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Abstract 26 

Mixed Finite Element (MFE) method is a robust numerical technique for solving elliptic and 27 

parabolic partial differential equations (PDEs). However, MFE can generate solutions with 28 

strong unphysical oscillations and/or large numerical diffusion for hyperbolic type PDEs. For 29 

its part, Discontinuous Galerkin (DG) finite element method is well adapted to solve hyperbolic 30 

systems and can accurately reproduce solutions involving sharp fronts. Therefore, the 31 

combination of DG and MFE is a good strategy for solving hyperbolic/parabolic problems such 32 

as advection – diffusion/dispersion equations. The classical formulation of the two methods is 33 

based on operator and time splitting allowing for separate solutions to advection with an explicit 34 

scheme and to dispersion with an implicit scheme. However, this kind of approach has the 35 

following drawbacks: (i) it lacks efficiency, as two systems with different unknowns are solved 36 

at each time step, (ii) it induces errors generated by the splitting, (iii) it can be CPU wise-37 

expensive because of the CFL constraint, and (iv) it cannot be employed for steady-state 38 

transport simulations.  39 

To overcome these difficulties, we develop in this work a fully implicit edge/face centered DG-40 

MFE formulation where the two methods share the same unknowns. In this formulation, the 41 

DG method is developed on lumping regions associated with the mesh edges/faces instead of 42 

mesh elements. Thus, the traces of concentration at mesh edges/faces, which are the Degrees 43 

Of Freedom (DOF) of the hybrid-MFE, are also part of the DOFs of the DG. The temporal 44 

discretization is based on the Crank–Nicolson method for both advection and dispersion. 45 

Numerical tests are performed to validate the new scheme by comparison against an analytical 46 

solution and to show its ability to handle steady-state transport simulations.  47 

The procedure is developed for 2D triangular meshes but can easily be extended to other 2D 48 

and 3D shape elements. 49 

 50 
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Highlights 55 

 Advection-dispersion solved at once by mixed and discontinuous finite elements. 56 

 Comparisons with analytical solutions show the accuracy of the new scheme. 57 

 Numerical tests show its ability to use large time steps and to achieve steady-state 58 

simulations. 59 
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1. Introduction 62 

Numerous physical processes are described by mathematical models using partial differential 63 

equations (PDEs) of elliptic or parabolic types (as for instance, steady-state diffusion or 64 

transient energy conduction) or of hyperbolic type (advection, shock propagation). Nowadays, 65 

many numerical methods exist to solve these PDEs, mainly based on finite volume or finite 66 

element approaches. We will focus here on the solution of the advection-dispersion equation 67 

(ADE) governing solute transport in porous media. Compared to diffusion, dispersion is an 68 

anisotropic process, described by a full tensor which depends on the fluid velocity, contrarily 69 

to diffusion, described by a scalar coefficient independent of the velocity. Therefore, according 70 

to the velocity distribution and magnitude, the transport process can locally be either advection 71 

or dispersion dominated. Moreover, the dispersion tensor is a full tensor which is discontinuous 72 

over space. To address these challenges, mixed and discontinuous finite element methods have 73 

become more and more popular over the last decades. 74 

Mixed Finite Element (MFE) ([1], [2], [3]) is a robust numerical method, well adapted to 75 

solving elliptic and parabolic diffusion problems such as fluid flow or diffusion transport 76 

equations in porous media. The MFE method is locally conservative; it rigorously treats highly 77 

heterogeneous domains with full permeability and dispersion tensors and can easily handle 78 

unstructured meshes ([4]). MFE provides more accurate fluxes than conventional numerical 79 

methods ([5], [6]) and is more accurate than Local Discontinuous Galerkin (LDG) method for 80 

non-smooth grids ([7]). The hybridization technique, initially proposed by [8], allows for 81 

reducing the number of unknowns of the original MFE and results in a final system with a 82 

symmetric positive-definite matrix ([9], [10]). The unknowns with the hybrid-MFE method are 83 

the traces (also seen as average values) of the scalar variable at mesh edges (2D) or faces (3D) 84 

([2]). A lumped formulation of the MFE method has been developed in [11] to improve its 85 

monotonicity and reduce the unphysical over- and under-shoots observed when simulations of 86 
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diffusion with small time steps are performed ([12], [13]). When the classical MFE method is 87 

employed for advection diffusion transport, it returns solution with spurious oscillations 88 

because of the hyperbolic nature of the advection equation ([14], [15]). The combination of 89 

MFE with an upwind scheme renders a stable solution but with excessive numerical diffusion 90 

smearing the sharp concentration front in the case of advection dominated transport ([15]).  91 

Discontinuous Galerkin finite element (DG) method is well adapted to hyperbolic problems 92 

([14]). The method has been developed for hyperbolic ([16], [17], [18]) and elliptic equations 93 

([19], [20], [21]). However, contrarily to DG applied to elliptic equations, the DG applied to 94 

hyperbolic systems is clearly more accurate than other existing finite element methods ([22]). 95 

The DG method yields a high-resolution scheme which is strictly conservative at the element 96 

level and can accurately solve problems involving sharp front propagations ([14]). When used 97 

with an explicit scheme, the time-step size has to fulfil the Courant–Friedrichs–Levy (CFL) 98 

condition and a slope-limiting procedure is necessary to ensure the stability of the solution 99 

([23], [24], [25]). The DG method can also be used with an implicit time discretization which 100 

avoids both the CFL constraint and the slope limiting procedure ([26]). In the literature, DG is 101 

often used with piecewise linear approximation and with degrees of freedom (DOF) 102 

corresponding to the discontinuous interior concentrations at the nodes of each element (see, 103 

for example, [2], [14], [27], [28]).  104 

Both mixed and discontinuous finite element methods have the interesting property of 105 

preserving mass locally, and as such, they can be linked to the finite volume method. For 106 

instance, the MFE method was shown to be equivalent to some finite volume methods in ([29], 107 

[30],[31]). For its part, the DG method is a high-resolution scheme for advection that maintains 108 

the local conservation of finite volume methods but also allows for high-order approximations 109 

through a variational formulation instead of a functional reconstruction [32].  110 
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Thus, an efficient way to solve the ADE is to rely upon the most appropriate method for each 111 

operator, that is, MFE for the diffusion operator and DG for advection. However, because MFE 112 

and DG methods use different DOFs, their combination requires additional approximations. In 113 

the literature, the combination has been ensured by operator and time splitting ([14], [27], [28], 114 

[33], [34]), a procedure which is based on the following two steps (see [14] for details):  115 

1. the advection equation is solved with the DG method to obtain the concentrations at the 116 

new time level.  117 

2.  these concentrations are used as initial concentrations to solve the dispersion equation 118 

with the MFE method. 119 

The time splitting procedure has been employed in [35], [36] and [37] by coupling the implicit 120 

MFE method in its hybrid form for dispersion with high resolution explicit finite volumes for 121 

advection. In [38], it is suggested to use the linear Galerkin method instead of the MFE method 122 

for the dispersion operator in the case of strong anisotropic dispersion tensor coefficients.  123 

Note that one of the major drawbacks of the explicit time discretization of advection is a time 124 

step selection based on the CFL condition which requires the time step to be less than the time 125 

for flow to pass through one mesh element. The impact of this condition can be highly severe 126 

in the case of local mesh refinement and/or locally high velocity magnitude such as around 127 

injection or pumping wells. To alleviate this drawback, spatially variable time stepping 128 

procedures have been developed to improve computational efficiency (e.g., [39, 40]), but their 129 

usage remains scarce due to the difficulty of their implementation when the velocity field 130 

changes at each time step. 131 

To sum up, the classical MFE-DG combination based on operator and time splitting procedure 132 

is convenient but has the following drawbacks: (i) the procedure is not very efficient since two 133 

linear systems with different unknowns are solved at each time step, (ii) the procedure generates 134 

splitting errors which can be important for large time steps, (iii) it can be CPU-wise expensive 135 
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in the case of explicit time discretization of advection, and (iv) steady-state transport 136 

simulations cannot be performed.  137 

The main objective of this work is to develop a new and alternative coupling of the MFE and 138 

DG methods that avoids these drawbacks. The basic idea in this formulation is to develop the 139 

DG method on the lumping regions associated with the mesh edges/faces, instead of mesh 140 

elements. In this way, the traces of concentration at mesh edges/faces, which are the DOFs of 141 

the hybrid-MFE, are also part of the DOFs of the DG. This yields a unique system where 142 

advection and dispersion are assembled and solved simultaneously. In this way, the proposed 143 

scheme uses different numerical techniques that are specifically suited to achieve high accuracy 144 

for each type of equation while avoiding the splitting procedure. Both advection and dispersion 145 

are discretized with the Crank-Nicolson implicit time discretization which allows for both large 146 

time steps and steady-state transport simulation in a single step.  147 

The outline of the paper is as follows. Section 2, reminds us on the classical approach combining 148 

MFE and DGs based on operator and time splitting. In Section 3, we present the lumped-MFE 149 

for the discretization of the dispersive transport equation. In Section 4, we introduce the 150 

edge/face centred DG method for advection and its combination with the lumped-MFE for 151 

dispersion. Numerical experiments are reported in the last Section to investigate on the 152 

efficiency and accuracy of the new approach for advection-dispersion problems. 153 

 154 

2. The classical MFE-DG formulation for the advection-dispersion equation 155 

In this section, we recall the main steps of the classical MFE-DG formulation to solve the 156 

advection-dispersion equation, based on the operator and time splitting procedure.  157 

2.1 The advection-dispersion transport equation 158 
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The transport of a non-reactive solute in a saturated porous medium is governed by the 159 

following advection-dispersion equation:  160 

   0a d

C
.

t





  q q  (1) 161 

where C  is the concentration [ML−3],   is the porosity [L3L−3], ], t is the time [T], 
a Cq q  is 162 

the advective flux with q  the Darcy velocity [LT-1], and 
dq  is the dispersive flux given by: 163 

 
d C  q D   (2) 164 

with D , the dispersion tensor, expressed by: 165 

  D I q q q q Im L T TD /        (3) 166 

in which 
L  and 

T  are the longitudinal and transverse dispersivities [L]. 
mD  is the pore water 167 

diffusion coefficient [L2T-1] and I  is the unit (diagonal) tensor.  168 

Equation (1) is subject to the following initial and boundary conditions: 169 
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     
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2

2

3

0

0

0

0 0

C , C

C ,t g ,t ,t

C C . g ,t ,t

C . ,t





 

  

    

    

x x x

x x x

q D η x x

D η x

 (4) 170 

where  is a bounded, polygonal open set of 2R , 
1 ,

2  and 
3  are partitions of the 171 

boundary   of   corresponding to Dirichlet, total flux, and outflow boundary conditions, 172 

respectively and 
  is the unit outward normal to the boundary . The outflow boundary 173 

condition considered in this work corresponds to a null dispersive flux (i.e., the solute exits only 174 

by advection). 175 

2.2 The operator and time splitting procedure 176 

Operator and time splitting (e.g., [33]) offers the possibility to adapt the numerical technique to 177 

each type of PDE. To this aim, the advection equation is solved first by writing:  178 




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  
1

0
n ,ad n

a

C C
.

t


 
 


q   (5) 179 

where nC  is the known concentration at the previous time level  n  and 1n ,adC   is the 180 

concentration at the new time level  1n   due to the advection process only. 181 

In a second step, the dispersion equation is solved using 1n ,adC   as the initial concentration: 182 

  
1 1

0
n n ,ad

d

C C
.

t


 
 


q   (6) 183 

where 1nC   is the final concentration at the new time level  1n   resulting from both advection 184 

and dispersion. 185 

 186 

2.3 The DG discretization of the advection part of the transport equation  187 

The advection equation (5) solved by DG is usually approximated by linear functions (P1-DG) 188 

on triangles: 189 

  
3

1

i i

E E E

i

C x, y C


   (7) 190 

where  1 3i

EC i ,..,  are the three DOFs for the approximated concentration.  191 

The DOFs of the P1-DG generally correspond to the discontinuous concentrations at the nodes 192 

([2], [7], [27], [28]). Thus, 
i

EC  is the concentration at the node i  of element E  and 
i

E  is the 193 

classical linear chapeau interpolation function (see Fig. 1). 194 

 195 

 196 
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 197 

Fig. 1. DOFs (
i

EC ) for the classical P1-DG, linear chapeau interpolation function (
i

E ), 198 

Raviart-Thomas vector basis functions (
i

Ew ), and diffusive fluxes ( ,

i

d EQ ) through the edges of 199 

an element E . 200 

Assuming a constant porosity over the element, the variational formulation of Eq. (5) on the 201 

element E  using the test function 
i

E  writes: 202 

  . . 0
j

j i i j j iE
E E E E E E E

j jE E E

dC
dx C dx C dx

dt
            q q  (8) 203 

By approximating the Darcy velocity q  inside each triangular element E  with the lowest order  204 

Raviart-Thomas (RT0) basis functions, the second term of Eq. (8) can be transformed into a 205 

boundary element integral and evaluated using upstream concentrations as: 206 

   
3

*

1

.

j

j
ji iE
EE E

jE Ej

Q
C dx C d

E
  

 

 


 q  (9)  207 

where *

j

EC  is the upstream concentration at the edge  jE  of element E . It is either calculated 208 

as the approximation of the concentration in the element E  in the case of outflow209 

 * 0
j j

j
E E EC C if Q  , or the approximated concentration of its adjacent element E  in the case 210 
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of inflow  * 0
j j

j
E E EC C if Q  . .

j

j

j

E E

E

Q d



  q η  is the water flux (counted positive for 211 

outflow) across the edge  jE  of unit outward normal vector 
jEη  and shared by the two adjacent 212 

elements E  and E . 213 

Substituting Eq. (9) into Eq. (8) and using the three test functions 
i

E  leads to a local system of 214 

ordinary differential equations for the DOFs of element E  and eventually for the DOFs of its 215 

three adjacent elements. In the case of an explicit time discretization, this local system is 216 

independently solved for each element E  to obtain 
,i adv

EC , the concentrations at the node 217 

1,..,3i   of the element E  at the new time level. In the case of an implicit or a  -scheme 218 

temporal discretization, all local systems are assembled into a global system, then solved to 219 

obtain all the 
,i adv

EC  of all elements. Then, the mean concentration at each element E  due to 220 

advection is calculated as the average of the three nodal concentrations 
3

,

1

1

3

adv i adv

E E

i

C C


 
 

 
  and 221 

used as a starting concentration for the solution of the dispersion equation. 222 

 223 

2.4 The MFE discretization of the dispersion equation  224 

The dispersive flux 
dq  is approximated using the Raviart-Thomas (RT0) vectorial basis 225 

functions 
j

Ew :  226 

 
3

1

j j

d d ,E E

j

Q


q w   (10) 227 



 12 

where j E

d ,E d j

j

Q . d q η  is the dispersive flux across the edge  jE  of element E  and 228 

1

2

j

Ej

E
j

E

x x

E y y

 
 
  

w  is the RT0 basis function ([4]), with  j j

E Ex , y  the coordinates of the node 229 

j  opposite to the edge  jE  of E  and E  the area of E  (see Fig. 1). 230 

The variational formulation of Eq. (2) (rewritten as 1C   D q  ) over the element E  using 231 

the test function 
i

Ew  yields: 232 

 1

j

i i i j

E d E E E E

jE E E

dx C . dx C . d



    D q w w w η  (11) 233 

where ED  is the local dispersion tensor at the element E  and 
j

Eη  the unit outward normal vector 234 

to the edge  jE . 235 

Using Eq. (10) and properties of 
i

Ew  (see [4] for details) results in:  236 

  1j j i i

d ,E E E E E E

j E

Q . dx C TC    D w w    (12) 237 

where  is the mean concentration at element E  and 
i

ETC  is the mean concentration at the 238 

edge  iE . Inverting Eq. (12)  yields the following expression for the dispersive flux 
i

d ,EQ :  239 

  1i E , j

d ,E i , j E E

j

Q B C TC    (13) 240 

where  1E j i

i , j E E E

E

B . dx  D w w  are the terms of a local matrix E
B , assuming that the tensor DE  241 

is constant over the element E . 242 

The MFE solution of the dispersion Eq. (6) is then calculated in two steps as follows: 243 

Step1: A finite volume (FV) discretization of the dispersion equation over the element E is 244 

written using an implicit scheme and starting with 
adv

EC : 245 

  1 1 0n adv i ,n

E E E d ,E

i

E
C C Q

t
    


   (14) 246 

EC
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Substituting Eq. (13) into Eq. (14) gives 
1n

EC 
 as: 247 

 
1 11n i i ,n advE

E E E E

iE E

C TC C



 

     (15) 248 

in which 1i E ,

E i , j

j

B  , i

E E

i

  , E E

E

t
 


 and 

E E E    . 249 

Finally, plugging Eq. (15) with the dispersive flux Eq. (13) yields:  250 

  1 1 1
i j

i ,n E , j ,n i advE E E
d ,E i , j E E E

j E E

Q B TC C
  


 

   
   

 
  (16) 251 

 252 

Step2: At each interior edge  iE , shared by the two adjacent elements E  and E , the continuity 253 

of the dispersive flux is written as: 254 

 
1 1 0i ,n i ,n

d ,E d ,EQ Q 

   (17) 255 

Thus, substituting Eq. (16) into Eq. (17) renders the final system solved to obtain the traces of 256 

concentration at edges 
1i ,n

ETC 
 at the new time level.  257 

Knowing the values 
1i ,n

ETC 
, the average concentration at the new time level 

1n

EC 
 can be 258 

calculated using Eq. (15) and the nodal concentrations (the DOFs of DG) are updated by equally 259 

distributing the change of mass due to dispersion in the element E :  260 

  , 1 , 1i n i n n adv

E E E EC C C C      (18) 261 

These nodal concentrations are then used as initial DG concentrations for the new time step 262 

calculation solving Eq. (8). 263 

 264 

3. The new edge-centered MFE-DG formulation  265 

The previous classical MFE-DG formulation suffers from loss of efficiency. In the case of 266 

implicit time discretization, two different systems must be solved at each time step, generating 267 
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significant splitting errors in the case of large time steps ([30]). In addition, the scheme cannot 268 

treat steady-state transport simulations. To overcome these difficulties, we present in this 269 

section a new MFE-DG formulation where the two methods are developed with the same DOFs 270 

on mesh edges. We rely upon the lumped formulation developed by [11] for the MFE method, 271 

to which we combine the DG method developed on the lumping regions associated with the 272 

mesh edges. 273 

 274 

3.1 The lumped hybrid-MFE method for dispersion transport 275 

We consider a simplex region 
i

ES , associated with each edge  iE  of an element E  by joining 276 

the centre of E with the nodes j and k forming the edge i  (Fig. 2). A lumping region 
iR  (the 277 

grey area in Fig. 2), is then associated with the edge i . It is formed by the two simplex regions 278 

i

ES  and 
i

ES   for an interior edge i , shared by two adjacent elements E  and E . For a boundary 279 

edge i , the lumping region 
iR  is only formed by the single simplex region 

i

ES .  280 

The lumped MFE formulation is developed in two steps as follows ([15]):  281 

Step1: The transient term is not considered, resulting in a dispersive transport over the element 282 

E written as: 283 

 
1

0
i ,n

d ,E
i

Q

   (19) 284 

with 
1i ,n

d ,E
Q


 the steady-state dispersive fluxes across the edges i . 285 

Using Eq. (13), we obtain: 286 

 1 1
i

n i ,nE
E E

i E

C TC




    (20) 287 

and Eq. (16) reduces to: 288 

 
1 1 1

i j
i ,n E , j ,nE E

i , j Ed ,E
j E

Q B TC
 



   
  

 
   (21) 289 
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Step2: The transient term is allocated to the mesh edges and not to the element by simply writing 290 

the FV dispersion equation over the lumping region 
iR : 291 

 0

i i

d

R R

C
dx . dx

t





    q   (22) 292 

where 
iR  is associated with the edge i  corresponding to  iE  of concentration 

i

ETC . This leads 293 

to (see notations in Fig. 2): 294 

 
1 1 1 1

0
3 3

i
ij ,n ik ,n ij ,n ik ,nE

E E d ,E d ,E d ,E d ,E

E E TC
Q Q Q Q

t
 

   

  

  
      

 
 (23) 295 

where 
, 1

,

i n

d E
Q

 
 are the (interior) dispersive fluxes through the edges of 

iR . Using Eq. (10), an 296 

interior dispersive flux between the lumping regions 
iR  and jR  writes:  297 

  , 1 , 1 , 1

, , ,

1

3

ij n j n i n

d E d E d E
Q Q Q

  
    (24) 298 

Hence, Eq.(23) becomes: 299 

 
1 1

0
3 3

i
i ,n i ,nE

E E d ,E d ,E

E E TC
Q Q

t
 

 

 

  
    

 
  (25) 300 

Substituting Eq. (21) in Eq. (25), we obtain the final system to solve for dispersive transport in 301 

the form: 302 

1 1 1 1 0
3 3

i i j i j
E , j ,n E , j ,nE E E E E

E E i , j E i , j E

j jE E

E E TC
B TC B TC

t

   
 

 

    
 



     
          

     
   (26) 303 

It is worth noting that the solution of this system has an improved monotonicity compared to 304 

the standard hybrid MFE formulation (see [11]). Indeed, with the lumped formulation, the 305 

maximum principle is respected for parabolic diffusion equations on acute triangulations, which 306 

is not the case of the standard mixed hybrid finite element method. For more general shapes of 307 

2D and 3D elements, numerical experiments showed that the lumping procedure significantly 308 

improved the monotonous character of the hybrid-MFE solution [11]. The lumped formulation 309 
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was applied to unsaturated flow and revealed more efficient and more robust than the standard 310 

hybrid formulation for both unfractured ([41]) and fractured ([42]) aquifers. 311 

 312 

 313 

Fig. 2: The lumping region 
iR  associated with the edge  iE , sharing the elements E  and 314 

E  and formed by the two simplex regions 
i

ES  and 
i

ES  . 315 

 316 
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3.2 The edge/face centred DG-MFE scheme for advection dispersion transport 317 

The main idea of the new scheme is to combine an edge-based upwind DG method for advection 318 

with the previously discussed lumped hybrid-MFE for dispersion. The DG method is developed 319 

on the dual mesh formed by the lumping regions 
iR  instead of the original mesh formed by the 320 

elements E . 321 

The concentration  over each lumping region 
iR  is approximated via linear basis 322 

functions 
m

i  as: 323 

      
3

1

, m m

i i i

m

C t C t 


x x   (27) 324 

where  m

iC t  are the new DOFs for the P1-DG concentration approximation. 325 

For each lumping region 
iR  centred at  i ix , y , the new DOFs correspond to the edge 326 

concentration iTC  considered as the mean concentration at 
iR , associated with a deviation of 327 

the concentration in each space direction ([18]) evaluated by the three following interpolation 328 

functions:  329 

 

   

   

   

1 1

2 2

3 3

,    , 1  

,    , ,  

,    , .  

i

i i

i
i i i

i
i i i

C t TC x y

C
C t x y x x

x

C
C t x y y y

y







 


  



  


 (28) 330 

The variational formulation of the whole transport equation (1) over the lumping area 
iR  using 331 

m

i  as test functions writes: 332 

     0

i i i

m m mi
i i i d i

R R R

C
dx . C kdx . dx

t


   


      q q  (29) 333 

The first integral corresponds to the (mass) accumulation term: 334 

 
3

1
i i

l
m l mi i
i i i

lR R

C C
dx dx

t t

 
   
 

    (30) 335 
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Using Green’s formula, the second integral in Eq. (29) is decomposed into: 336 

  
3

1
i

i i i

m * m l l m

i i i R i i i

lR R R

. C dx C . d C . dx    



     q q η q  (31) 337 

in which, the boundary integral is developed as (see notations in Fig. 2): 338 

 
i

i ij ik ik ij

ij ik ik ij
ij* ik* ik* ij** m m m m mE E E E
E E E Ei R i i i i

ik ikR E E E Eij ij

Q Q Q Q
C . d C d C d C d C d

E EE E
          

 

 

   
     q η  339 

   (32) 340 

where 
ij

EQ  is the water flux across the interior interface ijE  (between 
iR  and jR ) of length ijE341 

. 
ij*

EC  is the upstream concentration at ijE , defined as: 342 

  1
ij* ij ijE ,ij E ,ij
E i ji iC C C      (33) 343 

where 
ij

iC  (respectively
ij

jC ) is the concentration at the interface ijE  calculated by the 344 

approximation (Eq. (27)) of the concentration in 
iR  (respectively jR ) and 

,E ij

i  is defined at ijE  345 

by: 346 

 , 1 0

0 0

ij

E ij E

i ij

E

if Q

if Q


 
 


  (34) 347 

The third term in Eq. (29) corresponds to the dispersion integral, which is approximated by: 348 

    1 1 1 11

i i

ij ,n ik ,n ij ,n ik ,nm m

d i id ,E d ,E d ,E d ,E
iR R

. dx Q Q Q Q dx
R

 
   

 
     q  (35) 349 

Using Eq. (24) in Eq. (35)  renders: 350 

   1 11

i i

i ,n i ,nm m

d i id ,E d ,E
iR R

. dx Q Q dx
R

 
 


    q   (36) 351 

Substituting Eq. (21) in Eq. (36) results in: 352 

  1 1 1 11

i i

i l i l
m E , l ,n E , l ,n mE E E E

d i i ,l E i ,l E i

l li E ER R

. dx B TC B TC dx
R

   
 

 

    




    
          

    
  q  (37) 353 
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Hence, using the three test functions 
m

i  in Eq. (29) leads to the following local system: 354 

 

   

1

1 1 1 1

2
2 0 0 2 1 1 2 2 2 2

3 3 3 3

3

1

3 3 2

3

i

i i j k

i
i i j k

i i j k
E E

i

j

j

j

C

t
C C C C

C
A B C M N C M N C M N C

t

C C C C
C

t

C

M N C

C













 
 
         
         
                                  
         

        
 
 



    



1

4 4 2

3

0

0

t

k i

k

k
E E

C Q

M N C

C
 

    
    
            
    

   

 (38) 355 

with 356 

0

0 1

1 1

i i

ij ik ij ik

l m l m

l ,m i i l ,m i i

R R

ij ik ij ik
E ,ij l m E ,ik l m E ,ij l m E ,ik l mE E E E

l ,m i i i i i i i i i i i i

ik ikE E E Eij ij

i i i i
E ,E E E E

l ,m i ,i ,l ,m

E

A dx, B . dx

Q Q Q Q
M d d d d

E EE E

N B

   

               

   
 



  

 

  

  

   


 
   
 

 

   

q

 

 

 

1

1 1
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1 1

2 2 1

1 1

3

1

1

1
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E ,
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E

ij i j
E ,ij l m E ,E E E

l ,m i j i l ,m i , j ,l ,m

EEij

ik i k
E ,ik l m E ,E E E

l ,m i k i l ,m i ,k ,l ,m

ik EE

ij
E ,ij l mE

l ,m i j i
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B

Q
M d , N B

E

Q
M d , N B

E

Q
M d

E

 


 
     



 
     



  

 







 

 
 

 

 
    

 

 
    

 

 






 

3 1

1 1

4 4 1

1 11

ij

ik

i j
E ,E E

l ,m i , j ,l ,m

EE

ik i k
E ,ik l m E ,E E E

l ,m i k i l ,m i ,k ,l ,m

ik EE

, N B

Q
M d , N B

E

 
  



 
     



  



    



 
  
 

 
    

  



  357 

If the edge  jE  of element E  is a boundary edge with a prescribed concentration 358 

 1 x,jTC g t , the term 

1

1 1 2

3

j

j

j
E

C

M N C

C

 
 
     
 
 

, in Eq. (38) is replaced by 359 
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 

1

11 0

0

i j
E ,ij ij E ,E E

i E i , j

E

g

Q B
 






 
   
         
 
 

 and placed in the right hand side of the system to solve. 360 

If  iE  is a boundary edge with a total flux  2

i

tQ g ,t x , all the contributions of the element 361 

E  are removed from Eq. (38). Finally, if the edge  iE  is an outflow boundary with a null 362 

diffusive flux, the total flux 
i

tQ  in the system (38) is replaced by the advective flux 1i

E iQ C .  363 

The time discretization of the system (38) is performed using an implicit  -scheme with for 364 

both advection and dispersion, which leads to: 365 

   

1 1 1 1
1 1 1 1
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1 3 3 3
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366 

   (39) 367 

Notice that the developed DG method comes down to the upwind finite volume scheme on the 368 

lumping regions if the second and the third equations of system (39) are removed. In all the 369 

simulations reported hereafter, the value of   is fixed to 1/2, which corresponds to the Crank-370 

Nicolson scheme.  371 
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4. Numerical Experiments 372 

The new DG-MFE formulation is first compared with an analytical solution. It is then used to 373 

simulate: (i) solute transport in the case of surface contamination with a total flux boundary 374 

condition, and (ii) in the case of a steady-state transport problem between an injection/extraction 375 

well pair. 376 

 377 

4.1 Comparison against the analytical solution  378 

The analytical solution was developed by [43] for a simplified 2D transport problem (Fig. 3) 379 

and was employed by [14] and [15] for the verification of numerical codes. The domain is a 380 

rectangle of dimension    0 100 0 40m m    with a uniform flow from left to right (Fig. 3).  381 

 382 

Fig.3. Description of the problem of transport in a 2D domain with a uniform flow. 383 

A Dirichlet boundary condition is prescribed for the concentration at the inflow boundary with:  384 
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  (40) 385 

The right side is an outflow boundary (null diffusive flux) and the lateral (no flow) boundaries 386 

are impermeable. The fluid flow is uniform over the domain with a constant horizontal velocity 387 

0 5xq .  m/day imposed at the left boundary and a uniform porosity 0 5.  . The simulation 388 
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is performed for a final simulation time T = 30 days.  389 

The analytical solution to this test case for an infinite domain is given by [43]: 390 

  
     

 
2

3 2

1 2 1 2 1 2

0

12 28

416 4 4

T

analy

LL T T

xx y y
C x, y,t erf erf exp d


 

     


        

        
            

  391 

   (41) 392 

with    2

0

2
x

erf x exp d 


  . 393 

The domain is discretized with an unstructured triangular mesh formed by 4000 elements. 394 

Although, the test case involves a uniform velocity field, a local refinement is performed around 395 

the point (30m, 15m) to obtain a highly unstructured mesh with significant differences in the 396 

distribution of the Courant and grid Peclet numbers inside the domain. Furthermore, we located 397 

the refinement in the expected transition zone, where the gradient of the concentration is high, 398 

in order to detect the eventual impact of the mesh on the solution.  399 

The comparison between the analytical and numerical solutions is performed for three test 400 

cases, from highly convective to highly dispersive scenarios (Table 1), characterized by their 401 

Peclet number defined for the investigated horizontal flow as: 402 

 
2

E

j

j

L,T

L,T

Q

Pe






q
 (42) 403 

where 
L,TPe  is the grid Peclet number in either the longitudinal (L) or the transverse (T) direction 404 

and q  is the velocity norm. The different values of dispersivities ( )  are given in Table 1 405 

with the range of Peclet numbers (irregular grid). 406 

 407 

Test case 
L (m) 

T (m) 
LPe   (-) 

LPe (-) TPe  (-) 
TPe (-) 

TC1_A 0.05 0.01 27.3 13.3 136.3 66.7 

TC1_AD 0.5 0.2 2.73 1.33 6.81 3.33 

TC1_D 5.0 1.0 0.273 0.133 1.36 0.66 
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Table 1. Dispersivities and Peclet numbers (average and standard deviation) for the different 408 

test cases (_A stands for advective dominant, _AD for advective-dispersive, and _D for 409 

dispersive dominant transport). 410 

The three test cases are simulated using a large time step of 1t  d. It is worth noting that the 411 

new developed scheme is not constrained by the CFL condition since we use an implicit 412 

scheme. This feature departs from the classical approach, based on operator and time splitting 413 

(Eqs (5)-(6)) with an explicit time discretization for the advection operator and an implicit 414 

discretization for dispersion [14, 27, 35, 36 and 37]. For stability reasons, the explicit time 415 

discretization requires the strict respect of the CFL condition  0 5CFL . , with a CFL defined 416 

by [44]): 417 

   
2

E

j

j

Q

CFL t
E

 


 (43) 418 

where E  is the area of element E.  419 

Thus, for the classical approach with an explicit time discretization, the time step should be less 420 

than a critical value 0 04ct .  d corresponding to  0 5CFL . . This critical time step 421 

corresponds to the smallest element in the domain since the velocity field is uniform. The time 422 

step with the new model is therefore 25 times greater than that allowed by the explicit scheme. 423 

This gain can be much more important if the CFL constraint is more severe, as for instance, in 424 

the presence of an injection or a pumping well, where the region around the well is usually 425 

characterized by mesh refinement and high velocities. 426 

Fig. 4 depicts the numerical and analytical concentration profiles at x = 20m and y = 20m for 427 

the three test cases. Sharp longitudinal and transverse concentration profiles are observed for 428 

the advection dominated scenario (TC1_A) whereas, widely spread concentration fronts are 429 

obtained in the dispersion dominated test scenario (TC1_D). 430 
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The results of the three test cases show a very good agreement between the analytical and the 431 

numerical solutions. These results validate the new edge-centered DG-MFE model as able to 432 

accurately simulate solute transport in a wide panel of settings from advection dominated to 433 

dispersion dominated transport. 434 
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 437 

Fig. 4: Analytical and numerical concentrations for longitudinal profiles at x = 20m and 438 

transversal profiles at y = 20m for the three test cases. 439 

To investigate the order of convergence of the edge-centered DG-MFE formulation, the 440 

advective-dispersive test problem TC1_AD is simulated using different mesh sizes. We start 441 

with a uniform unstructured mesh formed by 1004 triangles and fix the time step to a small 442 

value of  0 01 t . d   for all simulations. In each level of refinement, each triangle is subdivided 443 

into four similar triangles, by joining its three mid-edges of the initial triangle. The 
2L  error 444 

 2L Er  is then calculated at the simulation time 20fT d  for the different meshes.  The runs 445 

are performed on a single computer with an Intel Xeon E-2246G processor and 32 GB memory. 446 

The results of the simulations, plotted in Fig. 5, show an average order of convergence in space 447 

of 1.63 for the investigated TC1_AD test problem. 448 
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 450 

Fig. 5: Convergence in space of the edge-centered DG-MFE formulation for the TC1_AD test 451 

problem. 452 

To investigate the convergence in time, the TC1_AD test problem is simulated using a fine 453 

spatial discretization formed by 16064 elements and different time steps for 1  (full-implicit) 454 

and 0.5 (Crank-Nicolson) schemes. Results in Fig. 6 show that both schemes yield an order 455 

of convergence around 1. Nevertheless, the Crank-Nicolson scheme is much more accurate than 456 

the implicit scheme. For a given space and time discretization, the 
2L  error with the Crank-457 

Nicolson scheme is on average 2.3 lower than that of the implicit scheme (Table2). 458 
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Fig. 6: Convergence in time of the edge-centered DG-MFE formulation with 1  (implicit) 460 

and 0.5 (Crank-Nicolson) schemes for TC1_AD test problem. 461 

 462 

t  
0 5

2

 .L Er
  

1

2

L Er
 

1 0 5

2 2

  .L Er L Er 
 CPU time (s)  

2 3.2 4.57 1.43 0.7 

1 1.38 2.77 2.0 1.0 

0.5 0.6 1.57 2.6 1.65 

0.25 0.29 0.84 2.9 3.0 

0.125 0.14 0.44 2.6 5.62 

Table 2: Convergence in time of the edge-centered DG-MFE formulation for TC1_AD test 463 

problem. 464 

4.2 Transport simulation with total flux boundary condition  465 

The proposed edge-centered DG-MFE formulation is well adapted to simulate transport 466 

problems involving total flux boundary conditions since advection and dispersion are treated in 467 

a single system. A 2D transport problem is simulated with a total flux boundary condition over 468 
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the same domain as that of the previous test case TC1.  469 

The boundary conditions for flow and transport are described in Fig. 7. The hydraulic 470 

conductivity of the porous material is 10K m d . The prescribed total (advection and 471 

dispersion) lateral solute flux is  21tq g m d  and the injected water flux is 0 2wq . m / d . 472 

 473 

Fig. 7: Description of the 2D transport problem with lateral injection as a total flux boundary 474 

condition.  475 

To obtain the velocity field, we first solve the following steady-state Darcy’s flow: 476 

 
S. q

H

 


  

q

q K
 (44) 477 

where q  is the Darcy velocity [LT-1], 
Sq  the source/sink term [T-1], H  the water head [L], and 478 

K  the hydraulic conductivity tensor [LT-1].  479 

The flow system is solved with the mixed finite element method ([4]) under the corresponding 480 

Dirichlet (prescribed head) and Neumann (prescribed flux) boundary conditions reported in Fig. 481 

7. 482 

Since there is no analytical solution for the investigated problem, the transport solution of the 483 

new DG-MFE scheme is compared to the solution obtained with COMSOL multiphysics 484 
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software v. 6.1. (www.comsol.com) which is based on the standard Galerkin Finite Element 485 

(GFE) method. Two test cases are investigated: TC2_A (advection dominated) with 486 

0 02L . m   and 0 005T . m  , and TC2_D (dispersion dominated) with 2L m   and 487 

0 5T . m  .  488 

The concentration distributions at t = 60 days for both cases are plotted in Fig. 8. For the case 489 

TC2_A, the solute remains near the injected lateral boundary of the domain, whereas, for 490 

TC2_D, solute is more spread over the domain because of large transverse dispersion. Results 491 

in Fig. 6 show a very good agreement between DG-MFE and GFE solutions in the case of high 492 

dispersion. When advection is dominant, a less satisfactory agreement is observed between the 493 

two solutions. The DG-MFE solution shows a sharp solute interface (see the tight iso-494 

concentration lines in Fig. 8), while the interface is smoother with the GFE scheme due to 495 

numerical diffusion. Notice that in both test cases and for both DG-MFE and FE models, the 496 

concentration at the injection region is not fixed but calculated during the simulation to fulfill 497 

the total (advection + dispersion) flux conditions. For TC2_A, the concentration at the injection 498 

region reaches 4.96 g/l. For TC2_D, it is lower, due to dispersion (C= 2.8 g/l).  499 

 500 

 501 

 502 
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 503 

 504 

Fig. 8. Concentration distributions for transport with a prescribed total flux boundary 505 

condition. Results of FE (color map) and DG-MFE (dashed lines) models for TC2_A (top) 506 

and TC2_D (bottom). 507 

 508 

For a deeper comparison between the two models, we plot in Fig. 9 the evolution of 509 

concentrations near the injection region, at the observation point located in  20 40x m, y m 510 

. There is a very good agreement between the GFE and DG-MFE breakthrough curves for the 511 

case TC2_D with high dispersion. For TC2_A, the breakthrough curve from the GFE model 512 

shows unphysical oscillations near the sharp concentration front, those being absent from the 513 

DG-MFE results. Notably, by neglecting dispersion and assuming a total flux as that of 514 

advection only, the concentration at the injection region should be 5t

W

q
C g l

q
  . When 515 

dispersion is present, the concentration C  should always be smaller than C  (red line in Fig. 9). 516 

The asymptotic value reached by the DG-MFE model at the observation point is 4.96 g/l  (Fig. 517 

9), whereas the GFE model shows an asymptotic concentration value of 5.12 g/l which is 518 

unphysical since it exceeds C . These results highlight the very good accuracy of the DG-MFE 519 

model for advection-dominated transport problems with total flux boundary conditions.  520 
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Fig. 9. Concentration evolution at  20 40m, m  with the GFE and DG-MFE schemes. 522 

 523 

4.3 Steady-state transport simulation of an injection/extraction well pair problem 524 

This test problem considers the contamination of a 2D confined homogeneous domain where 525 

the flow field is induced by a pair of extraction (sink) and injection (source) wells in an initially 526 

uniform sweeping flow over the whole modeled area. The domain has a square shape of 527 

100 100m m (Fig. 10) with initial (before the wells are active) uniform flow, occurring from 528 

the left side, with head fixed to 102LH m  and inlet concentration fixed to 0LC  , toward the 529 

right side, with head fixed to 100RH m  and a null diffusive flux for transport. The hydraulic 530 

conductivity is 2m d  and the longitudinal and transverse dispersivities are 2L m   and 531 

0 5T . m  , respectively. The lag distance between the sink and source terms is 18 m. Solute is 532 

injected at a fixed rate of 23m d  at the location (x = 41m, y = 50m) and extracted at (x = 59m, 533 

y = 50m) where the hydraulic head is prescribed at 98extractH m . An unstructured triangular 534 

mesh with local mesh refinement in the vicinity of the injection and extraction wells (Fig. 10) 535 

is used for both flow and transport simulations.  536 

The flow problem is solved by the MFE method ([4]). The hydraulic head distribution and path 537 

lines representing fluid particles trajectories are drawn in Fig. 11, showing that the extraction 538 
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well captures almost all the water from the injection and a fraction of water coming from the 539 

left boundary. Although the head at the sink  98extractH m  is less than that of the right 540 

boundary  100RH m , no flow occurs from the right boundary toward the extraction well. 541 

 542 

Fig. 10. Results of the flow simulation for the injection/extraction well pair problem. 543 

 544 

In this example, we are interested in the distribution of a solute invading the system from a 545 

continuous injection to a distant continuous extraction, the whole resulting in a steady-state 546 

solute plume. The direct steady-state simulation is not possible with the classical DG-MFE 547 

formulation based on operator and time splitting. In addition, the long-term transient simulation 548 

of transport until reaching the steady-state solution is hardly affordable with classical DG-MFE. 549 

Usually, the classical formulation is associated with an explicit time discretization of the 550 

advection operator which requires the strict respect of the CFL criterion. In the present test case, 551 

the high magnitude of velocities and the small element size in the vicinity of the injection and 552 

extraction wells, would imply a time step of 31 310t . d   to respect the CFL criterion. Given 553 

that the steady-state regime (when the total mass in the system becomes constant) is reached at 554 

approximately 5000T d , the classical approach with an explicit scheme would requires 555 
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64 10  time steps to reach the steady-state regime.  556 

The new DG-MFE numerical scheme can be employed to obtain the steady-state solution in a 557 

single step only requiring 0.3s of CPU time. Fig. 11 compares the solution from the steady-state 558 

calculation and that of a transient simulation (also performed by solving Eq. (39)) using 5000 559 

time steps of 1t d  . In the latter, the whole simulation needs for approximately 87s of CPU 560 

time.  561 

A very good agreement is observed between the steady-state and the “transient” solutions (Fig. 562 

11), while the steady-state calculation is approximately 300 times faster than the transient 563 

calculation. Fig. 11 also reports on the steady-state solution obtained with a fully upwind MFE 564 

method (described in [15]) in which the MFE is complemented by an upwind scheme for 565 

advection to avoid unphysical oscillations due to the hyperbolic nature of the operator. As 566 

expected, the steady-state solution from the fully upwind MFE scheme shows (dashed iso-567 

concentration lines in Fig. 11) large numerical diffusion, which renders it less accurate than the 568 

DG-MFE solution.  569 

These results point out the accuracy of the new DG-MFE scheme compared with the fully 570 

upwind MFE solution; they also highlight how efficient the new scheme can be for single-step 571 

steady-state simulations (and also here, accurate for implicit transient simulations even with 572 

large time steps). 573 

 574 
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 575 

Fig. 11: Results of transport simulations for the injection/extraction pair problem. Steady-state 576 

DG-MFE simulation (black lines), transient DG-MFE simulation using 5000 time steps of 1 577 

day (color maps), and steady-state upwind-MFE simulation (purple dashed lines). 578 

 579 

5. Conclusions 580 

 581 

We propose in this work a new DG-MFE scheme to solve the advection-dispersion equation. 582 

The DG method is developed over the lumping regions associated with the mesh edges and is 583 

combined with the lumped MFE method. The DOFs of DG are the mean concentration on the 584 

lumping region complemented by the deviation of the concentration in each space direction. 585 

This allows for obtaining a single system of equations with common DOFs (edge concentration) 586 

for both advection and dispersion discrete operators. The temporal discretization is based on 587 

the Crank–Nicolson method for both advection and dispersion. 588 

The accuracy of the new DG-MFE formulation was investigated using three types of problems 589 

involving a full dispersion tensor. The first test problem highlights the accuracy of the DG-590 



 34 

MFE model by comparing the calculations with analytical solutions for highly advective 591 

transport problems, moderately and highly dispersive problems. The results of the new DG-592 

MFE model showed very good agreements with the analytical solution for all the investigated 593 

scenarios. The second test case handled a transport problem with a total flux boundary 594 

condition. For this problem, the DG-MFE solution was compared to the GFE solution obtained 595 

with Comsol software in the cases of both advection-dominated and dispersion-dominated 596 

transports. The results showed a very good agreement between the GFE and DG-MFE 597 

concentration curves in the case of high dispersion. In the case of high advection, the 598 

concentration profile with GFE concealed unphysical oscillations and reached anomalous 599 

asymptotic concentration values. These drawbacks are avoided with the new DG-MFE model. 600 

Finally, the DG-MFE model was used for the steady-state transport simulation with sink and 601 

source terms. A very good agreement was obtained between the steady-state and the long-term 602 

transient simulation results, while, the steady-state calculation required approximately 300 603 

times less CPU time than the transient calculation. The steady-state problem was also simulated 604 

with the fully upwind MFE method which resulted in a solution with large numerical diffusion. 605 

These results highlight the efficiency of the new DG-MFE model for steady-state transport 606 

simulations that cannot be performed with the classical approach. They also point out the 607 

accuracy of the obtained solution as compared to the fully upwind MFE solution. 608 

The 2D formulation is quite generic and can be extended to 3D tetrahedral elements without 609 

too much complicated numerical developments. These numerical investigations are under 610 

progress. 611 
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