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 26 

Abstract 27 

Numerical simulation of gas flow in low permeability formations is a challenging task due to 28 

the high nonlinearity induced by (i) the compressibility of the gas, (ii) the Klinkenberg 29 

slippage effect and (iii) the Langmuir adsorption of the gas on the pore surface. Because of 30 

these nonlinearities, modeling gas flow in low permeability formations requires a great deal of 31 

computational effort. In this work, we develop an efficient numerical model using advanced 32 

spatial and temporal discretization methods for a simultaneous solution of the coupled 33 

equations of gas flow, cubic Peng-Robinson equation of state, slippage effect and Langmuir 34 

adsorption. 35 

The spatial discretization is performed with the lumped hybrid formulation of the mixed finite 36 

element method which is well adapted for fluid flow in heterogeneous porous media. The time 37 

integration is performed with high-order methods via the method of lines (MOL) which 38 

allows large time steps and efficient solution of the nonlinear system of equations. 39 

Numerical experiments, performed for gas extraction in a heterogeneous domain, point out 40 

the high efficiency of the new model since it can be until 10 times more efficient than the 41 

classical first-order time discretization method. Results of global sensitivity analysis show 42 

that the intrinsic gas-phase permeability and the Klinkenberg factor are the most influential 43 

parameters controlling the pumping rate in the case of gas extraction in a homogeneous 44 

domain.  45 

Keywords:  46 

Gas flow, Klinkenberg slippage effect, Langmuir adsorption, Mixed Finite Element, Method 47 

of Lines, Global sensitivity analysis. 48 

49 
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1. Introduction 50 

Gas flow in porous media can be encountered in several areas such as, natural gas 51 

engineering, CO2 sequestration in subsurface reservoirs, contaminant transport and 52 

remediation, as in the case of vapor extraction to clean up contamination in shallow aquifers 53 

(Baehr and Hult, 1991; Essaid et al., 2015; Hughes et al., 2012). For all these areas, numerical 54 

models are powerful tools for understanding and optimizing studies of gas flow in porous 55 

media. 56 

Numerical simulation of gas flow in low permeability formations is more complex than liquid 57 

flow (Jia et al., 2017; Shabro et al., 2011). The complexity is mainly related to the 58 

nonlinearity induced by (i) the high compressibility of the gas, (ii) the slippage effect and (iii) 59 

the adsorption of the gas on the pore surface. The first nonlinearity is related to the 60 

compressibility of the gas which often needs to be calculated by solving the cubic Peng-61 

Robinson (Peng and Robinson, 1976) equation of state (EOS), in which the coefficients are 62 

dependent on the gas pressure. Thus, due to the compressibility of the gas, the fluid flow 63 

equation and the EOS of gas are coupled and have to be solved simultaneously, which induces 64 

a strong nonlinearity and requires excessive computational time. The second nonlinearity is 65 

related to the non-Darcy Klinkenberg (1941) effect which represents the slippage effect in 66 

low-permeability formations. This phenomenon occurs because in micro and nano pores, the 67 

no-slip surface condition may not be satisfied. The Klinkenberg effect is the origin of a 68 

nonlinear dependence of the effective permeability on the gas pressure and can have a 69 

significant impact on the gas flow behavior. Finally, the last nonlinearity is related to the 70 

adsorption of the gas on the pore surface which is often described by the nonlinear Langmuir 71 

isotherm model.  72 
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Due to these nonlinearities, modeling gas flow in low permeability formations is a difficult 73 

task that often requires high computational cost. Several techniques have been developed to 74 

improve the efficiency of the numerical solution of fluid flow in porous media such as domain 75 

decomposition (Wang et al., 2005), parallel computing (Wu et al., 2002) or multigrid methods 76 

(Bastian and Helmig, 1999). Various numerical models (El Amin et al., 2018, 2017; 77 

Huyakorn et al., 1994; Li et al., 2020; Pruess, 1991; Salama et al., 2017; Samuel and 78 

Muggeridge, 2020; Shabro et al., 2011; Wilson et al., 1987; Xiao et al., 2017) have been 79 

developed for gas flow in porous media. Some specific techniques have been proposed to 80 

reduce the computational burden associated with the solution of the gas flow equation in low 81 

permeability formations. For instance, Li et al. (2020) proposed to replace the original model 82 

with a surrogate one that uses a low dimensional space with small degrees of freedom (DOF). 83 

The surrogate model allows a substantial reduction of the computational cost, however, the 84 

accuracy and efficiency of the solution is highly sensitive to the selection of the modes in the 85 

surrogate model (Li et al., 2020). El Amin et al. (2018) used a semi-implicit scheme for the 86 

time discretization with the Mixed Finite Element (MFE) method for the simulation of gas 87 

flow in tight geological media. The semi-implicit numerical scheme keeps all nonlinear terms 88 

at the old time level and, as a consequence, the nonlinearity is removed and no Newton 89 

iterations are required. However, although convenient, it is known that semi-implicit 90 

numerical schemes can suffer from loss of accuracy and stability constraints for highly 91 

nonlinear problems.  92 

In this work we develop an efficient model based on advanced spatial and temporal 93 

discretization methods for a simultaneous solution of the coupled equations of gas flow and 94 

EOS with nonlinear slippage and adsorption. The spatial discretization is performed with the 95 

lumped formulation of the MFE method on general triangular meshes. Further, to reduce the 96 



 5 

computational burden of the solution of the nonlinear system of equations, the time 97 

integration is performed with high-order methods via the method of lines (MOL). 98 

The Mixed Finite Element (MFE) method (Brezzi and Fortin, 1991; Chavent and Jaffré, 1986; 99 

Younes et al., 2010) is well adapted for solving elliptic diffusion problems. The method 100 

ensures local mass conservation and can easily handle heterogeneous domains with 101 

discontinuous parameter distributions and unstructured meshes. The hybridization technique 102 

yields a final system with a reduced number of unknowns and a symmetric positive definite 103 

system matrix (Chavent and Roberts, 1991). A lumped formulation of the hybrid-MFE 104 

method was developed by Younes et al. (2006) and allows: (i) to improve the monotonous 105 

character of the hybrid-MFE solution (Koohbor et al., 2020; Younes et al., 2006) and (ii) 106 

unlike the standard method, it keeps the time derivative continuous which allows employment 107 

of high-order time integration methods. Thus, sophisticated ODE solvers, where the order of 108 

the time integration as well as the time step size are optimized during the simulation, can be 109 

employed. Notably, the DASPK time solver (Brown et al., 1994) was shown to be very 110 

efficient in solving saturated and unsaturated fluid flow and mass transport equations in 111 

heterogeneous porous media (Younes et al., 2022, 2011, 2009). This solver is employed here 112 

to solve the fully coupled nonlinear system of equations of gas flow and Peng-Robinson EOS 113 

with slippage effect and nonlinear adsorption. 114 

The article is structured as follows. In section 2, we recall the mathematical model governing 115 

gas flow in low permeability formations. In section 3, we develop the spatial discretization 116 

based on the lumped-MFE method that we combine with high-order time integration methods. 117 

In section 4, numerical experiments are performed to investigate the efficiency of the new 118 

model. Section 5 concludes the study and reviews the main findings. 119 
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2. The mathematical model for gas flow in low-permeability 120 

media 121 

The mass conservation of gas transport through low-permeability formations, taking into 122 

account the loss of mass of gas per adsorption is:  123 

 
   

 
1 ad

s

q
. Q

t t

  


 

    u  (1) 124 

where   is the gas density (kg/m3),  (-) porosity, adq  the mass of gas adsorbed per solid 125 

volume of rock (kg/m3), u (m/s) the Darcy velocity of gas and sQ  the external sink/source 126 

term (kg/m3/s). 127 

Gas flows in porous media differently from liquid. As gas is transported through small pores, 128 

some of the gas adheres (clings) to pore surfaces due to the diffusion of gas molecules. The 129 

most common adsorption model used to estimate the amount of adsorbed gas is based on the 130 

Langmuir isotherm (Civan et al., 2011; Cui et al., 2009; Foo and Hameed, 2010) : 131 

 
s g L

ad

std L

M V p
q

V p p





 (2) 132 

where s  (kg/m3) denotes the material density of the porous sample, LV  (m3/kg) is the 133 

Langmuir gas volume, stdV  (m3/mol) is the molar volume of gas at standard temperature 134 

(273.15 K) and pressure (101325 Pa), p  (Pa) is the gas pressure, Lp  (Pa) is the Langmuir gas 135 

pressure and gM  (kg/mol) is the molecular weight of gas.  136 

The gas density   (kg/m3) is given by the real-gas equation of state as:  137 

 
g

g

M p

R T Z
   (3) 138 

where Z  (-) is the real gas deviation factor also named Z-factor, T  (K) is temperature 139 

(considered constant in this work), and gR  is the universal gas constant (8314 J/kmol/K). 140 



 7 

Several methods can be used to calculate the Z-factor, such as empirical correlations 141 

(Mahmoud, 2014; Wang et al., 2023), neural networks (Baniasadi et al., 2012), genetic 142 

algorithms and optimization methods (Chamkalani et al., 2013), molecular dynamics 143 

simulations (Moiseeva and Malyshev, 2019) or by solving the implicit EOS.  144 

Empirical correlations are the easier and faster methods but are usually developed using 145 

specific data set and are therefore not accurate. The EOS is the most accurate method but is 146 

difficult to solve because of its highly nonlinearity. There are several EOS in the literature, 147 

among them the Var der Waals EOS, the Redlich-Kwong EOS, and the Peng-Robinson EOS. 148 

In this work, we choose the Peng-Robinson EOS since it is one of the most useful and 149 

successfully applied models in petroleum engineering (Lopez-Echeverry et al., 2017). 150 

The cubic implicit Peng-Robinson EOS can be expressed as follows (Elliott and Lira, 2012):  151 

      3 2 2 2 31 2 3 0Z B Z A B B Z AB B B          (4) 152 

where  153 

   
2

0 5

2
0 45724 1 1 . r

r

r

p
A . T

T
    and 0 0778 r

r

p
B .

T
  (5) 154 

with  155 

 20 37464 1 54226 0 26992. . .      (6) 156 

where,   is the acentric factor (-), r cp p p  and r cT T T  are reduced pressure (-) and 157 

reduced temperature (-), respectively, with cp  and cT  the critical pressure (Pa) and the critical 158 

temperature (K), respectively. 159 

Neglecting the compressibility of the porous medium as compared to that of the gas, Eq. (1) 160 

writes: 161 

    1 ad
s

qp p
. Q

p t p t

  
  
   

   u  (7) 162 

Using Eq. (2) and Eq (3), we obtain  163 
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2
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g

g
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
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


 

 (8) 164 

https://en.m.wikipedia.org/wiki/Acentric_factor


 8 

Neglecting gravity, the conservation of momentum of gas flowing through the porous medium 165 

writes: 166 

 
k

p


  u  (9) 167 

where   ( Pa s ) denotes the dynamic viscosity of the flowing gas and k  (m2) the effective 168 

permeability. 169 

In low permeability formations, the gas permeability is enhanced by ‘slip flow’ due to 170 

molecular collusions with the pore wall rather than with other gas molecules (Wu et al., 171 

1998). This effect, named Klinkenberg gas slippage effect, may have a significant impact on 172 

gas flow behavior, especially in low permeability formations (Reda, 1987). According to 173 

Klinkenberg (1941), the effective gas permeability at a finite pressure is given by 174 

 
0 1k k

p

 
  

 
 (10) 175 

where 0k  (m2) is the absolute gas-phase permeability under very large gas-phase pressure, 176 

also called intrinsic permeability, and   (Pa) is the Klinkenberg factor. This factor depends 177 

on the pore structure of the medium and the temperature for a given gas. Jones (1972) found 178 

that   generally decreases with increasing permeability. 179 

Combining Eq. (9) and Eq. (10) with Eq. (3) gives:  180 

 K p   q u  (11) 181 

where  182 

 0 1
g

g

M p
K k

R T Z p





 
  

 
 (12) 183 

Using Eq. (8), the mass conservation Eq. (7) can be written in the following form:  184 

 f s

p
C . Q

t




 q  (13) 185 

where  186 
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1 1

g s g L L
f
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C
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
 
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 (14) 187 

The derivative of the cubic Eq. (4) yields: 188 

 
   
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2 2 2 3

2 2
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 (15) 189 

which gives: 190 

   
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f
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C
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 
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    
       

 191 

  (16) 192 

Thus, modeling compressible gas flow in low permeability formations using the fully implicit 193 

scheme requires the simultaneous solution of the coupled Eq. (13) (in which we substitute Eq. 194 

(16), Eq. (11) and Eq. (12)) and Eq. (4) (in which we substitute Eq. (5) and Eq. (6)). The 195 

unknowns of this highly nonlinear coupled system of equations are the gas pressure p  and 196 

the compressibility factor Z . 197 

3. The numerical model 198 

An efficient numerical model is developed in this section to accurately solve the highly 199 

nonlinear coupled equations of gas flow and EOS with slippage and adsorption. The model is 200 

based on advanced spatial and temporal discretization methods. The lumped MFE method is 201 

employed for the spatial discretization and the time discretization is performed with high-202 

order time integration methods via the MOL. 203 

3.1 Spatial discretization with the lumped MFE method 204 
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With the lowest-order MFE method, the vector q  inside each triangular element E  is 205 

approximated with the linear Raviart-Thomas basis functions (see Younes et al. (2010) for 206 

details): 207 

 
3

1

E E

j j

j

Q


q w  (17) 208 

where .

j

E

j j

E

Q


 
E

q η  is the mass flux across the edge jE  of E , 
E

jη  is the outward unit 209 

normal vector to 
jE  and 

1

2

E

j
E

j
E

j

x x

E y y

 
 
  

w  is the Raviart-Thomas basis functions (Raviart 210 

and Thomas, 1977) with  E E

j jx , y  the coordinates of the node j  faced to the edge jE  of E  211 

and E  the area of E . 212 

The variational formulation of Eq. (11) on the element E , using E

iw  as test function writes 213 

  1

j

j

jE E E E

K . p. p . p .



        
E E E E E

i i i iq w w w w η  (18) 214 

Using properties of E

iw  (see Younes et al., 2010), Eq (18) simplifies to   215 

 E E E

i, j j E i

j

B Q p Tp   (19) 216 

where E
B  is the elemental matrix of terms  1E ,E

i , j j

E

B K . 
E E

iw w , Ep  is the mean pressure at 217 

the element E  and E

iTp  is the mean pressure at the edge iE . 218 

Inverting Eq. (19) gives the mass flux E

iQ  as:  219 

 1E E ,E E

i i E i , j j

j

Q p B Tp    (20) 220 

where 1E ,E

i i , j

j

B  . 221 
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With the lumped formulation of the MFE method (see Younes et al., 2006), the stationary and 222 

accumulation parts of the flux are distinguished and the storage term is associated to the edge 223 

as:  224 

 
E

EE E E i
i s ,i ii

Tp
Q Q Q

t



  


 (21) 225 

where 
1E

s,i s

E

Q Q
ne

   is the sink/source term associated to the edge iE  of the element E  with 226 

ne  the number of edges of E  ( 3ne   for a triangular element),  E

i f E E

E
C p ,Z

ne
   is the 227 

compressibility coefficient associated to iE  and 
E

i
Q  is the steady state mass flux given by 228 

(see Younes et al., 2006): 229 

 1

E E
E i j ,E E

i , j ji E
j

Q B Tp
 




 

   
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  (22) 230 

where E E

i

i

  . 231 

Using the continuity of the trace of pressure  E E

i i iTp Tp Tp


   at the edge i  between the two 232 

adjacent elements E  and E , the continuity of the flux  0E E

i iQ Q


   across i  writes: 233 

   1 1

E E E EE
i j i jE E ,E E ,E E E Ei

i i i , j j i , j j s ,i s ,iE E
j j

Tp
B Tp B Tp Q Q

t

   
 

 

 

    



   
                

   (23) 234 

This equation is written for all the edges of the mesh, which gives the final system to solve. 235 

Notice that the obtained system is highly nonlinear since the coefficients  E

E EK K Z , p , 236 

 1 1,E ,E

i , j i , j E EB B Z , p  ,  E E

i i E EZ , p  ,  E E

j j E EZ , p   and  E E

E EZ , p   are 237 

dependent on the sought pressure Ep  and factor EZ . 238 

It is known that time solvers can ensure accurate and stable evolution of the solution in time 239 

for ODE systems, while some difficulties can be encountered for the solution of DAE systems 240 
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as the iteration matrix for DEA can be ill-conditioned when the time step is reduced (Brenan 241 

et al., 1996). To overcome these difficulties, a small transient term is added to the nonlinear 242 

algebraic cubic Peng-Robinson EOS to converted it to an ordinary differential equation. The 243 

added transient term is negligible in the PDE since it is multiplied by a very small factitious 244 

storage coefficient. The obtained transient Peng-Robinson EOS on the element E  writes 245 

      3 2 2 2 31 2 3 0E
E E E E

dZ
s Z B Z A B B Z AB B B

dt
           (24) 246 

where the parameters  EA p  and  EB p  of the cubic equation are functions of the gas 247 

pressure Ep  (see Eq. (5)) and Es  is a very small fictitious  1010Es   storage coefficient 248 

used to enhance the convergence of the ODE time solver. 249 

3.2 Time discretization with high-order integration methods  250 

With the MOL, all the spatial derivatives are discretized, while the time derivatives remain 251 

continuous (see Eq. (23) and Eq (24)). Subsequently, time integration is performed using 252 

high-order methods which allow larger time steps and less effort in the nonlinear solver 253 

compared to the low-order methods (Farthing et al., 2002). In addition, high-order methods 254 

are often combined with efficient time-stepping schemes where the time-step size is 255 

optimized in order to reduce the computational cost while maintaining a given temporal 256 

discretization error.  257 

The equations (23)-(24) on all elements E  are gathered into a single implicit system of 258 

ordinary differential equations (ODEs) of the general form  259 

   0F t, ,  y y  (25) 260 

where    
1 1i Ei ,..,nb_edges E ,..,nb_elements

Tp , Z
 

 
 

y  is the vector of unknowns formed by: (i) the 261 

pressure traces at all the edges of the mesh (except boundary edges with prescribed pressure), 262 
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and (ii) the Z-factor at all the elements and    
1 1 

     
 

y' i Ei ,..,nb_edges E ,..,nb_elements
Tp t , Z t . 263 

Thus, the number of unknowns is approximately the number of edges plus the number of 264 

elements. 265 

The system (25) is integrated in time with the DASPK time solver (Brown et al., 1994). 266 

DASPK uses a variable order (up to five) time integration method based on the Fixed Leading 267 

Coefficient Backward Difference Formulas (FLCBDF) which has good stability properties. 268 

The kth-order FLCBDF method transforms the system   0n n nF t , ,  y y  at the time 269 

1n nt t h   with the solution history 1n n k,..., y y  to a nonlinear system   0n n n
ˆˆF t , ,  y ay b  270 

where â  and b̂  depend on the order k , the step size h , and the solution history (Brenan et 271 

al., 1996). The obtained nonlinear system is then solved with the Newton method using finite 272 

difference approximation of the Jacobian matrix J . To improve efficiency, the same Jacobian 273 

is used over as many time steps as possible and is updated only when the nonlinear solver 274 

fails during time stepping. Further, the terms of J  are calculated using the column grouping 275 

technique. This technique allows perturbing variables by group, knowing the structure of J , 276 

which can be deduced from the Eqs (23) and (24). The obtained linear systems can be solved 277 

with either iterative or direct methods. In this work, we choose the preconditioned Krylov 278 

iterative method which is more adapted for large linear systems. 279 

During simulation, both the order of the time integration and the time step size are optimized 280 

in order to minimize the computational effort while keeping both relative and absolute time 281 

errors under a small tolerance, fixed to 710  for all the simulations in this work.  282 

4. Numerical experiments 283 

4.1 Gas extraction in a heterogenous domain 284 
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In this section, numerical simulations of compressible gas flow with slippage and adsorption 285 

in a heterogeneous two-dimensional domain is performed to investigate the performance of 286 

the new model. All the simulations are carried out on an Intel Xeno E-2246G, CPU 3.60 GHz 287 

PC with 32.00 GB of RAM. 288 

We consider an isothermal compressible gas flow, where the gas is methane, in a square 289 

600 600m m  heterogeneous domain. The domain is discretized with an unstructured mesh 290 

formed by 9858 triangular elements (Figure 1). The west and east boundaries have fixed 291 

pressures with, respectively, wp  and ep . Both the north and south boundaries are 292 

impermeable. The domain has an intrinsic permeability 1k  and involves 6 rectangular 293 

heterogeneities having a smaller permeability 2 1 1000k k .  294 

 295 

Figure 1: Permeability distribution and boundary conditions for the problem of gas extraction 296 

in a heterogenous domain (blue: permeability 1k ; red: permeability 2 1 1000k k  ) 297 

An extraction well is located at the center of the domain  300 300c cx m, y m  . The 298 

pressure in the extraction well is fixed to wellp . The initial pressure in the domain is initp  and 299 
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the simulation time is set as 1110 s. The parameters for the numerical simulation are depicted 300 

in Table 1. 301 

Table 1: Parameters for the problem of gas extraction in a heterogenous domain. 302 

Parameter Value Parameter Value 

 (-) 0.05 
LV (m3/mol) 32 83 10.    

initp (Pa) 710   s (kg/m3) 2550  

ep (Pa) 710   stdV (m3/mol) 0.0224  

wp (Pa) 810   cT (K) 191  

wellp (Pa) 64 10   T (K) 314  

1k (m2) 1810   Lp (Pa) 32 07 10.    

2k (m2) 2110   cp (Pa) 64 6 10.    

gR (J/(mol K)) 8.314   (Pa.s) 510   

 (-) 0.011  (Pa) 57 10   

gM (kg/mol) 0.016    

 303 

Figure 2 shows the final pressure distribution as well as the velocity field and streamlines 304 

calculated with the new code. In this figure, a regional gas flow occurs from the west 305 

boundary (high prescribed pressure) to the east boundary (lower prescribed pressure). The 306 

extraction well creates a catchment area at the center of the domain and almost all extracted 307 

gas is originated from the west boundary. The streamlines in Figure 2 show that the local 308 

heterogeneities (with very low permeability) are circumvented by the gas flow. The evolution 309 

of the cumulative extracted mass of gas during time is plotted in the Figure 3. The cumulative 310 

mass of gas shows an almost linear evolution with time.  311 

To investigate the effect of the factitious storage coefficient used to convert the nonlinear 312 

algebraic cubic Peng-Robinson EOS to an ordinary differential equation, three simulations are 313 

conducted using different small storage coefficients corresponding to 
810
, 

1010
 and 

1210
. 314 

The three coefficients yield exactly the same results. The required CPU time for the three 315 
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simulations is respectively 6.9s, 7.5s and 7.9s. The increase of the CPU time, observed when 316 

the factitious storage coefficient decreases, is mainly due to a larger number of evaluations of 317 

the Jacobian matrix and smaller time step sizes at the beginning of the simulation. Notice that 318 

the DASPK time solver encountered several convergence issues for 1610Es . 319 

To show the benefit of using high order time integration methods, the studied problem is 320 

simulated using two options: MOL_1 where the time integration is based on a first-order time 321 

discretization method and MOL_V where the time integration is performed using variable 322 

order method. The order of the time integration in MOL_V is adapted between 1 and 5 during 323 

the simulation in order to maximize the time step size while keeping the temporal error small. 324 

Results of simulations show that MOL_1 and MOL_V yield exactly the same solution in 325 

terms of pressure distribution and extracted mass of gas. Figure 4 shows the evolution of the 326 

time step size during the simulation with both MOL_1 (Figure 4a) and MOL_V (Figure 4b). 327 

Both methods start with a very small time step, however, with MOL_V, the time step size 328 

increases more rapidly than with MOL_1. Table 2 shows that MOL_1 requires 14815 time 329 

steps for the entire simulation, whereas, MOL_V requires only 597 time steps. As a 330 

consequence, MOL_V requires around 25 times less residual evaluations than MOL_1. 331 

Furthermore, MOL_V requires less Jacobian evaluations than MOL_1. The mean time step 332 

with MOL_V is 26 times greater than that with MOL_1. The entire simulation with MOL_1 333 

requires 75s of CPU time, whereas, it needs only 7.4s with MOL_V. Thus the MOL_V 334 

model, based on high order methods, is around 10 times more efficient than the MOL_1 335 

model, which is based on the first order time integration method. This highlights the benefit of 336 

using high order time integration methods for the solution of the nonlinear system of 337 

equations governing compressible flow in low permeability formations with slippage and 338 

nonlinear adsorption.  339 

 340 
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 341 

Figure 2: Pressure distribution, streamlines and velocity field for the problem of gas 342 

extraction in a heterogenous domain. 343 
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Figure 3: Cumulative mass of extracted gas. 345 

 346 
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Figure 4: Time step evolution with MOl_1 (a) based on first order and MOL_V (b) based on 348 

variable order time integration methods. 349 

 350 

 Nbr of residual evaluations Nbr of Jacobian evaluations Mean t  CPU 

MOL_1 14815 43 
66 8 10.  s 75 s 

MOL_V 597 35 81 8 10.  s 7.4 s 

Table 2: Comparison between first order and high-order time integration methods. 351 

 352 

4.2 Influential parameters controlling the gas extraction rate 353 

Accurate and efficient simulators are often necessary when several simulations are required, 354 

as for instance for Bayesian parameter estimation, global sensitivity or uncertainty analysis. In 355 

this section, Global Sensitivity Analysis (GSA) combined with the Polynomial Chaos 356 

Expansion (PCE) surrogate modelling is conducted to assess the influence of hydraulic 357 

parameters on the pumping rate of the gas extraction well. The test case is similar to the 358 

previous problem, but a homogeneous domain is considered with an initial gas pressure of 359 

510  Pa and uniform boundary conditions with a prescribed gas pressure of 
510  Pa at the four 360 

(a) (b) 
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boundaries of the square domain. The well pressure is fixed to 34 10  Pa. The rest of the 361 

parameters are similar to the previous test problem given in Table 1. 362 

The numerical model is employed to analyze the uncertainty of the pumping rate of the gas 363 

extraction well associated with the following parameters: the intrinsic gas-phase permeability 364 

0k , the Klinkenberg factor  , the Langmuir gas volume LV , the Langmuir gas pressure Lp  365 

and the porosity  . Sufficiently large uncertainty ranges are chosen (Table 3) to explore the 366 

role of each parameter. All parameters are assumed to be independent. 367 

Table 3: Uncertainty ranges of parameters. 368 

Parameter Uncertainty Range 

 (-)  0 02 0 1. , .  

0k  (m2) 18 1710 10,     

  (Pa) 5 610 10,    

Lp  (Pa) 6 60 5 10 15 10. ,     

LV  (m3/kg) 
3 30 5 10 10 10. ,      

 369 

The effect of the five parameters on the pumping rate is investigated using the Sobol variance-370 

based sensitivity indices (Sobol, 2001). These indices measure the contribution of a parameter 371 

(alone or by interactions with other parameters) to the output (pumping rate) variance. The 372 

Sobol indices do not require any assumption of linearity or monotony of the model and are 373 

therefore, well suited for GSA. Two Sobol indices are generally calculated:  374 

- the first-order (main effect) index, 375 

 
 

i i
i

V E y V
S

V y V

       (26) 376 

- the total index, 377 



 20 

 

T
i i

i

V E y V
ST

V y V


     

χ
                 (27) 378 

where y  is the model output, χ  is the set of parameters  0, , , ,L Lk p V   ,  E  is the 379 

average,  V  is the variance, E     and V     are their respective conditional forms. i  380 

represents one of the parameters, and iχ  stands for all parameters χ , except the 381 

parameter i . 382 

The first-order index  0 1iS ,  quantifies the share of variance in y  due to the parameter i  383 

alone. The total sensitivity index  0 1iST ,   measures the contribution of i  to the variance 384 

of y , including its interactions with the other parameters (i.e.,
 iχ ). If i iS ST , then 385 

interactions between parameters are negligible. 386 

In this work, the Sobol’ indices are calculated using the Polynomial Chaos Expansion (PCE) 387 

surrogate modeling (Fajraoui et al., 2012; Shao et al., 2017; Younes et al., 2016). A full 388 

surrogate chaos polynomial of order 4 is constructed for the expansion with the five 389 

parameters. The number of polynomial coefficients is 
9!

126
5! 4!




. The coefficients are 390 

calculated by minimizing the sum of squared errors between the PCE and the model output. 391 

To this aim, 300 simulations are performed using parameter values randomly generated in the 392 

intervals of variation given in Table 3.  393 
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 394 

Figure 5: Pumping rate variance. The shaded areas represent the partial variance of each 395 

parameter. The blank region below the variance curve and above the shaded areas represents 396 

interactions between parameters. 397 

Figure 5 depicts the pumping rate variance versus time. In this figure, the shaded areas 398 

represent the amount of variance due to each parameter alone. The interaction between 399 

parameters is represented by the blank region below the variance curve and above the shaded 400 

area. In this figure, three periods can be distinguished. In the first short period  510t s , the 401 

variance of the pumping rate is constant (Figure 5). Because of the compressibility of the gas, 402 

the mean pressure near the well and the mean pumping rate are constant (Figure 6). During 403 

this period, only the parameters 0k  and   are influential with a small interaction between 404 

them. The parameters , Lp   and LV  are non-influential since their total sensitivity indices are 405 

less than 
410
 (Table 4). 406 
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 407 

Figure 6: Evolution of the mean pressure near the well (a) and the mean pumping rate at the 408 

well (b) during time. 409 

 410 

   0k    Lp  LV  

 Period1  510t s  

iST  0 0.6 0.5 0 0 

iS  0 0.5 0.4 0 0 

 Period2  72 10t s   

iST  0 0.56 0.46 0.04 0.03 

iS  0 0.49 0.39 0.02 0.02 

 Period3  1210t s  

iST  0 0.59 0.5 0 0 

iS  0 0.5 0.4 0 0 

 411 

Table 4: Total and first order Sobol indices of the hydraulic parameters for the three periods.  412 

In the second period  5 1010 10s t s  , the depression created by the well propagates in the 413 

domain and the capture zone increases with time. As a consequence, the pressure near the 414 

well decreases and also the mean flow rate (Figure 6). During this period the most influential 415 

parameters remain 0k  and then  . The porosity has no effect on the pumping rate  0iST  . 416 

A small effect is observed for Lp   0.04iST   and LV   0.03iST  . To investigate how each 417 

parameter affects the pumping rate, the PCE is used to calculate the marginal effect of each 418 
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parameter on the model output. This effect is obtained by analyzing the variation of the model 419 

output with respect to the chosen parameter whereas the other parameters are fixed at their 420 

mean values. The marginal effects of the parameters are shown in the Figure 7. Figure 7a 421 

shows that the pumping rate has an almost constant value whatever the value of the porosity. 422 

Figures 7b and 7c show that the two parameters 0k  and   have a strong effect on the 423 

pumping rate with an almost linear increase of the pumping rate when 0k  or   increases. 424 

Figure 7d shows that the pumping rate is weakly influenced by Lp . When the parameter Lp  425 

increases, a weak decrease of the pumping rate is observed. Note that the effect of Lp  on the 426 

pumping rate is not uniform. Indeed, the slope of the curve in the Figure 7d is more 427 

significant (which reflects a higher sensitivity) for low Lp  values  610 Pa  than for higher 428 

values  610 Pa , for which the pumping rate is almost constant. Finally, Figure 7e shows a 429 

small increase of the pumping rate when LV  increases, which explains the very weak 430 

sensitivity of the pumping rate to LV .  431 

The last period  1010 s t  corresponds to the steady state regime in the whole domain where 432 

no evolution of the pressure distribution occurs. The pumping rate reaches its minimum value 433 

and all the extracted gas is originated from the boundaries of the domain. In this period, only 434 

the parameters 0k  and   are influential, as in period1. 435 

In summary, the main parameters controlling the pumping rate of the gas extraction well 436 

during the whole simulation are the intrinsic gas permeability 0k  and the slippage factor  . 437 

The results of this test case demonstrate the applicability of the developed model for an 438 

efficient solution of compressible flow in low permeability formations with slippage and 439 

nonlinear adsorption, in the context of global sensitivity analysis. 440 

 441 
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 442 

 443 

 444 

 445 

 446 

Figure 7: Marginal effects of  , k ,  , Lp , LV  on the pumping rate of the gas extraction 447 

well at period2  72 10t s  . 448 

 449 
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5. Conclusion 450 

Simulation of gas flow in low permeability formations can be computationally demanding 451 

because of the high nonlinearities induced by the compressibility of the gas, the slippage 452 

effect and the nonlinear adsorption of gas on the pore surface. In this work, an efficient model 453 

is developed using advanced spatial and temporal discretization methods for a simultaneous 454 

solution of the gas flow equation and the cubic Peng-Robinson EOS with Klinkenberg 455 

slippage effect and Langmuir adsorption. The spatial discretization is based on the MFE 456 

method which is well adapted for heterogeneous porous media and unstructured meshes. The 457 

lumped hybrid formulation of the MFE method is used since it improves the monotonicity of 458 

the scheme and allows the use of the MOL. Time discretization is performed with high-order 459 

time integration methods. The time step size and the order of the time integration are 460 

optimized during the simulation in order to reduce the computational cost while maintaining a 461 

given temporal discretization error. 462 

The developed model is used for the simulation of gas extraction in a heterogeneous domain. 463 

The results of this test case show that the cumulative extracted mass of gas has an almost 464 

linear evolution with time. Both first-order and high-order time discretization methods yield 465 

the same results, however, the time step size increases more rapidly with the high-order 466 

method and allows a reduction by a factor of 10 in the computational time as compared to the 467 

first-order method. This highlights the benefit of using high order time integration methods 468 

for the solution of gas flow in low permeability formations. 469 

The new model is then employed to assess the influence of hydraulic parameters on the 470 

pumping rate of the gas extraction well in the case of a homogeneous aquifer. The GSA is 471 

performed using PCE surrogate modeling. The efficient simulator developed in this work is 472 

suited to perform GSA since several simulations are required to assess the sensitivity indices. 473 

The results of this test case show that the main hydraulic parameters controlling the well 474 
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pumping rate for the investigated test case are the intrinsic gas permeability and the slippage 475 

factor.  476 

The 2D formulation developed in this work is quite generic and can be easily extended to 3D 477 

problems without too much complicated numerical developments. 478 

 479 

480 
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