in Ω1,

− div(κ2∇T2) = 0 in Ω2,

T1 = TD on ΓD,

κ1
∂T1

∂n
= 0 on ΓN,

κ2
∂T2

∂n
+ αT2 = αT0 on ΓR,〈
κ
∂T

∂n

〉
= −κmϵ−1 [T] on Γ,[

κ
∂T

∂n

]
= ϵdivτ (κm∇τ ⟨T⟩)− κmH[T] on Γ,

(1.4)

where TD ∈ H
1/2
00 (ΓD) := {S|ΓD ,S ∈ H1/2(∂Ω2),S|∂Ω2\ΓD

= 0} is the given input temperature
and T0 ∈ H1/2(ΓR) is the given exterior temperature, and where u solves the Navier-Stokes
system (1.3). In the previous equations, divτ and ∇τ are respectively the tangential divergence
and gradient operator, and H is the mean curvature of Γ. Since the jumps are not zero, we need
to orientate the normal at the interface: we choose the outer unit normal n at Γ oriented towards
Ω2, this is n := n1 = −n2 at Γ, where ni is the exterior normal of Ωi. The jump and mean across
the interface Γ are defined, for a function ϕ, as

[ϕ] := ϕ1 − ϕ2 and ⟨ϕ⟩ := 1

2
(ϕ1 + ϕ2) .
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The well-posedness of this system is proved below (see Theorem 2.1).

Remark 1.1. It should be pointed out that the solution T of the approximated problem obviously
depends on the parameter ϵ. It is then necessary to justify that the model error committed by
using T instead of Tϵ is of order ϵ in H1 norm. This is a little technical, as the two functions
are not defined on the same set. Nevertheless, it is a classic result. That is not the point of our
work, so we refer the reader to [13] for example where a similar result is demonstrated and just
comment on it. Obviously, the systematic error committed by approximating Tϵ by T is weaker
than that committed by just looking at the limit problem obtained formally by resolving the heat
equation in Ω1 ∪ Γ ∪ Ω2, i.e. with no source term at the Γ interface.

Strictly speaking, this dependence of the solution of the approximated problem on the small
parameter ϵ should be explicitly mentioned. As this would make the notations much heavier, we
chose to simply denote T the solution of the previous approximated problem.

The shape optimization problem. We can now set out the main question that we are going to
study in this work: given a pipe with a known fixed geometry and a given quantity of insulation, how
should the insulation be positioned to minimize heat loss to the outside world, whose temperature is
known? In other words, the domain Ω1 being fixed, we are looking for a domain Ω2 of prescribed
volume so that the heat flux across the interface with the outside, i.e. ΓR, is as small as possible.
We therefore define the criterion J by

J(Ω2) :=

∫
ΓR

(
κ2
∂T2

∂n

)2

ds =

∫
ΓR

α2(T2 − T0)
2 ds, (1.5)

where the temperature T solves the approximated convection-diffusion problem (1.4).
We thus consider the following shape optimization problem: given a prescribed volume V0 > 0,

minimize J under the constraint

G(Ω2) = V0, where G(Ω2) :=

∫
Ω2

dx.

The fundamental questions of the existence of optimal domains and their regularity have been
studied in the work of Bucur et al. [8] in a simplified setting (no pipe wall and no fluid circulation
just a heated body). This is not the topic of the present work to study these questions. We will
here focus on the numerical computation of such a solution, and to this end prove the existence
and compute the shape derivatives in this framework.

2 Main results
In this section, we claim the main results of our work. All the proofs are detailed in the following

section.

2.1 Functional spaces and well posedness of the approximated prob-
lem (1.4)

We consider the following affine spaces associated to the non-homogeneous Dirichlet boundary
data uD ∈ H1/2(ΓD)

d and TD ∈ H
1/2
00 (ΓD):

VuD
:= {w ∈ H1(Ω1)

d; w = uD on ΓD,w = 0 on Γ},

HTD
:= {S = (S1,S2) ∈ H1(Ω1,Γ)×H1(Ω2,Γ); S1 = TD on ΓD;S2 = TD on Γ ∩ ΓD},
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where, for i = 1, 2,
H1(Ωi,Γ) := {S ∈ H1(Ωi); S|Γ ∈ H1(Γ)}.

The spaces V0 and H0 are Hilbert spaces when they are equipped with the respective norms:

∥w∥V0
:= ∥w∥H1(Ω1)d and ∥S∥H0

:=
(
∥∇S∥2L2(Ω)d + ∥∇τ ⟨S⟩ ∥2L2(Γ)d−1 + ∥[S]∥2L2(Γ)

)1/2
.

Then the Navier-Stokes equations (1.3) have the following variational formulation Find (u, p) ∈ VuD
× L2(Ω1) such that, for all (w, r) ∈ V0 × L2(Ω1),∫

Ω1

(2νε(u) : ε(w) + ρ(∇u)u ·w − p div(w)− r div(u)) dx = 0.
(2.1)

As previously mentioned, we assume that the viscosity ν is large enough so that the problem (1.3)
is well-posed: it has a unique weak solution (u, p) ∈ VuD

×L2(Ω1). For the remainder of this work,
we assume that the velocity of the fluid at the outlet, i.e. at the boundary ΓN, actually causes it
to exit: there is no recirculation at the outlet. This assumption on the velocity is written as

u · n ≥ 0 on ΓN. (2.2)

For the temperature, the corresponding variational formulation of the approximated prob-
lem (1.4) is given by

Find T ∈ HTD
such that, for all S ∈ H0, a(T,S) = l(S), (2.3)

where the bilinear and linear forms are respectively

a(T,S) :=

∫
Ω1∪Ω2

κ∇T · ∇Sdx+

∫
Ω1

Su · ∇Tdx+

∫
ΓR

αTSds

+

∫
Γ

(
ϵκm∇τ ⟨T⟩ · ∇τ ⟨S⟩+ κmH[T] ⟨S⟩+ κm

ϵ
[T][S]

)
ds,

l(S) :=

∫
ΓR

αTextS dx.

Then the following result claims that this problem is well-posed.

Theorem 2.1 (Well-posedness of the state equation for temperature). Assume that the exit con-
dition (2.2) holds. There exists a positive real number ϵ0 such that, if 0 < ϵ < ϵ0, then the
convection-diffusion problem (2.3) has a unique solution T ∈ HTD .

2.2 Shape sensitivity analysis
Now we aim to perform a shape sensitivity analysis and compute the shape derivative of the

objective functional J given in (1.5). To do this, we rely on the Hadamard shape derivative
(see [26, 27, 23, 4]). We suppose Ω2 to be smooth enough (at least C2). The main idea is to
perturb the domain Ω2 (in particular, the free boundary ΓR) using a vector deformation field
θ ∈ C1,∞(Ω)d := C1 ∩W1,∞(Ω)d with ∥θ∥W1,∞(Ω)d < 1, this is,

Ωθ
2 := (I+ θ)Ω2.

We consider the following space of admissible deformations,

Θad := {θ ∈ C1,∞(Ω)d; ∥θ∥W1,∞(Ω)d < 1, θ = 0 in Ω1, θ = 0 on Γ ∪ ΓD ∪ ∂Ω}.

We first recall the definition of the notion of shape derivative of a shape functional in our context.
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Definition 2.2. The shape derivative of a function J(Ω2) is defined as the Fréchet derivative at 0
of the map θ ∈ Θad 7→ J(Ωθ

2) ∈ R. It is denoted by J ′(Ω2) and it is then given by

J(Ωθ
2) = J(Ω2) + ⟨J ′(Ω2),θ⟩+ o(θ), with lim

θ→0

o(θ)

∥θ∥W1,∞(Ω)d
= 0.

In the following, we introduce Tθ ∈ H1(Ω1,Γ) × H1(Ωθ
2 ,Γ) the perturbed solution, i.e. the

solution of approximated convection-diffusion Problem (1.4) defined on Ω1∪Ωθ
2 instead of Ω1∪Ω2.

Proposition 2.3 (Existence and characterization of the shape derivative). If Text ∈ H2(Rd), then
there exists an extension T̃θ ∈ H1(Rd)×H1(Rd) of Tθ such that the application θ → T̃θ from Θad

to L2(Rd) × L2(Rd) is C1 at 0 and the derivative, denoted T′, is called shape derivative of T. In
addition, for θ ∈ Θad and assuming that T2 belongs to H2(Ω2), the shape derivative T′ ∈ H0 is
characterized by,

Find T′ ∈ H0, such that ∀ϕ ∈ H0,∫
Ω1∪Ω2

κ∇T′ · ∇ϕdx+

∫
Ω1

∇T′ · uϕ dx+

∫
ΓR

αT′ϕ ds

+

∫
Γ

(
ϵκm∇τ ⟨T′⟩ · ∇τ ⟨ϕ⟩+ κmH[T′] ⟨ϕ⟩+ κm

ϵ
[T′][ϕ]

)
ds

=

∫
Ω2

κ2(∇θ +∇θt)∇T · ∇ϕ− κ2 div(θ)∇T · ∇ϕ− κ2∇(θ · ∇T) · ∇ϕ dx

−
∫
ΓR

(α divτ (θ)(T− Text)ϕ+ αϕθ · ∇(T− Text)) ds.

(2.4)

Furthermore, its strong form is given by,

−κ1∆T′
1 +∇T′

1 · u = 0 in Ω1,

−κ2∆T′
2 = 0 in Ω2,

T′
1 = 0 on ΓD,

κ1
∂T′

1

∂n
= 0 on ΓN,

κ2
∂T′

2

∂n
+ αT′

2 = divτ ((θ · n)κ2∇τT2)− α(θ · n)
(
∂

∂n
(T2 − Text) +H(T2 − Text)

)
on ΓR,〈

κ
∂T′

∂n

〉
= −κm

ϵ
[T′] on Γ,[

κ
∂T′

∂n

]
= ϵκm∆τ ⟨T′⟩ − κmH[T′] on Γ.

(2.5)

Finally we can state the result of shape differentiability concerning the objective functional.

Proposition 2.4 (Shape derivative of the functional). If Text ∈ H2(Rd) and T2 ∈ H2(Ω2), then
the functional J is differentiable with respect to θ ∈ Θad and the shape derivative is given by

J ′(Ω2)(θ) =

∫
ΓR

divτ (θ)α
2(T2−Text)

2−divτ (θ)α(T2−Text)R2−(2α2(T2−Text)−αR2)(∇Text·θ) ds

+

∫
Ω2

κ2((∇θ +∇θt)∇T2) · ∇R2 − div(θ)(κ∇T2 · ∇R2) dx, (2.6)
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where T = (T1,T2) ∈ HTD
is the solution of the convection-diffusion equation (1.4) and where

R = (R1,R2) ∈ H0 is the solution of the following adjoint equation

−div(κ1∇R1 + R1u) = 0 in Ω1,

−div(κ2∇R2) = 0 in Ω2,

R1 = 0 on ΓD,

κ1
∂R1

∂n
+ R1u · n = 0 on ΓN,

κ2
∂R2

∂n
+ αR2 = 2α2(T2 − Text) on ΓR,〈
κ
∂R

∂n

〉
= −κmϵ−1 [R]− κmH ⟨R⟩ on Γ,[

κ
∂R

∂n

]
= ϵdivτ (κm∇τ ⟨R⟩) on Γ.

(2.7)

If furthermore R2 ∈ H2(Ω2), then the shape derivative can be expressed on its surface form as

J ′(Ω2)(θ) =

∫
ΓR

f(T2,R2)(θ · n) ds, (2.8)

with

f(T2,R2) = α2(T2 − Text)
2

(
H − 4α

κ

)
+ α(T2 − Text)R2

(
2α

κ
−H

)
− κ∇T2 · ∇R2

+
∂Text

∂n

(
αR2 − 2α2(T2 − Text)

)
.

2.3 Shape sensitivity analysis with random exterior temperature
Notice that previously, we have assumed to know the exterior parameter Text precisely. We

want now to consider the more realistic case of an imprecise knowledge of this parameter and we
then aim to take into account uncertainties on this data Text. To do that we will assume that we
have information about the uncertainties.

Since in this part we are interested on study the random exterior temperature, we will make
explicit the dependence on Text by means of the notation:

J(Ω2,Text) =

∫
ΓR

α2(T2 − Text)
2 ds,

where T = (T1,T2) is the solution of the convection-diffusion problem (1.4) with exterior temper-
ature Text.

Let (Ξ,A,P) be a complete probability space. We consider the case where the exterior temper-
ature is given as a random process in the Bochner space L2(Ξ,H1/2(ΓD)). The temperature T(·, ·)
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then becomes a random process defined as the unique solution in HTD
to the following system

−div(κ1∇T1(·, ω)) + u · ∇T1(·, ω) = 0 in Ω1,
−div(κ2∇T2(·, ω)) = 0 in Ω2,

T1(·, ω) = TD on ΓD,

κ1
∂T1(·, ω)
∂n

= 0 on ΓN,

κ2
∂T2(·, ω)
∂n

+ αT2(·, ω) = αText(·, ω) on ΓR,〈
κ
∂T(·, ω)
∂n

〉
= −κmϵ−1 [T(·, ω)] on Γ,[

κ
∂T(·, ω)
∂n

]
= ϵdivτ (κm∇τ ⟨T(·, ω)⟩)− κmH[T(·, ω)] on Γ.

(2.9)

The objective is now to minimize E[J(Ω2,Text(x, ·))] the expectation of the objective functional J .
The functional of interested J is quadratic in a temperature that depends linearly on the random
parameter. This situation fits to the context of the work of Dambrine et al. [14]. Note that
considering higher order moments can been done by a mere adaptation of the methods (see [15]).
The gradient of the objective can be computed thanks to the two points correlation of the random
input Text. In order to avoid the needed introduction of tensor calculus for the general case (see [14]
for the quadratic case and [12] for the general polynomial case), we restrict ourselves in this work
to the particular case where Text is a finite sum

Text(x, ω) = T0
ext(x) +

m∑
k=1

ξk(ω)T
k
ext(x), x ∈ Ω, ω ∈ Ξ, (2.10)

where the random variables ξk are assumed independent following centered Gaussian distributions
with variance σ2

k. This case can been dealt with easily but remains representative of the general
situation when m the number of terms goes to ∞. The expression (2.10) is a so-called truncated
Karhunen-Loeve decomposition.

Theorem 2.5 (Shape derivative of the expectation of J). Let us consider an uncertain exterior
temperature expanded as in (2.10). Let us also assume that the random variables ξk have zero
expected value and are independent. Then the expectation of J can be computed as

E[J(Ω2,Text)] = J(Ω2,T
0
ext) +

m∑
k=1

σ2
kJ(Ω2,T

k
ext) (2.11)

and, under regularity assumptions similar to those of Proposition 2.4, its shape derivative is then
given by

(E[J ])′ (Ω2,Text)(θ) = J ′(Ω2,T
0
ext)(θ) +

m∑
k=1

σ2
kJ

′(Ω2,T
k
ext)(θ). (2.12)

Remark 2.6. In the above theorem, we need to define the solution associated to each T0
ext and Tk

ext

(in order to define the associated functional). Then we specify that (see the corresponding proof),
for each k = 1, . . . ,m, Tk ∈ H0 solves Equation (1.4) with respectively Tk

ext and 0 as conditions
on ΓR and ΓD, and where T0 ∈ HTD

solves Equation (1.4) with respectively T0
ext and TD as

conditions on ΓR and ΓD.
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3 Proofs

3.1 Proof of the well-posedness theorem 2.1
Proof of Theorem 2.1. We follow the usual strategy: lift the boundary condition and apply Lax-
Milgram theorem in the space H0. The crucial point is to prove that a is coercive. The presence
of an interface condition on Γ is not completely customary. We therefore demonstrate this point.

Let S ∈ H0. We split a(S,S) into a1(S,S) + a2(S,S) + a3(S,S) where

a1(S,S) :=

∫
Ω1∪Ω2

κ|∇S|2 dx+ κm

∫
Γ

(
ϵ|∇τ ⟨S⟩ |2 +

1

ϵ
[S]2
)

ds+

∫
ΓR

αS2 ds,

a2(S,S) :=

∫
Ω1

S(u · ∇S) dx,

a3(S,S) := κm

∫
Γ

H[S] ⟨S⟩ ds.

The bilinear form a1 clearly is coercive,

a1(S,S) ≥ ∥κ1/2∇S∥20,Ω1∪Ω2
+ ϵκm∥∇τ ⟨S⟩ ∥2L2(Γ) +

κm
ϵ
∥[S]∥2L2(Γ).

Concerning a2, we get after integration by parts

a2(S,S) =

∫
Ω1

u · ∇
(
S2

2

)
dx =

1

2

∫
ΓN

S2u · nds.

We have used the boundary conditions u = 0 on Γ and S = 0 on ΓD and the incompressiblility
of the fluid div(u) = 0 in Ω1. Now since the output normal velocity u · n is positive by the exit
condition (2.2), we get a2(S,S) > 0. The difficulty lays in the product [S] ⟨S⟩ that has no sign.
Using successively Cauchy-Schwarz then Peter–Paul inequalities, one gets∣∣∣∣∫

Γ

H[S] ⟨S⟩ ds
∣∣∣∣ =

1

2

∣∣∣∣∫
Γ

[S] (H S1 + H S2) ds

∣∣∣∣
≤ 1

2
∥[S]∥2L2(Γ)

(
∥HS1∥2L2(Γ) + ∥HS2∥2L2(Γ)

)
≤ 1

2

(
1

2ϵ
∥[S]∥2L2(Γ) +

ϵ

2
∥HS1∥2L2(Γ) +

1

2ϵ
∥[S]∥2L2(Γ) +

ϵ

2
∥HS2∥2L2(Γ)

)
≤ 1

2ϵ
∥[S]∥2L2(Γ) +

ϵ∥H∥2∞
4

(
∥S1∥2L2(Γ) + ∥S2∥2L2(Γ)

)
.

Since S1 = 0 on ΓD, one infers from the trace theorem and Poincaré inequality for S1, the existence
of a positive constant C > 0, such that, ∥S1∥2L2(Γ) ≤ C∥∇S1∥2L2(Ω1)

. This is not the case for S2.
Using the definition of the jump, ones gets

∥S2∥L2(Γ) ≤ ∥S1∥L2(Γ) + ∥[S]∥L2(Γ) then ∥S2∥2L2(Γ) ≤ 2
(
∥S1∥2L2(Γ) + ∥[S]∥2L2(Γ)

)
by the triangle inequality. Finally, we have obtained the bound∣∣∣∣∫

Γ

H[S] ⟨S⟩ ds
∣∣∣∣ ≤ 1

2

(
1

ϵ
+ ϵ∥H∥2∞

)
∥[S]∥2L2(Γ) +

3ϵC∥H∥2∞
4

∥∇S1∥2L2(Ω1)
.

Therefore,
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a1(S,S) + a3(S,S) ≥ ∥κ1/2∇S∥2L2(Ω1∪Ω2)
− ϵ

3Cκm∥H∥2∞
4

∥∇S1∥2L2(Ω1)
+ ϵκm∥∇τ ⟨S⟩ ∥2L2(Γ)

+
κm

2

(
1

ϵ
− ϵ∥H∥2∞

)
∥[S]∥2L2(Γ).

We impose ϵ < ∥H∥−1
∞ so that the last term is nonnegative. The second term is absorbed by the

correspond term in a1 if we impose that

κ1 − ϵ
3Cκm∥H∥2∞

4
≥

1

2
κ1 ⇔ ϵ ≤ 2κ1

3Cκm∥H∥2∞
.

In conclusion a is coercive if

ϵ < ϵ0 := min
(

1

∥H∥∞
,

2κ1
3Cκm∥H∥2∞

)
,

which concludes the proof.

3.2 Shape sensitivity analysis
Before proving the main result of this part (Proposition 2.4), we need some auxiliary results,

as the existence of the derivative. As is classical in shape optimization, the first step is to show
the existence of the material derivative and then compute it (see, e.g., [23, 1]). For the sake of
simplicity, we assume without loss of generality TD = 0.

We recall that, for θ ∈ Θad, Tθ ∈ H1(Ω1,Γ) × H1(Ωθ
2 ,Γ) is the solution of the convection-

diffusion Problem (1.4) defined on Ω1 ∪ Ωθ
2 instead of Ω1 ∪ Ω2.

Proposition 3.1 (Existence and characterization of the material derivative of T). For all θ ∈ Θad,
we define Tθ := Tθ ◦ (I+ θ). If Text ∈ H2(Rd), then

θ ∈ Θad → Tθ ∈ H0

is differentiable in a neighborhood of 0. Furthermore, its derivative at 0, in the direction θ, is called
the material derivative of T, is denoted by Ṫ ∈ H0, and is the solution of the following variational
problem

Find Ṫ ∈ H0 such that, for all ϕ ∈ H0,∫
Ω1∪Ω2

κ∇Ṫ · ∇ϕ dx+

∫
Ω1

∇Ṫ · uϕdx+

∫
ΓR

αṪϕ ds

+

∫
Γ

(
ϵκm∇τ

〈
Ṫ
〉
· ∇τ ⟨ϕ⟩+ κmH[Ṫ] ⟨ϕ⟩+ κm

ϵ
[Ṫ][ϕ]

)
ds

=

∫
Ω2

κ
(
∇θ +∇θt − div(θ)I

)
∇T · ∇ϕdx−

∫
ΓR

(α divτ (θ)(T− Text)ϕ− α∇Text · θϕ) ds.

(3.1)

Proof of Proposition 3.1. We proceed as described in [23]. Let ϕ ∈ H0 and let θ ∈ Θad. We define
ϕθ := ϕ ◦ (I+ θ)−1 and we have∫

Ω1∪Ωθ
2

κ∇Tθ · ∇ϕθ dx+

∫
Ω1

∇Tθ · uϕθ dx+

∫
ΓR

αTθϕθ ds
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+

∫
Γθ

(
ϵκm∇τθ ⟨Tθ⟩ · ∇τθ ⟨ϕθ⟩+ κmHθ[Tθ] ⟨ϕθ⟩+ ϵ−1κm[Tθ][ϕθ]

)
ds =

∫
Γθ
R

αTextϕθ dx.

Changing variables, we get∫
Ω2

κA(θ)∇Tθ · ∇ϕdx+

∫
Ω1

(
κ∇Tθ · ∇ϕ+∇Tθ · uϕ

)
dx+

∫
ΓR

αB(θ)Tθϕ ds

+

∫
Γ

(
ϵκm∇τ

〈
Tθ

〉
· ∇τ ⟨ϕ⟩+ κmH[Tθ] ⟨ϕ⟩+ ϵ−1κm[Tθ][ϕ]

)
ds =

∫
ΓR

αB(θ)Text ◦ (I+ θ)ϕdx,

(3.2)

where A(θ) := det(I +∇θ)(I +∇θ)−t(I +∇θ) and B(θ) := det(I +∇θ)|(I +∇θ)−tn|Rd . Then,
we introduce F : Θad ×H0 → (H0)

′, defined for all S ∈ H0 by,

⟨F(θ, T ), S⟩ :=
∫
Ω2

κA(θ)∇T · ∇S dx+

∫
Ω1

(
κ∇T · ∇S +∇T · uS

)
dx+

∫
ΓR

αB(θ)TS ds

+

∫
Γ

κm

(
ϵ∇τ

〈
T
〉
· ∇τ ⟨S⟩+H[T ] ⟨S⟩+ 1

ϵ
[T ][S]

)
ds−

∫
ΓR

αB(θ)T0 ◦ (I+ θ)S ds.

By construction F(0, 0) = 0. Similarly to [23, Theorem 5.5.1], we show that F is C1. Finally,
the operator DTF(0, 0) is an isomorphism from H0 into (H0)

′, since for all S, Ŝ ∈ H0,

⟨DTF(0, 0)S, Ŝ⟩ =
∫
Ω1∪Ω2

κ∇S · ∇Ŝ dx+

∫
Ω1

∇S · uŜ dx

+

∫
ΓR

αSŜ ds+

∫
Γ

(
ϵκm∇τ ⟨S⟩ · ∇τ ⟨Ŝ⟩+ κmH[S][Ŝ] +

κm
ϵ
[S][Ŝ]

)
ds.

In virtue of the implicit function theorem, there exists a C1 function θ ∈ Θad → T (θ) ∈ H0 in
a neighborhood of 0 such that, F(0, T (θ)) = 0. By uniqueness of the solution Tθ, we deduce
Tθ = T (θ), then, θ → Tθ is C1.

To prove that the material derivative Ṫ satisfies (3.1), we proceeded as in [4, Proposition 6.30].
We first recall that

A′(0)(θ) = div(θ)I −∇θ − (∇θ)t, B′(0)(θ) = divτ (θ) and T
′
(0)(θ) = Ṫ.

Then, differentiating (3.2) at θ = 0, in the direction θ and using the chain rule of those derivatives,
we get (3.1).

After showing the existence and computing the material derivative, we can do the same for the
eulerian derivative, which proof uses the previous results and some integrations by parts.

Proof of Proposition 2.3. Let us introduce a linear continuous extension E : H0 → H1(Rd) ×
H1(Rd). We define T̃θ := E(Tθ) ◦ (I + θ)−1 and since θ ∈ Θad → Tθ ∈ H0 is differentiable in a
neighborhood of 0, we obtain the existence of the shape derivative using [23, Lemma 5.3.3].

To get (2.4), we use that T′
2 = Ṫ2 − θ · ∇T2 belongs to H1(Ω2) since we have assumed that

T2 ∈ H2(Ω2), and also that T′
1 = Ṫ1 ∈ H1(Ω1) and T′

i = Ṫi ∈ H1(Γ) for i = 1, 2. In order to obtain
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the strong form for the shape derivative (2.5), we integrate by parts in formula (2.4), this is,∫
Ω1∪Ω2

(κ∇T′ · ∇ϕ+ ϕ∇T′ · u) dx+

∫
ΓR

αT′ϕ ds

+

∫
Γ

(
ϵκm∇τ ⟨T′⟩ · ∇τ ⟨ϕ⟩+ κmH[T′] ⟨ϕ⟩+ κmϵ

−1[T′][ϕ]
)
ds

=

∫
Ω2

(
κ(∇θ +∇θt)∇T · ∇ϕ− κdiv(θ)∇T · ∇ϕ− κ∇(θ · ∇T) · ∇ϕ

)
dx

−
∫
ΓR

(α divτ (θ)(T− Text)ϕ+ αϕθ · ∇(T− Text)) ds

=

∫
Ω2

(
κ(∇θ − div(θ)I)∇T · ∇ϕ− κ(∇2T)θ · ∇ϕ

)
dx

−
∫
ΓR

(α divτ (θ)(T− Text)ϕ+ αϕθ · ∇(T− Text)) ds

=

∫
Ω2

(κdiv((θ · ∇ϕ)∇T− (∇T · ∇ϕ)θ)− (θ · ∇ϕ)κ∆T) dx

−
∫
ΓR

(α divτ (θ)(T− Text)ϕ+ αϕθ · ∇(T− Text)) ds.

Since T is the solution of the convection-diffusion equation (1.4), κ2∆T = 0 in Ω2 with the boundary
condition κ ∂T

∂n = α(Text − T) on ΓR, then∫
Ω1∪Ω2

(κ∇T′ · ∇ϕ+ ϕ∇T′ · u) dx+

∫
ΓR

αT′ϕds

+

∫
Γ

(
ϵκm∇τ ⟨T′⟩ · ⟨ϕ⟩+ κmH[T′] ⟨ϕ⟩+ κmϵ

−1[T′][ϕ]
)
ds

=

∫
Ω2

(κdiv((θ · ∇ϕ)∇T− (∇T · ∇ϕ)θ)) dx− α

∫
ΓR

(
divτ ((T− Text)θ)ϕ+ (θ · n)ϕ ∂

∂n
(T− Text)

)
ds.

By divergence theorem and the fact that θ = 0 on Γ,∫
Ω1∪Ω2

(κ∇T′ · ∇ϕ+ ϕ∇T′ · u) dx+

∫
ΓR

αT′ϕ ds

+

∫
Γ

(
ϵκm∇τ ⟨T′⟩ · ⟨ϕ⟩+ κmH[T′] ⟨ϕ⟩+ κmϵ

−1[T′][ϕ]
)
ds

=

∫
ΓR

(
(θ · ∇ϕ)κ∂T

∂n
− κ∇T · ∇ϕ− α divτ ((T− Text)θ)ϕ− α(θ · n)ϕ ∂

∂n
(T− Text)

)
ds.

Decomposing the gradient as ∇ϕ = ∇τϕ+n ∂ϕ
∂n and using again that T verifies the Robin boundary

condition at ΓR, we obtain that∫
Ω1∪Ω2

(κ∇T′ · ∇ϕ+ ϕ∇T′ · u) dx+

∫
ΓR

αT′ϕds

+

∫
Γ

(
ϵκm∇τ ⟨T′⟩ · ∇τ ⟨ϕ⟩+ κmH[T′] ⟨ϕ⟩+ κmϵ

−1[T′][ϕ]
)
ds

=

∫
ΓR

(
−α divτ (ϕ(T− Text)θ)− κ∇τT · ∇τϕ(θ · n)− αϕ(θ · n) ∂

∂n
(T− Text)

)
ds.

Finally, integrating by parts on the surface ΓR (see [23, Proposition 5.4.9]) yields to the desired
formula.
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Finally, afterwards the existence of the shape derivative of T is assured, the shape derivative
derivative can be computed by using the chain rule.

Proof of Proposition 2.4. Let T′ the Eulerian derivative of the convection-diffusion equation (1.4),
that verifies (2.4) and let θ ∈ Θad. By chain rule,

J ′(Ω2)(θ) =

∫
ΓR

(
2α2(T2 − Text)T

′
2 ds+

∫
ΓR

2α2(T2 − Text)∇(T2 − Text) · θ + α2(T2 − Text)
2 divτ (θ)

)
ds.

(3.3)
Testing with R in the eulerian derivative equation (2.5) and T′ in the adjoint equation (2.7), we
get respectively∫

Ω1∪Ω2

κ∇T′ · ∇Rdx+

∫
Ω1

∇T′ · uRdx+

∫
ΓR

αT′R ds

+

∫
Γ

(
ϵκm∇τ ⟨R⟩ · ∇τ ⟨T′⟩+ κmH ⟨R⟩ [T′] +

κm
ϵ
[R][T′]

)
ds

=

∫
Ω2

κ
(
∇θ +∇θt − div(θ)I

)
∇T · ∇R− κ∇(θ · ∇T) · ∇R dx

−
∫
ΓR

divτ (θ)α(T− Text)R− α∇(T− Text) · θR ds (3.4)

and∫
Ω1∪Ω2

κ∇T′ · ∇Rdx+

∫
Ω1

Ru · ∇T′ dx+

∫
ΓR

αT′R ds

+

∫
Γ

ϵκm∇τ ⟨R⟩ · ∇τ ⟨T′⟩+ κmH ⟨R⟩ [T′] +
κm
ϵ
[R][T′] ds =

∫
ΓR

2α2(T− Text)T
′ ds. (3.5)

Using (3.4) and (3.5), we get∫
ΓR

2α2(T− Text)T
′ ds =

∫
Ω2

κ
(
∇θ +∇θt − div(θ)I

)
∇T · ∇R− κ∇(θ · ∇T) · ∇R dx

−
∫
ΓR

divτ (θ)α(T− Text)R+ α∇(T− Text) · θR ds. (3.6)

Plugging (3.6) into (3.3), it yields to

J ′(Ω2)(θ) =

∫
ΓR

2α2(T− Text)∇(T− Text) · θ + α2(T− Text)
2 divτ (θ) ds

+

∫
Ω2

κ
(
∇θ +∇θt − div(θ)I

)
∇T · ∇R− κ∇(θ · ∇T) · ∇R dx

−
∫
ΓR

divτ (θ)α(T− Text)R+ α∇(T− Text) · θRds.

Using that κ2 ∂R2

∂n = 2α2(T2 − Text)− αR2 on ΓR, we get

J ′(Ω2)(θ) =

∫
ΓR

α2(T− Text)
2 divτ (θ) + κ

∂R

∂n
∇T · θ − (2α2(T− Text)− αR)∇Text · θ ds

+

∫
Ω2

κ
(
∇θ +∇θt − div(θ)I

)
∇T · ∇R− κ∇(θ · ∇T) · ∇Rdx−

∫
ΓR

divτ (θ)α(T− Text)Rds.
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Since R solves the adjoint problem (2.7),∫
Ω2

∇(θ · ∇T2) · ∇R2 dx+

∫
ΓR

κ2
∂R2

∂n
∇T2 · θ ds = 0,

(θ = 0 in Ω1), obtaining (2.6).
To prove the surface expression (2.8), since now we have more regularity, we can integrate by

parts, yielding to the terms θ · n. By chain rule,

J ′(Ω2)(θ) =

∫
ΓR

2α2(T2 − Text)T
′
2 ds+

∫
ΓR

α2

(
∂

∂n
(T2 − Text)

2 +H(T2 − Text)
2

)
(θ · n) ds.

(3.7)
Testing the eulerian equation (2.5) with R and the adjoint equation (2.7) with T′, we have respec-
tively∫

Ω1∪Ω2

κ∇T′ · ∇Rdx+

∫
Ω1

∇T′ · uR dx+

∫
ΓR

αT′R ds

+

∫
Γ

ϵκm∇τ ⟨R⟩ · ∇τ ⟨T′⟩+ κmH ⟨R⟩ [T′] +
κm
ϵ
[R][T′] ds

= −
∫
ΓR

(
κ∇τT · ∇τR+ αR

(
∂

∂n
(T− Text) +H(T− Text)

))
(θ · n) ds (3.8)

and∫
Ω1∪Ω2

κ∇T′ · ∇Rdx+

∫
Ω1

Ru · ∇T′ dx+

∫
ΓR

αT′R ds

+

∫
Γ

ϵκm∇τ ⟨R⟩ · ∇τ ⟨T′⟩+ κmH ⟨R⟩ [T′] +
κm
ϵ
[R][T′] ds =

∫
ΓR

2α2(T− Text)T
′ ds. (3.9)

Using (3.8) and (3.9), we get∫
ΓR

2α2(T− Text)T
′ ds = −

∫
ΓR

(
κ∇τT · ∇τR+ αR

(
∂

∂n
(T− Text) +H(T− Text)

))
(θ · n) ds.

(3.10)
Then, (3.7) becomes

J ′(Ω2)(θ) =

∫
ΓR

(
α2 ∂

∂n
(T− Text)

2 + α2H(T− Text)
2 − κ∇τT · ∇τR

−αR
(
∂

∂n
(T− Text)−H(T− Text)

))
(θ · n) ds

=

∫
ΓR

(
2α2(T− Text)

∂T

∂n
+ α2H(T− Text)

2 − αR
∂T

∂n
− αHR(T− Text)

−κ∇τT · ∇τR− ∂Text

∂n
(2α2(T− Text)− αR)

)
(θ · n) ds.

Using the boundary conditions κ2 ∂T2

∂n = α(Text − T2) and κ2
∂R2

∂n = 2α(T2 − Text) − αR2 on ΓR

and that ∇τT2 · ∇τR2 = ∇T2 · ∇R2 − ∂T2

∂n
∂R2

∂n , we obtain (2.8).

Remark 3.2. We also expose an alternative method using the Eulerian derivative in Appendix A.
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3.3 Shape sensitivity analysis with random exterior temperature

Proof of Proposition 2.5. Let ω ∈ Ξ be fixed. Recall that Text(x, ω) = T0
ext(x) +

m∑
k=1

ξk(ω)T
k
ext(x),

for x ∈ Ω. Then, by linearity,

T(·, ω) = T0(·) +
m∑

k=1

ξk(ω)T
k(·)

is the unique solution in HTD
of (2.9) where, for each k = 1, . . . ,m, Tk ∈ H0 solves Equation (1.4)

with respectively Tk
ext and 0 as conditions on ΓR and ΓD, and where T0 ∈ HTD

solves Equation (1.4)
with respectively T0

ext and TD as conditions on ΓR and ΓD.
Now we will show (2.11). Using that J is quadratic with respect to the temperature gap at the

boundary, we have

E[J ](Ω2,Text) = E[J(Ω2,T
0
ext +

m∑
k=1

ξkT
k
ext] = E

∫
ΓR

α2

(
(T0 − T0

ext +

m∑
k=1

ξk(T
k − Tk

ext)

)2


=

∫
ΓR

α2(T0 − T0
ext)

2 + 2

n∑
k=1

E[ξk]
∫
ΓR

(T0 − T0
ext)(T

k − Tk
ext)

+

n∑
k,l=1

E[ξkξl]
∫
Γ

(Tl − Tl
ext)(T

k − Tk
ext).

Since the random variables ξk are independent and centered, many terms cancel and one gets

E[J ](Ω2,Text) = J(Ω2,T
0
ext) +

∫
Ξ

m∑
k=1

ξ2kJ(Ω2,T
k
ext)P(dω) = J(Ω2,T

0
ext) +

m∑
k=1

σ2
kJ(Ω2,T

k
ext).

The expression of the shape derivative (2.12) follows by linearity of the shape derivative.

4 Numerical methods used to solve the involved problems

4.1 Numerical resolution with FEM
We highlight that the approximated convection-diffusion (1.4) and the adjoint equations (2.7)

can not be implemented directly due to the use of the Broken Sobolev spaces such as H0. Allaire
et al proposed a method in [2] to approximate this kind of equations in order to use any finite
element software with continuous spaces. However this method involves to duplicate the degrees
of freedom, which we do not want for our 3D simulations. Indeed, it becomes too expensive in our
context. Domain decomposition method can be used as well, adapting [25] for example. However,
it is not clear how many iterations it can take to converge to no mismatch at the interface, in
particular in 3D geometries with a large quantity of vertices at the interface (and we require to
solve it a lot of times in the shape optimization procedure). Furthermore, the factor 1

ϵ can lead to
poor conditioning of the linear systems and then slow resolution. Finally, in our shape optimization
context, we have to compute the shape derivative which is an integral over the interface Γ (which
changes at every step of the shape optimization algorithm) and it is then crucial to have precise
approximations of this integral. For all these reasons, we solve these equations directly using the
dedicated Nitsche method we have introduced in our previous work [10]. The main advantages is
the efficiency and the robustness with respect to the small parameter ϵ.
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Concerning the Navier-Stokes equations (1.3), they can be solved with any finite element soft-
ware. We rely on FreeFem++ (see [22]) for this purpose. Since Ω1 is fixed, the Navier-Stokes
equations (1.3) have to be solved just once. However, it is necessary to interpolate the solution
in every step of the shape optimization algorithm, since the mesh that describes Ω1 will change
slightly: indeed the remeshing step mmg concerns the level set function that describes the bound-
ary ΓR but then naturally affects the whole mesh.

All the equations involved are solved in parallel by means of FreeFEM++ and PETSc (see [5, 6]),
up to the non-standard equations (1.4) and (2.7) which involve the discretization of the Sobolev
Broken Spaces and are then solved with an optimized sequential version in C++.

4.1.1 Nitsche extended finite element method of a Ventcel transmission problem
with discontinuities at the interface

For the sake of simplicity, in this part, we suppose TD = 0. In the case of the convection-
diffusion problem (2.3), we decompose a into a = b+ c where

b(T,S) :=

∫
Ω1∪Ω2

κ∇T · ∇Sdx+

∫
Ω1

Su · ∇Tdx

+

∫
ΓR

αTSds+

∫
Γ

ϵκm∇τ ⟨T⟩ · ∇τ ⟨S⟩+ κmH[T] ⟨S⟩ ds,

c(T,S) :=
κm
ϵ

∫
Γ

[T][S] ds.

The term c(T,S) produces poor conditioning when ϵ is small. To deal with this, we consider the
Nitsche approach previously used in [10] to stabilize our matrix with respect to ϵ, improving the
conditioning of the matrix. We first introduce some notations to briefly explain this method.

Let Th be a regular simplicial mesh of Ω and let Fh be the set of faces of Th, Fh,Γ the set of
faces situated on Γ and Th,Γ the set of elements which have one face on Γ. Let hF be the diameter
of the face F ∈ Fh,Γ. We consider the polynomial spaces

P1
h := {Sh ∈ C(Ω1 ∪ Ω2);Sh|K ∈ P1,∀K ∈ Th} and P1

h,0 := P1
h ∩H0.

Then, we define the following mesh-depending bilinear form, for any Th,Sh ∈ P1
h,0,

ah(Th,Sh) := a(Th,Sh)−
∑

F∈Fh,Γ

γϵhF
ϵ+ γκmhF

(〈
κ
∂Th

∂n

〉
+
κm
ϵ
[Th],

〈
κ
∂Sh
∂n

〉
+
κm
ϵ
[Sh]

)
L2(F )

.

Hence
ah(Th,Sh) = b(Th,Sh) + ch(Th,Sh),

with

ch(Th,Sh) :=
∑

F∈Fh,Γ

∫
F

κm
ϵ+ γκmhF

[Th][Sh]−
γϵhF

ϵ+ γκmhF

〈
κ
∂Th

∂n

〉〈
κ
∂Sh
∂n

〉
− γκmhF
ϵ+ γκmhF

(〈
κ
∂Th

∂n

〉
[Sh] +

〈
κ
∂Sh
∂n

〉
[Th]

)
ds,

where γ > 0 is a stabilization parameter, that it is small enough in order to guarantee the coercivity
of ah. Let us remark, that in the decomposition of the new bilinear form ah, the bilinear form b
continues to appear; what it changes is the bilinear form ch instead of c, which associated matrix

18



has a better conditioning due to the stabilization. Then we consider the following Nitsche problem
to approximate the equation (2.3) is{

Find Th ∈ P1
h,0 such that

ah(Th,Sh) = l(Sh), ∀Sh ∈ P1
h,0,

(4.1)

that estimates the continuous solution T of the convection-diffusion equation (1.4) in the energy
sense as it is stated in the next result (the proof is a mere adaptation of [10, Theorem 4.6]).

Theorem 4.1 (Error estimate in energy norm). Let T ∈ H0∩
(
H2(Ω1,Γ)×H2(Ω2,Γ)

)
the solution

of the continuous convection-diffusion equation (1.4) and Th the solution of the (discrete) Nitsche
problem (4.1). For γ sufficiently small, there exists a constant C > 0 independent of h and ϵ such
that:

|||T− Th|||h ≤ Ch

(
∥κ1/2T∥2H2(Ω1∪Ω2)

+ ∥(κmϵ)1/2 ⟨T⟩ ∥2H2(Γ) +
∑

F∈Fh,Γ

κmhF
γ

∥[T]∥2H2(F )

)1/2

, (4.2)

where |||·||| :=

∥ · ∥H0
+

∑
F∈Fh,Γ

1

ϵ+ γhF
∥[·]∥2L2(F )

1/2

is a mesh-dependent norm on P1
h.

We proceed in a similar way concerning the adjoint equation (2.7). Let R,S ∈ H0. We denote

b̃(R,S) :=

∫
Ω1∪Ω2

κ∇R · ∇S dx+

∫
Ω1

Ru · ∇Sdx

+

∫
ΓR

αRSds+

∫
Γ

ϵκm∇τ ⟨R⟩ · ∇τ ⟨S⟩+ κmH ⟨R⟩ [S] ds,

c̃(R,S) :=

∫
Γ

κm
ϵ
[R][S] ds

in such a way that ã(R,S) := b̃(R,S) + c̃(R,S) is the bilinear form associated to the adjoint prob-

lem (2.7) with right-hand side l̃(S) :=
∫
ΓN

2α2(T− T0)Sds. As previously, the matrix associated

to the term c̃ has poor conditioning. To stabilize it, we define

ãh(R,S) := ã(R,S)

−
∑

F∈Fh,Γ

γϵhF
ϵ+ γκmhF

(〈
κ
∂R

∂n

〉
+
κm
ϵ
[R] + κmH ⟨R⟩ ,

〈
κ
∂S

∂n

〉
+
κm
ϵ
[S] + κmH ⟨S⟩

)
L2(F )

.

Therefore, we obtain ãh(R,S) = b̃(R,S) + ch(R,S)− dh(R,S), where

dh(R,S) :=
∑

F∈Fh,Γ

γκmϵhF
ϵ+ γκmhF

∫
F

H ⟨S⟩
(〈

κ
∂R

∂n

〉
+
κm
ϵ
[R]

)

+H ⟨R⟩
(〈

κ
∂S

∂n

〉
+
κm
ϵ
[S]

)
+ κmH

2 ⟨R⟩ ⟨S⟩ ds.

Then the Nitsche problem considered to approximate the adjoint equation (2.7) is{
Find Rh ∈ P1

h,0 such that
ãh(Rh,Sh) = l̃(Sh), ∀Sh ∈ P1

h,0.
(4.3)

The error estimation is similar to the one given in Theorem 4.1.
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4.1.2 Implementation of the discrete Sobolev Broken space

Starting from Th, we have to truncate this mesh to get T 1
h and T 2

h (meshes of Ω1 and Ω2),
creating a bijection between the vertices on Γ of both meshes, in order to discretize integrals on Γ

like
∫
Γ

T1T2 ds. Once we have that, we can assemble the matrix Ai associated to each domain

independently without considering the integrals on Γ (discontinuous terms). Then, the matrix A
has structure of matrix by blocks, that is

A =

(
A1 B
C A2

)
,

where B,C are the matrix obtained from discretizing the integrals on Γ. In this way, we have to
solve the system (without considering the Dirichlet boundary conditions),(

A1 B
C A2

)(
Th,1

Th,2

)
=

(
b1
b2

)
.

Figure 4 shows the sparsity of the matrix system. Notice that this block structure can be useful
from a numerical point of view, for example to use an appropiate preconditioner. However, we
have not yet investigated this for the moment.

Figure 4: Stiffness matrix associated to the convection-diffusion equation (2.3) .

4.2 Optimization framework: level set and null space methods
In the context of shape optimization, the level set evolution method was introduced by Allaire

et al. in [3]. The idea consists in considering a fixed domain D that contains Ω and such that the
fixed boundaries ΓD and ΓN belong to ∂D. In practice, D is a box. This allows to describe Ω by
means of a level set function ϕ : D → R as follows

x ∈ Ω ⇐⇒ ϕ(x) < 0

x ∈ ΓR ⇐⇒ ϕ(x) = 0

x ∈ D \ Ω ⇐⇒ ϕ(x) > 0.
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In particular this allows us to track the boundary ΓR that we aim to optimize. Then, the mesh is
done following the level set function, which implies that there is not cut element at the boundary ΓR.
After initialization, at the step n of the shape optimization process, we compute the level set ϕn
by solving the following equation,

∂ϕn

∂t
+ θ · ∇ϕn = 0, 0 < t < τ, x ∈ D

ϕn(0, x) = ϕn−1(x), x ∈ D,
(4.4)

for some τ > 0, where θ is an appropriate velocity field. Numerically speaking, the equation (4.4)
can be computed by advect (see [9]) and the remeshing step by mmg (see [16]). Notice that in
our case, we have two level set functions, ϕ1 and ϕ2 that describe Ω1 and Ω2, respectively. Since Ω1

is fixed, we will just have to update ϕ2 for the remeshing.
The velocity field θ that we will use belongs to H1(D)d, such that θ = 0 on ∂D and θ = 0

in Ω1. It is obtained by solving the following extension-regularization problem,∫
D

h2∇θ : ∇ψ + θψ dx = ⟨J ′(ΓR), ψ⟩ , ∀ψ ∈
{
ψ ∈ H1(D)d; ψ = 0 on ∂D and ψ = 0 in Ω1

}
.

It is important to remark, that by construction, θ is a descent direction.
Finally, as constrained optimization algorithm, we use the null space algorithm introduced

in [20] under the implementation of Feppon [18]. This method first decreases the violation of
the constraint in order to be feasible, then minimizes the objective function. It is particularly
well suited when we start from shapes that does not satisfy the constraints and when numerous
constraints are considered.

5 Numerical examples
We consider the thermal insulation in dimension three. We consider the inlet velocity uD as a

parabolic profile with maximum speed at the ΓD centered (0, yc, zc), equal to 1: in other words,
uD :=

(
(r2 − (y − yc)

2 − (z − zc)
2)/r2, 0, 0

)
, where r is the radius of Ω1 which is fixed to 0.1 in

the simulations below. Moreover, we consider TD ≡ 40 and ϵ = 1 · 10−3 in the following examples,
and except for the last example, we consider D = [0, 1] × [0, 1] × [0, 1]. Finally, except for the
random outer temperature example of subsection 5.1.2, we take Text = 0. Let us conclude these
preliminaries by highlighting two points.

• On the Robin coefficient α. From [29], we know that for α small (with respect to κ2),
the functional decreases removing insulation material, meanwhile for α large enough the
functional decreases adding insulation material, that is more intuitive. Hence we will consider
this latter case and we summarize the values of the parameters chosen in the following Table 1.

κ1 1.5 · 10−7 m2s−1

κ2 10−7 m2s−1

κm 1.1 · 10−4 m2s−1

α 2 · 10−5 ms−1

ν 10−2 m2s−1

Table 1: Values of the parameters
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• On the no recirculation at the outlet assumption (2.2). In the four following examples, we
numerically check that the hypothesis u · n ≥ 0 on ΓN is well satisfied.

All the presented simulations were performed on a personal laptop with an AMD Ryzen 9 4900hs
@3.0 GHz, with 40 GB RAM.

Remark 5.1. We have previously assumed that TD ∈ H
1/2
00 (ΓR) which is not the case here. However

we chose a constant inlet temperature to simplify the simulations and the previous results can be
adapted to this case.

5.1 First example: cylinder case
The first example is the cylindric case. We have to mention the work [24] where it was showed,

in another context close to our own, that a cylinder is not the optimal solution to minimize the
fluid dissipation. We consider here a fixed cylinder Ω1 of radius r = 0.1, of axis (Ox) and with
(yc, zc) = (0.5, 0.5). The target volume V0 is the difference between the volume of a cylinder of
radius 0.2 and the volume of another cylinder of radius 0.1. It will be chosen similarly in the
following examples (changing the cylinder by the respective considered pipes).

(a) Initial domain Ω. (b) Final domain Ω.

Figure 5: First example - initial and final domains in the deterministic case.

5.1.1 Deterministic case

The initial geometry is depicted on Figure 5a. The meshes considered vary from 160000
to 180000 vertices and 900000 to 1000000 tetrahedrons. The optimal design is shown in Figure 5b.

On the one hand, we observe that we do not obtain two concentric cylinders, similarly to what
happens in the case of [24]: at the extremes there is less material which can be explained by the
model we have chosen, in particular the boundary conditions chosen on this part. On the other
hand, as expected, the objective functional J increases (see Figure 6) until the solution satisfies the
volume constraint and then is optimize (il is well-known and natural that if the volume is larger
the insulation is better).
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(a) Objective function J . (b) Constraint function G.

Figure 6: First example - convergence history in the deterministic case.

5.1.2 With random outside temperature

We now illustrate, on the previous example, the consideration of a random exterior temperature
of the form (following the notations introduced in (2.10))

Text = T0
ext + ξ1(ω)T

1
ext(x, y, z) + ξ2(ω)T

2
ext(x, y, z),

where T0
ext = 0,T1

ext = 20x and T2
ext = 10z, the random variables ξ1, ξ2 are statistically indepen-

dent, with zero expectation and variance σ2
1 = Var(ξ1) = 0.3 and σ2

2 = Var(ξ2) = 0.7. Figure
7 summarizes the obtained result, which is very similar to the deterministic case 5. This can be
explained as the deterministic component is the predominant in the formulas of Theorem 2.5 for
the chosen values of the outside temperature, for two reasons, first, since the random part, is mul-
tiplied by the variance σ2

i < 1, i = 1, 2 and second, since the difference of the values between the
outside temperature and inlet Dirichlet temperature is larger for the deterministic case (recall that
there are three solutions of the temperature, the deterministic temperature has T0 = 40 on ΓD

and T0
ext = 0 on ΓR as data, meanwhile the random temperatures have T1 = 0 on ΓD, T1

ext = 20z
on ΓR and T2 = 0 on ΓD, T2

ext = 10x on ΓR). The convergence is depicted by Figure 8, where
we can actually see that the gap between the deterministic and random case is small with respect
to the values of J ; the insulation in the random case is slightly larger as expected since it has the
random contribution.

5.2 Second example: perpendicular tubes
In this example, Ω1 is a pipe of radius r = 0.1 with two right-angled bends. The Dirichlet and

Neumann boundaries are, respectively,

ΓD = {(0., y, z) ∈ D; (y − 0.5)2 + (z − 0.75)2 = r2},
ΓN = {(1., y, z) ∈ D; (y − 0.5)2 + (z − 0.25)2 = r2}.

The initial geometry is depicted on Figure 9a. The meshes considered vary from 75000 to 100000
vertices and 450000 to 615000 tetrahedrons.

The optimal design is shown in Figure 9b. Moreover, in Figure 10 are displayed the isosurfaces
of the temperature at the beginning and the last iteration: we see that the initial temperature is
lower on ΓR than the final temperature, which is reasonable since there is more insulator in the
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(a) Initial domain Ω. (b) Final domain Ω.

Figure 7: First example - initial and final domains with random temperature.

(a) Objective function J . (b) Constraint function G.

Figure 8: First example - convergence history with random temperature.

beginning (we do not satisfy the volume constraint). In the optimal domain, the solution satisfies
the volume constraint and also keeps better the temperature inside the pipe: this is validated
in Figure 11 that shows the convergence history which illustrates that in the first 20 iterations
the algorithm tries to satisfy the constraint, decreasing the volume but increasing the objective
function J until that the constraint is satisfied, and then the objective function decreases.

5.3 Third example: tubes with angle of inclination
As a third example, we consider a slight variation to the second one, now with an angle of

inclination. In this example, the angle formed by the tube at the bottom and at the middle is
of 11

6 π. The results are similar to the previous case as depicted in Figures 12 and 13.

5.4 Fourth example: Z pipe
We conclude these numerical experiments with a Z pipe geometry as Ω1. Here we consider

D = [0, 2] × [0, 1] × [0, 1]. Figure 14 shows that as in the previous example, the material in the
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(a) Initial domain Ω. (b) Final domain Ω.

Figure 9: Second example - initial and final domains.

(a) Initial temperature T. (b) Final temperature T.

Figure 10: Second example - solution T in the initial and final domains (red means hotter, blue
colder, white is almost zero).

zones far from the pipe is removed. Convergence history is depicted in 15, where we can notice
that more iterations are needed to converge (nearly sixty iterations) due to the fact that the shape
is larger (in the z axis).
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A Shape derivatives using a fully Lagrangian approach
In the present article, we focus on a specific objective functional J measuring the heart loss given

in (1.5). In this appendix, we give some results in order to consider another objective functional
which will imply to do some computations (the chain rule part) which can be annoying. In [19] was
developed a framework to compute the shape derivatives of general functionals for a multi-physics
problem, that requires only to compute again some partial derivatives.

We keep the same notation than before (see Section 2.2) and consider a general functional J
that depends on Ω2 and on the solution T of the convection-diffusion problem (1.4). We first recall
the concept of transported functional given in the following definition.

Definition A.1. The transported functional of J is the functional J such that for all θ ∈ Θad

and all T̂ ∈ H1(Ω1,Γ)×H1(Ω2,Γ),

J (θ, T̂) := J(Ωθ
2 , T̂ ◦ (I+ θ)−1),

where Ωθ
2 = (I+ θ)Ω2.

We suppose that J has continuous partial derivatives at (θ, T̂) = (0,T(Ω2)). To keep notations
as simple as possible, we will omit the evaluations of the partial derivatives at (θ, T̂) = (0,T(Ω2)).
We introduce the solution R ∈ H0 of the following adjoint problem

Find R ∈ H0, such that, for allS ∈ H0,∫
Ω1∪Ω2

κ∇R · ∇Sdx+

∫
Ω1

Ru · ∇Sdx+

∫
ΓR

αRSds

+

∫
Γ

ϵκm∇τ ⟨R⟩ · ∇τ ⟨S⟩+ κmH ⟨R⟩ [S] + ϵ−1κm[R][S] ds =
∂J
∂T̂

(S).

(A.1)

Remark A.2. In the particular case of the insulation functional (1.5),

∂J
∂T̂

(S) =

∫
ΓR

2α2(T2 − T0)S2 ds.
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Then we can give a formula to compute the shape derivative general for any functional, requiring
just to compute the partial derivative ∂J

∂θ (θ).

Proposition A.3 (Volume shape derivative). If T0 ∈ H2(Rd) and J is differentiable with respect
to the shape, then the volume shape derivative is given by

J ′(Ω2)(θ) =
∂J
∂θ

(θ)+

∫
Ω2

κ2((∇θ +∇θt)∇T2) · ∇R2 − div(θ)(κ2∇T2 · ∇R2) dx

−
∫
ΓR

divτ (θ)α(T2 − T0)R2 − α∇T0 · θR2 ds,

where T solves the convection-diffusion equation (1.4) and R solves the adjoint equation (A.1).

Proof. Let Ṫ the Lagrangian derivative of Ṫ given in (3.1). We obtain the result by using the chain
rule

J ′(Ω2)(θ) =
∂J
∂θ

(θ) +
∂J
∂T

(Ṫ)

and then proceeding as in the proof of 2.4.

Remark A.4. In the particular case of the insulation functional (1.5),

∂J
∂θ

(θ) =

∫
ΓR

divτ (θ)α
2(T2 − T0)

2 − 2α2(T2 − T0)(∇T0 · θ) ds.

We can also get a surface expression, which is an integral over the free boundary, that in this
case is ΓR, and depending only on the normal component of the perturbation field. The result is
obtained by integrating by parts the previous formula and using the structure theorem.

Proposition A.5 (Surface shape derivative). If T0 ∈ H2(Rd), J is differentiable with respect to
the shape, and T2,R2 ∈ H2(Ω2), then the shape derivative is given by

J ′(Ω2)(θ) =
∂J
∂θ

(θ) +

∫
ΓR

(
κ2
∂T2

∂n

∂R2

∂n
− κ2∇τT2 · ∇τR2 −Hα(T2 − T0)R2 + α

∂T0

∂n
R2

)
(θ · n) ds,

(A.2)

where
∂J
∂θ

is the part of
∂J
∂θ

that depends only on θ · n.

Remark A.6. In the particular case of the insulation functional (1.5),

∂J
∂θ

(θ) =

∫
ΓR

(
Hα2(T2 − T0)

2 − 2α2(T2 − T0)
∂T0

∂n

)
(θ · n) ds.

Indeed, changing variables in Ωθ
2 = (I+θ)Ω2 (analogous to the proof of Proposition 2.3), we obtain

∂J
∂θ

(θ) =

∫
ΓR

divτ (θ)α
2(T2 − T0)

2 − 2α2(T2 − T0)(∇T0 · θ) ds.

We conclude by integrating by parts and taking the normal component.
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