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Abstract. This lecture constitutes a short introduction to the subject of the stability (in the sense

of Lyapounov) of evolution variational inequalities and non-smooth dynamical systems. After

recalling some basic concepts and results in Convex and Set-Valued Analysis and in the field of

Differential Inclusions (including sweeping processes), we present some basic existence results

and an Invariance principle for a class of first order evolution variational inequalities. Using

this approach, stability and asymptotic properties of important classes of second order dynamic

systems with dry friction are studied. Using Brouwer’s topological degree, necessary conditions

for asymptotic stability of evolution variational inequalities are also studied.
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1 Introduction

In recent year, the theory of stability (in the sense of Lyapounov) of stationary solutions of

dynamical systems has been considerably developed. It is well known that this field is of ma-

jor importance in both applied mathematics and engineering. With the emergence of many

engineering disciplines, it is not surprising that the unilateral dynamical system has played a

central role in the understanding of mechanical processes. The mathematical formulation of

the unilateral dynamical system involved inequality constraints and necessarily contains natural

non-smoothness. The non-smoothness could originate from the discontinuous control term, or

from the environment (non-smooth impact), or from the dry friction. It is well-known that dry

friction generates instabilities and consequently influences the performance and the behavior

of mechanical systems. It seems that the formalism of evolution variational inequalities rep-

resents a large class of unilateral dynamical systems [8], [25], [26] [16], [10] . Due to the

lack of smoothness, classical mathematical methods ( see e.g. [23], [30]) are applicable only

to a limited amount and require naturally extensions for both analytical and numerical meth-

ods. Recently, new analytical tools have been developed for the study of evolution variational

inequalities [10], [15], [16].

In [16], the authors has developed a Lyapunov approach to study the stability of stationary

solutions of first order evolution variational inequalities in Hilbert spaces. This approach was

efficient for giving sufficient conditions of stability for the problem in the form of a variational

inequality. Some results of stability, asymptotic stability and unstability for general evolution

variational inequalities are provided. The method of Lyapounov function [30], was extended to

the case of variational inclusions. An important particular case arises for constrained problems

on a closed, convex subset K, where the arguments involve the indicator function of K. Some

geometric conditions in terms of tangent, normal and recession cones are used. The case where

K is a cone is of special interest for applications.

Recently, in [2] the authors has developed a LaSalle’s invariance theory applicable to a

general class of first order non-linear evolution variational inequalities. This approach was

applied to the study of the stability and the asymptotic properties of second order dynamical

systems involving friction forces. Equally important, is the study of the attractivity properties

of the set of stationary solutions which correspond in general to a stationary mode where the

friction elements are sticking.

The lecture is organized as follows. In section 2, we recall some definitions and back-

grounds of convex analysis and degree theory which will be used later. In section 3, we will

give an existence result for first order evolution variational inequalities. In section 4, we re-

call some functional framework for studying the stability of first order evolution variational

inequalities. In section 5, we will show how to apply the Lyapounov approach to linear vari-

ational inequalities in finite dimensional spaces. Section 6 is devoted to the development of

an invariance principle for evolution variational inequalities. In section 7, we show how this

approach can be used to study the stability and asymptotic properties of important classes of

second order dynamic systems with friction. In section 8, we give a necessary condition for

asymptotic stability of evolution variational inequalities.
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2 Basic Convex Analysis

We recall several definitions and results from Convex Analysis. The general setting is that of a

real Hilbert space H , with the associated scalar product, denoted by 〈., .〉, or simply by a dot .

, and with the associated norm ‖ · ‖. We shall often consider only the finite dimensional setting,

more precisely, H = Rn with the usual Euclidean scalar product 〈x, y〉 = x.y = xT y.

2.1. Convex sets and cones

A set C ⊂ H is convex if it contains all the convex combinations λx+(1−λ)y with 0 ≤ λ ≤ 1,

for any pair x, y ∈ C. In other words,

λC + (1 − λ)C ⊂ C, ∀ 0 ≤ λ ≤ 1.

non-convex set

x y

Convex set non-convex set

Figure 1: Example of convex and non-convex sets.

A cone is a set which contains all λx, for λ ≥ 0 and x in the set. Then a closed convex set

K is a cone of H iff K + K ⊂ K.

Polyhedral convex cone Non convex cone

Figure 2: Example of cones.
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The polar cone (or negative polar cone [4]) of K is defined by:

K◦ (or K−) = {x⋆ ∈ H : 〈x⋆, x〉 ≤ 0, ∀x ∈ K}.

C

C◦

Figure 3: A cone C and its negative polar C◦.

A related definition is that of the (positive) dual cone, found in other authors, e.g. [11],

where the sign of the inequality is reversed:

K⋆ = {x⋆ ∈ H : 〈x⋆, x〉 ≥ 0, ∀x ∈ K}.

For x̄ ∈ C, we define the (outward) normal cone at x̄ by

NC(x̄) = {p ∈ R
n : 〈p, x − x̄〉 ≤ 0, ∀x ∈ C}.

If x̄ belongs to the interior of C, then NC(x̄) = {0}.
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x+NC(x)

C

y+NC(y)

z+NC(z)

y

z

x

Figure 4: Normal cone to a convex set.

We can also define the tangent cone of a subset C ⊂ R
n at a point x ∈ C, which we denote

TC(x), by the following formula:

y ∈ TC(x) ⇐⇒ ∃(xk) ∈ C with xk → x, and ∃αk ∈ R+ such that αk → 0 and
xk − x

αk

→ y.

Furthermore, if C is convex, then

z ∈
(

TC(x)
)◦

⇐⇒ 〈z, y − x〉 ≤ 0, ∀y ∈ C,

i.e. the polar of the tangent cone is the normal cone:
(

TC(x)
)◦

= NC(x).

Let K be a closed convex subset of H . Then the recession cone of H is the closed convex

cone

K∞ :=
⋂

t>0

[K − x0

t

]

,

where x0 is arbitrarily chosen in K (indeed, it is independent of the choice of x0). Equivalently,

this amounts to say that d belongs to K∞ if and only if x0 + λd ∈ K, for all λ ≥ 0 and x0 ∈ K.

Since K is closed and convex, the translate K − x0 is also closed and convex.
K − x0

t
as a

homothetic of a closed and convex set is also closed and convex. Finally K∞ is closed (convex)

as an intersection of a closed (convex) sets. Furthermore, K∞ is a cone which means that if

d ∈ C∞, λd ∈ C∞,∀λ > 0. Hence, K∞ is a closed and convex cone in H. If K is a closed

convex cone, then clearly K∞ = K.
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K

K∞

K
K∞

K K∞

Figure 5: Three subsets and their recession cones.

In finite dimensional spaces, we have the following property:

Proposition 2.1 Let C ⊂ R
n be a nonempty closed convex set. Then the following are equiva-

lent:

1. C∞ = {0}

2. C is bounded.

PROOF:

(2) ⇒ (1) :
Suppose there exists d 6= 0 such that d ∈ C∞. Hence, for every n ∈ N and x0 ∈ C, we have:

x0 + nd ∈ C. We have

‖x0 + nd − x0‖ = n‖d‖ → ∞.

Therefore,

Diam C = sup
x,y∈C

‖x − y‖ ≥ n‖d‖.
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Hence, Diam C = ∞ and C is unbounded.

(1) ⇒ (2) :
Suppose C is unbounded, then there exists a sequence (xn) in C such that ‖xn‖ → ∞. So for

some n0, ‖xn‖ > 0,∀n > n0. Let dn = xn/‖xn‖. Note that ‖dn‖ = 1, for all n > n0. Hence

there is a subsequence (dnk) which converges to d with ‖d‖ = 1. Now for a fixed x0 ∈ C, and

t > 0, let

ynk =

(

1 − t

‖xnk‖

)

x0 + tdnk

=

(

1 − t

‖xnk‖

)

x0 +
t

‖xnk‖
xnk.

For large k, t/‖xnk‖ < 1, so ynk ∈ C since it is a convex combination of elements in C and C
is convex. Also, since (ynk) → x0 + td and C is closed, then x0 + td ∈ C. Hence there exists a

d 6= 0 such that x0 + td ∈ C, for all t > 0, and so C∞ 6= {0}, which completes the proof.

Remark 2.1 In infinite dimensional spaces, there exist unbounded convex sets such that C∞ =
{0}, e.g.

C = {x ∈ l2(N∗) : |〈x, en〉| ≤ n, ∀n ∈ N
∗}.

2.2. Convex functions

Let ϕ : H → R ∪ {+∞} be an arbitrary function.

Definition 2.1 A function ϕ : R
n → R ∪ {+∞} is said to be convex iff ϕ(λx + (1 − λ)y) ≤

λϕ(x) + (1 − λ)ϕ(y), for all λ ∈ [0, 1] and x, y ∈ R
n.

We say that ϕ is proper if its effective domain

Dom ϕ := {x ∈ H| ϕ(x) < +∞}

is nonempty.

Let C be a subset of R
n. We write IC(x) for the indicator function of C, i.e.,

IC(x) =

{

0 if x ∈ C
+∞ if x /∈ C

Then C is a convex set iff IC is a convex function.

Proposition 2.2 Let f : U ⊂ R
n → R be a function of class C1, where U ⊂ R

n is an open set

and let C be a convex subset of U . The following are equivalent

1. f is convex on C;

2. f(y) ≥ f(x) + 〈∇f(x), y − x〉 for all x, y ∈ C.
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Proposition 2.3 Let f ∈ C2(U ; R) with U ⊂ R
n is an open convex set. The following are

equivalent

1. f is convex on U;

2. The Hessian matrix ∇2f(x) is positive semi-definite for every x ∈ U , i.e.

〈∇2f(x)h, h〉 ≥ 0, ∀h ∈ R
n.

Note that if ∇2f(x) is positive definite for every x ∈ U , then f is strictly convex on U .

We now recall some general continuity concepts.

Definition 2.2 (1) ϕ : R
n → R ∪ {+∞} is said to be lower semi-continuous (lsc) at x0 if for

all a < ϕ(x0) there exists a ball B(x0, r) such that for all x ∈ B(x0, r), we have: a < ϕ(x). ϕ
is said to be lower semi-continuous if and only if it is lower semi-continuous at each point.

(2) ϕ is said to be upper semi-continuous (usc) at x0 if −ϕ is lsc at x0. ϕ is upper semi-

continuous if and only if it is upper semi-continuous at each point.

Remark 2.2 ϕ is continuous if and only if it is both lower semi-continuous and upper semi-

continuous.

For ϕ : R
n → R ∪ {+∞}, we set

Epi(ϕ) = {(x, λ) ∈ R
n × R : ϕ(x) ≤ λ},

the epigraph of ϕ. Given λ ∈ R, the lower λ−level subset of ϕ is

Levλ(ϕ) = {x ∈ R
n : ϕ(x) ≤ λ},

and argmin (ϕ) = {x̄ ∈ R
n : ϕ(x̄) = inf

x∈Rn
ϕ(x)}.

Levσ(f)

σ

Rn

Epi(f)

Figure 6: Epi(f) and Levσ(f).
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Proposition 2.4 Let ϕ : R
n → R ∪ {+∞}. Then the following are equivalent:

1. ϕ is lower semi-continuous;

2. the epigraph Epi(ϕ) is closed;

3. For all λ, the sublevel Levλ(ϕ) is closed;

4. For all x ∈ Rn, ϕ(x) ≤ lim inf
y→x

ϕ(y) = sup
r>0

inf{ϕ(y) : y ∈ B(x, r)};

5. If xn → x then ϕ(x) ≤ lim
n→∞

inf ϕ(xn).

We set Γ0(H) the set of all convex, lower semicontinuous and proper functions.

Definition 2.3 Let ϕ ∈ Γ0(H). A point p ∈ H is called a subgradient of ϕ at the point

u ∈ Dom ϕ iff

ϕ(v) ≥ ϕ(u) + 〈p, v − u〉 ∀v ∈ H.

We denote

∂ϕ(u) = {p ∈ H : ϕ(v) ≥ ϕ(u) + 〈p, v − u〉 ∀v ∈ H}
and we say that ∂ϕ(u) is the subdifferential of ϕ at u.

This means that elements of ∂ϕ are slopes of the hyperplanes supporting the epigraph of ϕ at

(u, ϕ(u)).
For instance, it can be observed that

∂IC(x̄) = NC(x̄).

We have also the following characterization of the subdifferential in terms of the normal

cone to the epigraph. Let f ∈ Γ0(R
n) and x ∈ Dom (f), then

p ∈ ∂f(x) ⇐⇒ (p,−1) ∈ NEpi (f)(x, f(x)).

0

-1

Rn
× {−1}

∂f(x)

Rn

R

x

(x, f(x)) + Tepi(f)(x, f(x))

Nepi(f)(x, f(x))
(x, f(x))f(x)

epi(f)

Figure 7: Illustration of the subdifferential by the normal cone.
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Example 2.1 Let f : R → R, x 7→ |x|. Then

∂f(x) =







1 if x > 0
[−1, 1] if x = 0
−1 if x < 0

Let f : R
n → R, x 7→ ‖x‖2 (Euclidean norm). Then

∂f(x) =







x

‖x‖ if x 6= 0

B(0, 1) if x = 0

∂f(x)

x

∂f(x)

−1

1

x

x

f(x) = |x|

x
−1 1

f(x)

Figure 8: Example of function and their subdifferential.

Example 2.2 If C = {x ∈ R
n : g(x) ≤ 0} where g ∈ Γ0(R

n) and x̄ ∈ R
n such that 0 /∈ ∂g(x̄)

then

NC(x̄) =







0 if g(x̄) < 0
∅ if g(x̄) > 0

R+∂g(x̄) if g(x̄) = 0.
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Here R+∂g(x̄) = {λp : λ > 0 and p ∈ ∂g(x̄)}.

Theorem 2.1 Let f ∈ Γ0(R
n). Then ∂f(x̄) is a closed convex set, possibly empty. But if

x ∈ Int(Dom f), then ∂f(x̄) 6= ∅.

In particular if f : R
n → R is convex, then for all x̄ ∈ R

n, ∂f(x̄) is a nonempty, convex and

compact set of R
n.

A bit of calculus now:

Theorem 2.2 Let f, g ∈ Γ0(R
n) and suppose that f is continuous at a point x0 ∈ Dom g. Then

∀x ∈ Dom (f + g), we have

∂(f + g)(x) = ∂f(x) + ∂g(x).

Proposition 2.5 (Chain Rule) Let f : R
n → R be a convex function and let A ∈ R

n×m be a

matrix. We define the F : R
m → R, x 7→ f(Ax). Then

∂F (x) = AT ∂f(Ax) = {AT p : p ∈ ∂f(Ax)}.

We turn our attention to optimization problems which we translate into the language of

convex analysis. For the unconstrained minimum problem, we have:

f(x̄) = inf
x∈Rn

f(x) ⇐⇒ x̄ ∈ Argminf

⇐⇒ 0 ∈ ∂f(x̄)
⇐⇒ ∇f(x̄) = 0 ( if f is C1).

For f ∈ Γ0(R
n) and C a closed convex subset of R

n, we consider the constrained optimiza-

tion problem

min
x∈C

f(x) = min
x∈Rn

(f + IC)(x), (1)

It is clear that

x̄ is a solution of (1) ⇐⇒ 0 ∈ ∂(f + IC)(x̄).

If f is continuous at a point of C, then

0 ∈ ∂f(x̄) + ∂IC(x̄). (2)

If f ∈ C1(Rn; R), then (2) becomes

−∇f(x̄) ∈ NC(x̄). (3)

The classic references on convex analysis are [27] and [29].
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3 Maximal monotone operators and variational inequalities

We recall some definitions and some results about maximal monotone operators theory drawn

from [7] (see also [6]). Let H be a real Hilbert space, with scalar product 〈., .〉 and norm ‖ · ‖.

For a multivalued operator T : H −→→ H , we denote by:

D(T ) := {u ∈ H|T (u) 6= ∅},

the domain of T ,

R(T ) :=
⋃

u∈H

T (u),

the range of T ,

Graph (T ) := {(u, u∗) ∈ H × H|u ∈ D(T ) and u∗ ∈ T (u)},

the graph of T . Throughout the paper we identify operators with their graphs.

We recall that T is monotone if and only if for each u ∈ D(T ), v ∈ D(T ) and u∗ ∈
T (u), v∗ ∈ T (v) we have

〈v∗ − u∗, v − u〉 ≥ 0.

T is maximal monotone if it is monotone and its graph is not properly contained in the graph of

any other monotone operator.

We say that a single-valued mapping A is hemicontinuous (following [6], p. 26) if, for all

x, y ∈ H:

A((1 − t)x + ty) → A(x), as t → 0.

A continuous map is therefore hemicontinuous. It can be shown that, if A : D(A) = H → H is

monotone and hemicontinuous, then A is maximal monotone (see [6], Proposition 2.4). Also,

if A is monotone and hemicontinuous and B is maximal monotone, then A + B is maximal

monotone ([6], p. 37).

From Minty’s theorem, we know that:

T is maximal monotone ⇐⇒ R(T + I) = H,

where I stands for the identity mapping.

T−1 is the operator defined by

v ∈ T−1(u) ⇐⇒ u ∈ T (v).
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A monotone operator (not maximal) A maximal monotone operato

Figure 9: Example of monotone operators.

When T is maximal monotone, the operator (I + T )−1 (where I is the identity operator in

H) is defined in the whole space H , it is single-valued and Lipschitz-continuous; indeed, it is

non-expansive:

‖(I + T )−1(x) − (I + T )−1(y)‖ ≤ ‖x − y‖.
Moreover, the operators (λI + T )−1 or (I + λT )−1 with λ > 0 are similarly well-defined,

single-valued and Lipschitz-continuous.

Let y ∈ R
n be given. We consider the following variational inequality problem: find x ∈ R

n

such that

〈x − y, v − x〉 + ϕ(v) − ϕ(x) ≥ 0,∀v ∈ R
n. (4)

This is equivalent to y − x ∈ ∂ϕ(x), that is, y ∈ (I + ∂ϕ)(x), i.e. x ∈ (I + ∂ϕ)−1(y). Since

the subdifferential of a proper l.s.c. convex function is a maximal monotone operator, we may

apply the above theory.

Thus, Problem (4) has a unique solution, that we denote by

Pϕ(y) = (I + ∂ϕ)−1(y).

The operator Pϕ : R
n → R

n; y 7→ Pϕ(y) is well-defined on the whole of Rn and

Pϕ(Rn) ⊂ D(∂ϕ). (5)

For instance, if ϕ ≡ IK , where K is a nonempty closed convex set and IK denotes the indicator

function of K, then

Pϕ ≡ PIK
≡ PK

where PK denotes the projection operator onto K, which is defined by the formula:

‖x − PKx‖ = min
w∈K

‖x − w‖.
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We may also consider the set-valued operator Aϕ : R
n → 2R

n

defined by

Aϕ(x) = {f ∈ R
n : 〈x − f, v − x〉 + ϕ(v) − ϕ(x) ≥ 0,∀v ∈ R

n}. (6)

We see that f ∈ Aϕ(x) ⇐⇒ f − x ∈ ∂ϕ(x) so that

A−1
ϕ (f) = Pϕ(f). (7)

It is also easy to see that

(tAϕ)−1(tf) = Pϕ(f),∀t > 0. (8)

Note that

Aϕ(x) = ∂{‖.‖
2

2
+ ϕ(.)}(x),∀x ∈ R

n,

so that Aϕ is a maximal monotone operator. It results that for any t > 0, the operator (idRn +
tAϕ)−1 is a well defined single-valued operator.

Given the definition of Pϕ, we know from the general theory that

Proposition 3.1 The operator Pϕ is nonexpansive, i.e.

‖Pϕv − Pϕy‖ ≤ ‖v − y‖,∀v, y ∈ R
n.

Proof: Let v, y ∈ R
n be given. We set x := Pϕ(v) and x∗ := Pϕ(y). We have

〈x − v, w − x〉 + ϕ(w) − ϕ(x) ≥ 0,∀w ∈ R
n (9)

and

〈x∗ − y, w − x∗〉 + ϕ(w) − ϕ(x∗) ≥ 0,∀w ∈ R
n. (10)

Setting w := x∗ in (9) and w := x in (10), we obtain the relations 〈x−v, x−x∗〉−ϕ(x∗)+ϕ(x) ≤
0 and −〈x∗ − y, x − x∗〉 − ϕ(x) + ϕ(x∗) ≤ 0, from which we deduce that ‖x − x∗‖2 ≤
‖x − x∗‖‖v − y‖. It follows that

‖Pϕ(v) − Pϕ(y)‖ ≤ ‖v − y‖.

We may consider a more general inequality problem. Given a continuous mapping Φ :
R

n → R
n, find x̄ ∈ R

n such that

〈Φ(x̄), v − x̄〉 + ϕ(v) − ϕ(x̄) ≥ 0,∀v ∈ R
n. (11)

In other words,

−Φ(x̄) ∈ ∂ϕ(x̄).

Having defined the operator Pϕ, it is now clear that problem (11) is equivalent to a nonlinear

equation: find x̄ ∈ R
n such that

x̄ − Pϕ(x̄ − Φ(x̄)) = 0. (12)

This may be handled by fixed point theory, since x̄ is a fixed point of the operator x 7→ Pϕ(x −
Φ(x)), or by degree theory.

15



4 Linear complementarity problems

The basic Linear Complementarity Problem, LCP for short, is presented in [11] (pp. 1-32) as

follows. Consider H = R
n with the standard scalar product denoted by a dot and the order

relation x ≥ y iff xi ≥ yi for all 1 ≤ i ≤ n. This is the order associated to the cone K = Rn
+,

since x ≥ y iff x− y ∈ K. Then the LCP problem denoted by LCP (q, M) requires that, given

q ∈ Rn and a n × n matrix M we find z satisfying

z ≥ 0, q + Mz ≥ 0, z.(q + Mz) = 0. (13)

This is often written as

0 ≤ z ⊥ q + Mz ≥ 0.

It is easy to verify that this is equivalent to finding z such that

−(q + Mz) ∈ NK(z). (14)

More generally, we may consider the Nonlinear Complementarity Problem (NCP) associ-

ated in a similar manner to a function f from Rn into itself: find z such that

z ≥ 0, f(z) ≥ 0, z.f(z) = 0. (15)

This is equivalent to finding z such that

−f(z) ∈ NK(z), (16)

where again K = Rn
+. Since NK(z) = ∂IK(z), this is nothing but a special case of (11).

The NCP may be generalized as follows. Let K be a cone in Rn, with dual cone K⋆, and

f be given as above. Then the complementarity problem over the cone K, denoted CP (K, f),
consists in finding z such that

z ∈ K, f(z) ∈ K⋆, z.f(z) = 0. (17)

If K = Rn
+, then it is self-dual, i. e. K⋆ = K, and thus CP reduces to NCP.

An associated problem is the following variational inequality V I(K, f): find z such that

z ∈ K, f(z) . (y − z) ≥ 0, ∀ y ∈ K. (18)

It can easily be shown that the problems are equivalent (cf. [11], Prop. 1.5.2):

Theorem 4.1 Consider a cone K ⊂ Rn, a map f : Rn → Rn and z ∈ Rn. Then z solves

CP (K, f) if and only if it solves V I(K, f).

Again, V I(K, f) is equivalent to (16) - now with a general cone K - and so it is a special

case of (11).

It is worth mentioning that the standard existence result for the LCP is the one due to Samel-

son, Thrall and Wesler, which says that (cf. [11], p. 148):

Theorem 4.2 The LCP 0 ≤ z ⊥ (q + Mz) ≥ 0 has a unique solution for all q if and only M is

a P-matrix, i.e. all its principal minors are positive.

Notice that if M is symmetric, then M is a P-matrix if and only if it is positive definite. In this

situation, the LCP is equivalent to a constrained minimum problem.
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5 Existence results for first order evolution variational in-

equalities

In the mathematical literature, there are a lot of existence theorems for evolution variational

inequalities. Here we choose to use a variant of Kato’s theorem [17] which is a powerful tool

for handling nonlinear evolution problems.

Theorem 5.1 Let H be a real Hilbert space and let A : D(A) ⊂ H −→→ H be a maximal

monotone operator. Let t0 ∈ R, σ ∈ R, u0 ∈ D(A) be given and suppose that f : [t0, +∞) →
H satisfies

f ∈ C0([t0, +∞); H),
df

dt
∈ L1

loc(t0, +∞; H).

Then there exists a unique u ∈ C0([t0, +∞); H) satisfying

du

dt
∈ L∞

loc(t0, +∞; H);

u is right-differentiable on [t0, +∞);

u(t) ∈ D(A), t ≥ t0;

u(t0) = u0;

−du

dt
(t) + σu(t) + f(t) ∈ Au(t), a.e. t ≥ t0. (19)

Using this Theorem, we get the following existence result for evolution variational inequalities.

Corollary 5.1 [16] Let H be a real Hilbert space and let ϕ ∈ Γ0(H). Let A : H → H be a

hemicontinuous operator such that for some w1 ≥ 0, A + w1I is monotone. Let B : H → H be

an operator such that

‖Bu − Bv‖ ≤ w2‖u − v‖, ∀u, v ∈ H

for some w2 > 0. Let t0 ∈ R and u0 ∈ D(∂ϕ) be given and suppose that f : [t0, +∞) → H
satisfies

f ∈ C0([t0, +∞); H),
df

dt
∈ L1

loc(t0, +∞; H).

Then there exists a unique u ∈ C0([t0, +∞); H) such that

du

dt
∈ L∞

loc(t0, +∞; H); (20)

u is right-differentiable on [t0, +∞); (21)

u(t) ∈ D(∂ϕ), t ≥ t0; (22)

u(t0) = u0; (23)

〈du

dt
(t) + Au(t) + Bu(t) − f(t), v − u(t)〉 + ϕ(v) − ϕ(u(t)) ≥ 0, ∀v ∈ H, a.e. t ≥ t0. (24)

17



In other words, we solve:

−du

dt
(t) + f(t) ∈ ∂ϕ(u(t)) + Au(t) + Bu(t). (25)

Proof. Let w1 and w2 be positive numbers. Then (25) is equivalent to

−du

dt
(t) + (w1 + w2)u(t) + f(t) ∈ ∂ϕ(u(t)) + (A + w1)u(t) + (B + w2)u(t)

or

−du

dt
(t) + (w1 + w2)u(t) + f(t) ∈ ∂ϕ(u(t)) + T1u(t) + T2u(t),

if we set T1 = A + w1I and T2 = B + w2I .

It is clear that T1 is monotone and hemicontinuous. The operator T2 is Lipschitz continuous

and thus hemicontinuous. In addition, it is seen that

〈T2x − T2y, x − y〉 = 〈Bx − By, x − y〉 + w2‖x − y‖2

≥ −‖Bx − By‖ ‖x − y‖ + w2‖x − y‖2

≥ −w2‖x − y‖2 + w2‖x − y‖2 = 0, ∀x, y ∈ H

thus T2 is monotone.

Hence, T = T1 + T2 is monotone and hemicontinuous and thus maximal monotone. We

now apply Theorem 5.1 with A + T (which is also maximal monotone) and with σ = w1 + w2

to conclude that a unique map u ∈ C0([t0, +∞); H) can be found to fulfill (20)-(24).

6 Degree theory

We mention briefly some preliminaries on topological degree theory.

Let D ⊂ R
n be an open and bounded set. Let f ∈ C1(D; Rn) ∩ C0(D̄; Rn) be given.

Set Zf (D) := {x ∈ D̄ : f(x) = 0} (the zeros of f in D) and Cf (D) := {x ∈ D :
det Jf (x) = 0} (the critical points of f in D) where Jf (x) denotes the Jacobian matrix of f

at x defined by (Jf )ij :=
∂fi

∂xj

(x), i, j ∈ {1, ..., n}. If Zf (D) ∩ Cf (D) = ∅ and 0 /∈ f(∂D),

then Zf (D) is a finite set and the Brouwer topological degree of f with respect to D and 0 is

well-defined by the formula

deg(f, D, 0) =
∑

x∈Zf (D)

sgn(det Jf (x)),

where sgn(t) = 1 for t > 0 and sgn(t) = −1 for t < 0. More generally, if f : D̄ → R
n is

continuous and 0 /∈ f(∂D) then the Brouwer topological degree of f with respect to D and 0 is

well-defined (see e.g. [20]) and denoted by deg(f, D, 0).

Let us now recall some useful properties of the topological degree.
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1. If 0 /∈ f(∂D) and deg(f, D, 0) 6= 0 then there exists x ∈ D such that f(x) = 0.

2. Let ϕ : [0, 1] × D̄ → R
n; (λ, x) 7→ ϕ(λ, x), be continuous such that, for each λ ∈ [0, 1], one

has 0 /∈ ϕ(λ, ∂D). Then the map λ 7→ deg(ϕ(λ, .), D, 0) is constant on [0, 1].

3. If 0 ∈ D then

deg(idRn , D, 0) = 1.

4. If 0 /∈ f(∂D) and α > 0 then

deg(αf,D, 0) = deg(f, D, 0)

and

deg(−αf,D, 0) = (−1)ndeg(f, D, 0).

5. Let D′ ⊂ D be an open set such that Zf (D) ⊂ D′. Then

deg(f, D, 0) = deg(f, D′, 0).

6. Let A ∈ R
n×n be a nonsingular matrix. If 0 ∈ D then deg(A, D, 0) = sgn(det A).

7. Let f : [−r, +r] → R be a continuous function. Suppose that f(−r) 6= 0 and f(+r) 6= 0.

Then

deg(f, ] − r, +r[, 0) = 0 if f(−r)f(+r) > 0,

deg(f, ] − r, +r[, 0) = +1 if f(−r) < 0 and f(+r) > 0,

deg(f, ] − r, +r[, 0) = −1 if f(−r) > 0 and f(+r) < 0.

19



0 A B

-1

+1

-1

+1

.. . .

deg(F,]A,B[,0)

F

0 A B-1

.

deg(F,]A,B[,0)

F

- 1 + 1 - 1 + 1

- 1

= 0

=

=

Figure 10: Degree of F .

From this theory, Brouwer fixed point theorem may be deduced:

Theorem 6.1 Let K ⊂ Rn be a non-empty closed convex set and φ : K → Rn be a continuous

map such that φ(K) ⊂ K. Then φ has a fixed point in K: there exists x̄ ∈ K such that

φ(x̄) = x̄.

It is worth noting that the degree theory can be extended to infinite dimensional spaces

(Leray-Schauder degree) and to multivalued (set-valued) maps. For the latter, we may refer the

reader to [20] (section 7.3) or to [12].

7 Set-valued Analysis

A few preliminaries on set-valued or multivalued analysis are given, which may be needed in

the sequel.

For a multifunction, i.e. a set-valued mapping

F : X −→→ Y, x 7→ F (y) ⊂ Y
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there are two possible inverse images: if C ⊂ Y , we denote

F−(C) = F−1(C) = {x ∈ X |F (x) ∩ C 6= ∅},

F−(C) = {x ∈ X |F (x) ⊂ C}.
When X and Y are topological spaces, this leads to different continuity notions.

F is upper semi-continuous (USC) if F−(V ) is open, for every open set V ⊂ Y ; F is lower

semi-continuous (LSC) if F−1(V ) is open, for every open set V ⊂ Y .

This is equivalent (respectively) to requiring that, for any x ∈ X , F be USC at x, that is,

for any open set W containing F (x), there exists a neighbourhood U of x such that F (U) ⊂ W
(i.e. F (z) ⊂ W, ∀ z ∈ U) ; or that F be LSC at x, i.e., that for every y ∈ F (x) and every

neighbourhood V of y, there exists a neighbourhood U of x such that F (z) ∩ V 6= ∅, for all

z ∈ U .

For a multifunction F between metric spaces X and Y , it can be shown that if F is USC

with closed values then its graph is closed in X × Y . Moreover, if Y is compact and F has a

closed graph, then F is USC. Therefore, USC is closely related to the closed graph assumption,

which in the case of metric spaces is stated as:

(xn → x, yn ∈ F (xn) (∀n), yn → y) ⇒ y ∈ F (x),

while F is LSC iff

( xn → x, y ∈ F (x) ) ⇒ ∃yn ∈ F (xn) (∀n) : yn → y.

F is continuous if it is both USC and LSC. There exist also ”metric” versions of these

definitions, which use the so-called Hausdorff distance or Hausdorff metric h or dH between

subsets A and B of a metric space, say (X, d):

h(A, B) = max(e(A, B), e(B, A)), where e(A, B) = supa∈Ad(a, B)

and d(a, B) = infb∈Bd(a, b).
We say that a set-valued function F with values in a metric space is Hausdorff continuous

at t iff s → t implies h(F (s), F (t)) → 0. If F is Hausdorff-continuous at each t in the domain,

we say that it is Hausdorff-continuous or H-continuous, for short.

When the domain is also a metric space, an important class of H-continuous multifunctions

is that of Lipschitz-continuous ones, which satisfy for some k:

h(F (x), F (y)) ≤ k d(x, y), ∀x, y.

When F has compact values, F is H-continuous iff F is continuous.

Another important topic is the existence of selections of a multifunction F , that is, of func-

tions f such that f(x) ∈ F (x) for every x. Michael’s theorem ensures that LSC multifunctions

on a metric space X with non-empty closed convex values in a Banach space Y do have contin-

uous selections f : X → Y . If instead F is USC, then approximate continuous selections exist:

for any ε > 0, there is a continuous fε such that, for all x, d((x, fε(x)), Graph (F )) ≤ ε.
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The approximate continuous selections can be used in combination with fixed point theory

or degree theory to obtain fixed point theorems and a degree theory for set-valued functions.

For instance, we have the following Tikhonov-Kakutani-Ky Fan Fixed Point Theorem (cf. [4],

p. 85):

Theorem 7.1 Let K be a non-empty compact convex set of a Banach space X and F be a USC

multifunction defined on K with non-empty compact convex values contained in K. Then F has

at least one fixed point, i.e. there is x̄ ∈ K such that

x̄ ∈ F (x̄).

Further topics of general interest include:

- measurability and existence of measurable selections,

- the integral of set-valued functions,

- convergence results.

The latter will appear in the study of differential inclusions. References for the subjects in this

section include [4] and [5].

8 Differential inclusions a la Filippov

Differential inclusions are relations involving derivatives of functions and set-valued functions,

such as, in a normalized form:
dx

dt
(t) ∈ F (t, x(t)).

We may consider examples:

1) If F has a continuous selection f(t, x) ∈ F (t, x) for all (t, x), then any solution of the ODE

dx/dt(t) = f(t, x(t)) is a solution of the differential inclusion.

2) The evolution problems in Section 4 are also differential inclusions, associated to monotone

operators. They are a class of their own and are dealt with specific techniques. A special type

of such evolution problems, called the sweeping process, will be the object of the last section.

Here, we shall be concerned with a standard existence result and the so-called Filippov

solutions. To escape ”triviality” (example 1 above), it is clear that we have to consider USC

multifunctions, if we are dealing with closed convex-valued righthand sides. Then:

Theorem 8.1 Let F : [0, T ]×Rd → Rd be an USC multifunction with non-empty closed convex

values F (t, x) ⊂ Rd. Assume moreover that F satisfies some growth condition:

F (t, x) ⊂ (a + b‖x‖) B1 , ∀ (t, x) ∈ [0, t] × Rd,

where B1 is the unit ball. Let x0 ∈ Rd. Then there exists a Lipschitz-continuous function

x : [0, T ] → Rd such that

x(0) = x0 ,
dx

dt
(t) ∈ F (t, x(t)),

for almost every t ∈ [0, T ].
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Remarks - 1) The roles of convexity, USC and the weak convergence of derivatives in the proof

will deserve more attention (in the oral presentation).

2) The growth condition may be relaxed (cf. [4],[12]).

The so-called viability problems, where it is additionally required that the solution remains

in a given closed set D, or that x(t) ∈ D(t) for all t, may also be solved, if a certain tangency

condition is satisfied. Let us mention just one result ([12]):

Theorem 8.2 Let F : [0, T ] × Rd → Rd be as in the previous theorem. Let D be a non-empty

closed (convex) subset of Rd and assume that

F (t, x) ∩ TD(x) 6= ∅, ∀ x ∈ D, ∀t.

Let x0 ∈ D. Then there exists a Lipschitz-continuous function x : [0, T ] → Rd such that

x(0) = x0 , x(t) ∈ D, ∀t,
dx

dt
(t) ∈ F (t, x(t)),

for almost every t ∈ [0, T ].

A very important class of differential inclusions arises from the consideration of differen-

tial equations with discontinuous righthand sides, i.e. dx/dt(t) ∈ f(t, x(t)), where f(t, x) is

discontinuous with respect to the state variable x. For instance, in many applications, we have

to consider piecewise linear equations, where different linear righthand sides are considered in

regions separated by hyperplanes.

For simplicity, let us consider the autonomous case f = f(x). If we try to solve the ODE

by a discretization scheme, what do we expect the derivative of the limit function x to be,

say at time t, when f is discontinuous at x(t)? This question leads to the consideration of an

associated set-valued function and an associated differential inclusion, linked to the name of

Filippov ([13]; cf. also [4], p. 101-103).

Theorem 8.3 If f is locally bounded (bounded in a neighbourhood of each point) then the

set-valued function defined by

F (x) =
⋂

ε>0

cof(x + εB1)

is USC with compact convex values. Moreover, for all x, f(x) ∈ F (x) and if f is continuous at

x, then F (x) = {f(x)}.

Therefore, every solution of the ODE

dx

dt
(t) = f(x(t))

is a solution of the differential inclusion

dx

dt
(t) ∈ F (x(t)),
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while if f is continuous at x(t) and the differential inclusion is satisfied at that t, then the ODE

is also satisfied. We may therefore investigate instead the solutions of the differential inclusion,

which exist (under suitable growth conditions for f , hence for F ), according to the above theory.

It may be convenient to discard information coming from sets of measure zero, say a line in

the plane. For that purpose, it is useful to consider another set-valued map.

Theorem 8.4 If f is measurable and locally bounded, then the multifunction defined by

F0(x) =
⋂

ε>0

⋂

N : meas(N)=0

cof((x + εB1) \ N)

is USC with compact convex values. Moreover f(x) ∈ F0(x), for almost every x, and if f is

continuous at x, then F0(x) = {f(x)}.

Similar relations hold between the ODE and the differential inclusion

dx

dt
(t) ∈ F0(x(t)).

Solutions of the differential inclusions are called Filippov solutions and the theory is thoroughly

presented in [13]. In the lecture, a few more points may be highlighted, if the schedule permits.

9 Sweeping processes

Sweeping processes (S.P.) are differential inclusions associated to convex sets. The basic form

is the following:

−dx

dt
(t) ∈ NC(t)(x(t)),

where the righthand side is the outward normal cone to a closed convex set C(t), which depends

on t. By choosing a convenient set, the above formalism also encompasses inclusions such as

−dx

dt
(t) ∈ NC(t)(x(t)) + f(t, x(t)).

Notice that the normal cone is an unbounded set-valued function, so that we would need

existence results for ”unbounded” differential inclusions. Moreover, the S.P. implicitly requires

that

x(t) ∈ C(t), ∀ t,

so that it may also be considered as a viability problem. In addition, the normal cone is the

subdifferential of an indicator function, therefore it is a monotone operator; hence, the S.P. is

a special evolution equation where the monotone operators have time-dependent domains (the

convex sets C(t), to be precise). It is not surprising that the study of the S.P. has common

features with the previous theories, but it also leads to new developments.

The S.P. was introduced in the early seventies by J. J. Moreau and it was extensively studied

by him and then mainly by the Montpellier school (C. Castaing, M. Valadier, L. Thibault and
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many others, including the present author). A basic reference is the paper [28]. In [18], it can

be found an introduction to the topic and to some applications to quasi-statics and to dynamics.

In the present lecture, the basics of the topic will be presented.

Theorem 9.1 (Moreau) If C : t 7→ C(t) is a Lipschitz-continuous multifunction with non-

empty closed convex values in Rd (or in a Hilbert space H), and if x0 ∈ C(0), then there exists

a unique Lipschitz-continuous function x such that x(0) = x0, x(t) ∈ C(t) for all t and

−dx

dt
(t) ∈ NC(t)(x(t)), for a.e. t.

The proof uses a numerical scheme called the catching-up algorithm, where the new approxi-

mate value of x is obtained by the nearest point projection into the updated set:

xn,i+1 = proj(xn,i, C(tn,i+1)).

The existence theory may be extended to less smooth cases. It may be assumed that C has

bounded variation, in the sense that for some nondecreasing function v:

h(C(s), C(t)) ≤ v(t) − v(s), ∀ s ≤ t.

Then, a solution of the S.P.

−du ∈ NC(t)(u(t))

is expected to be a function u with values in Rd having bounded variation, and therefore a

differential or Stieltjes measure du. If u′ is a (vector-valued) density function such that du =
u′dµ (dµ being a positive measure), then it is required that

−u′(t) ∈ NC(t)(u(t)),

for dµ almost every t. This formulation is not ambiguous since the r.h.s. is a cone.

Theorem 9.2 (Moreau) Let C : t 7→ C(t) be a multifunction with non-empty closed convex

values in Rd (or in a Hilbert space H) having bounded variation, which is right-continuous

(in the sense of Hausdorff distance) i.e. v above is right-continuous. Let u0 ∈ C(0). Then

there exists a unique right-continuous function u with bounded variation such that u(0) = u0,

u(t) ∈ C(t) for all t and

−du ∈ NC(t)(u(t))

in the above sense.

The catching-up algorithm is again used. There exist also b. v. solutions for sweeping processes

defined by LSC moving closed convex sets with nonempty interior.

In the field of the dynamics with unilateral contact, problems may be formulated as dif-

ferential inclusions in terms of velocities, which are only expected to be functions of bounded

variation. Also, cones are present, either the cone of admissible velocities at contact or the

friction cone. Therefore, the ideas which were helpful to deal with the S.P. are still fruitful in

the new setting. Algorithms which resemble the catchng-up algorithm are successfully used

in current practice, while the ”theoretical crew” tries to follow that up with convergence and

existence proofs, usually several years behind.

Two references (among others) for the reader interested in applications are [8] and [9].
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10 A Lyapunov Approach for Evolution Variational Inequal-

ities

Let us first specify the general mathematical framework for stability theory and formulate the

following assumptions (H):

(H1) H is a real Hilbert space

(H2) ϕ ∈ Γ0(H) such that 0 ∈ D(∂ϕ)

(H3) A : H → H is a hemicontinuous operator such that for w1 ≥ 0, A + w1I is monotone

(H4) B : H → H is an operator such that for some w2 > 0,

‖Bu − Bv‖ ≤ w2‖u − v‖, ∀u, v ∈ H

(H5) f ∈ C0([t0, +∞); H),
df

dt
∈ L1

loc(t0, +∞; H)

(H6) (A(0) + B(0) − f(t), v) + ϕ(v) − ϕ(0) ≥ 0, ∀v ∈ H, ∀t ≥ t0.

Condition (H6) is equivalent to

f(t) − (A(0) + B(0)) ∈ ∂ϕ(0), ∀t ≥ t0.

From Corollary 5.1, we deduce that for each u0 ∈ D(∂ϕ) problem P (t0, u0): (24) has a unique

solution t → u(t; t0, u0) (t ≥ t0) with u ∈ C0([t0, +∞); H),
du

dt
∈ L∞

loc(t0, +∞; H), and u

right-differentiable on [t0, +∞).
Moreover, conditions 0 ∈ D(∂ϕ) and (H6) ensure that

u(t; t0, 0) = 0, t ≥ t0,

i.e. the trivial solution 0 is the unique solution of problem P (t0, 0). This solution is called

stationary solution because for the unilateral system modeled by (3.1) the trajectory remains in

the same position 0 for all times t ≥ t0.

Note that if ϕ = IK , where K is a closed convex subset of H such that 0 ∈ K and IK

denotes the indicator function of K, then problem P (t0, u0) (t0 ∈ R, u0 ∈ K) reads as

(
du

dt
(t) + Au(t) + Bu(t) − f(t), v − u(t)) ≥ 0, ∀v ∈ K, a.e. t ≥ t0 (26)

u(t) ∈ K, t ≥ t0 (27)

u(t0) = u0. (28)

This last model appears frequently in the applications. Note that in this case (H2) is satisfied

and (H6) takes the form

(f(t) − (A(0) + B(0)), v) ≤ 0, ∀v ∈ K, ∀t ≥ t0, (29)
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which can be expressed as follows

f(t) − (A(0) + B(0)) ∈ NK(0), ∀t ≥ t0,

with the normal cone

NK(x) = {w ∈ H : (w, y − x) ≤ 0, ∀y ∈ K}, x ∈ K.

We may now define the stability of the trivial solution in the setting of evolution variational

inequalities (for the corresponding definitions in the case of ordinary differential equations see,

e.g., [10]). The stationary solution 0 is called stable if small perturbations of the initial condition

u(t0) = 0 lead to solutions which remain in the neighborhood of 0 for all t ≥ t0, precisely:

Definition 10.1 The solution 0 is said to be stable in the sense of Lyapunov if for every ε > 0
there exists η = η(ε) > 0 such that for any u0 ∈ D(∂ϕ) with ‖u0‖ ≤ η the solution u(·; t0, u0)
of problem P (t0, u0) satisfies

‖u(t; t0, u0)‖ ≤ ε, ∀t ≥ t0.

-4 4x

4

-4

ẋ

If in addition the trajectories of the perturbed solutions are attracted by 0 then we say that

the stationary solution is asymptotically stable, precisely:

Definition 10.2 We say that the solution 0 is asymptotically stable if it is stable and there exists

δ > 0 such that for any u0 ∈ D(∂ϕ) with ‖u0‖ ≤ δ the solution u(·; t0, u0) of problem P (t0, u0)
fulfills

lim
t→+∞

‖u(t; t0, u0)‖ = 0.
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The notion of unstability is given below.

Definition 10.3 We say that the solution 0 is unstable if it is not stable (see Definition 3.1), i.e.

there exists ε > 0 such that for any η > 0, one may find u0 ∈ D(∂ϕ) with ‖u0‖ ≤ η and t̄ ≥ t0
such that the solution u(·; t0, u0) of problem P (t0, u0) verifies

‖u(t̄; t0, u0)‖ > ε.

x-0.4 0.4

ẋ

0.4

-0.4

(c) Unstable (saddle)
Theorem 10.1 (Stability) Assume that conditions (H) hold and there exist σ > 0 and V ∈
C1(H; R) such that
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(1)

V (x) ≥ a(‖x‖), x ∈ D(∂ϕ), ‖x‖ ≤ σ,

with a : [0, σ] → R satisfying a(t) > 0, ∀t ∈ (0, σ);

(2) V (0) = 0;

(3) (Ax + Bx − f(t), V ′(x)) + (w, V ′(x)) ≥ 0, x ∈ D(∂ϕ), ‖x‖ ≤ σ, w ∈ ∂ϕ(x), t ≥ t0.

Then the (trivial) solution of problem P (t0, 0) is stable.

Theorem 10.2 (Asymptotic Stability) Assume that conditions (H) hold and there exist σ > 0,

λ > 0 and V ∈ C1(H; R) such that

(1)

V (x) ≥ a(‖x‖), x ∈ D(∂ϕ), ‖x‖ ≤ σ,

with a : [0, σ] → R satisfying a(t) ≥ ctτ , ∀t ∈ [0, σ], for some constants c > 0, τ > 0;

(2) V (0) = 0;

(3) (Ax + Bx − f(t), V ′(x)) + (w, V ′(x)) ≥ λV (x), x ∈ D(∂ϕ), ‖x‖ ≤ σ, w ∈ ∂ϕ(x),
t ≥ t0.

Then the (trivial) solution of P (t0, 0) is asymptotically stable.

Let us recall that the tangent cone TK(x) of a subset K of H at x ∈ K is defined by

TK(x) = NK(x)− = {w ∈ H : (w, v) ≤ 0, ∀v ∈ NK(x)}.

Corollary 10.1 Assume condition (H1) and let K be a closed convex subset of H with 0 ∈ K.

Assume that conditions (H3)-(H5) and (29) hold. Suppose that there exists σ > 0 and V ∈
C1(H; R) such that

(1)

V (x) ≥ a(‖x‖), x ∈ K, ‖x‖ ≤ σ,

with a : [0, σ] → R satisfying a(t) > 0, ∀t ∈ (0, σ);

(2) V (0) = 0;

(3) −V ′(x) ∈ TK(x), x ∈ ∂K, ‖x‖ ≤ σ;

(4) (Ax + Bx − f(t), V ′(x)) ≥ 0, x ∈ K, ‖x‖ ≤ σ, t ≥ t0.

Then the (trivial) solution of (26)-(28) with u0 = 0 is stable. In particular, the conclusion holds

true if (3) is replaced by

(3)
′ x − V ′(x) ∈ K, x ∈ ∂K, ‖x‖ ≤ σ.
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Proof. Let us check that condition (3)′ implies (3). Assume that (3)′ is satisfied. Then

for an x as in (3) and every v ∈ NK(x) we have

(v, y − x) ≤ 0, ∀y ∈ K.

Therefore, taking y = x − V ′(x) (cf. (3)′), one obtains

(v,−V ′(x)) ≤ 0, ∀v ∈ NK(x),

which means that −V ′(x) ∈ TK(x), thus (3) is verified.

We apply Theorem 10.1 with ϕ = IK , i.e. ϕ is equal to the indicator function of K. Then

(H2) is clearly verified and (29) is equivalent to (H6). Since (H1), (H3)-(H5) as well as

(1), (2) have been admitted, it remains to verify condition (3) in Theorem 10.1 . Let x ∈ K
with ‖x‖ ≤ σ. If x ∈ int{K} then ∂IK(x) = {0}. If x ∈ ∂K then ∂IK(x) = NK(x). Thus if

x ∈ ∂K and w ∈ ∂IK(x) then, by (3), we obtain

(−V ′(x), w) ≤ 0.

It results that

(w, V ′(x)) ≥ 0, ∀x ∈ K, ‖x‖ ≤ σ, w ∈ ∂IK(x).

Therefore (3) in Theorem 10.1 is satisfied. The conclusion follows from Theorem 10.1 . �

Example 3.1. Let us consider problem (26)-(28) with u0 = 0 where H = R
2, K =

R+ × R+, A ≡ 0, Φ ≡ 0, f ≡ 0 and

B(x1, x2) = (x2,− sin(x1)), (x1, x2) ∈ R
2.

It is clear that assumptions (H1), (H3)-(H5) and (29) in Corollary 10.1 are satisfied. We

choose

V (x1, x2) =
x2

2

2
− cos(x1) + 1, ∀(x1, x2) ∈ R

2.

We have for |x1| small enough that

1 − cos(x1) ≥
x2

1

4
.

Thus, there exists σ > 0 such that

V (x1, x2) ≥
x2

1

4
+

x2
2

4
, ‖x‖ ≤ σ,

which establishes (1) in Corollary 10.1 taking a(t) =
t2

4
for 0 ≤ t ≤ σ. Moreover, (2) in

Corollary 10.1 is obviously satisfied. Since

V ′(x1, x2) = (sin(x1), x2)
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it follows that

(B(x1, x2), V
′(x1, x2)) = 0, (x1, x2) ∈ R

2,

i.e. (4) in Corollary 10.1 holds. Using

(x1, x2) − V ′(x1, x2) = (x1 − sin x1, 0),

it turns out for σ above that

x = (x1, x2) ∈ ∂K, ‖x‖ ≤ σ ⇒ (x1, x2) − V ′(x1, x2) ∈ K,

i.e. (3)′ in Corollary 10.1 holds true. All assumptions of Corollary 10.1 are satisfied and we

may conclude to the stability of the trivial solution of problem (26)-(28) with u0 = 0.

Theorem 10.3 (Unstability)Assume that conditions (H) hold. Suppose in addition that 0 is a

cluster point of D(∂ϕ). If there exist V ∈ C1(H, R) and α > 0 such that

(1)

V (x) ≤ b(‖x‖), x ∈ D(∂ϕ),

with b : [0, +∞) → R satisfying b(t) ≤ kts, ∀t ≥ 0, for some constants k > 0, s > 0;

(2) V (x) > 0, x ∈ D(∂ϕ), x 6= 0 near 0;

(3) (Ax + Bx − f(t), V ′(x)) + (w, V ′(x)) ≤ −αV (x), x ∈ D(∂ϕ), w ∈ ∂ϕ(x), t ≥ t0,

then the (trivial) solution of P (t0, 0) is unstable.

Corollary 10.2 Assume condition (H1) and let K be a closed convex set in H with 0 ∈ K and

K \ {0} 6= ∅. Suppose that conditions (H3)-(H5) and (29) hold. If there exist V ∈ C1(H; R)
and α > 0 such that

(1)

V (x) ≤ b(‖x‖), x ∈ K,

with b : [0, +∞) → R satisfying b(t) ≤ kts, ∀t ≥ 0, for some constants k > 0, s > 0;

(2) V (x) > 0, x ∈ K, x 6= 0 near 0;

(3) V ′(x) ∈ K∞, x ∈ ∂K;

(4) (Ax + Bx − f(t), V ′(x)) ≤ −αV (x), x ∈ K, t ≥ t0,

then the (trivial) solution of (26)-(28) with u0 = 0 is unstable.
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11 Linear Variational Inequalities in R
n

Let A ∈ R
n×n be a real square matrix of order n and let ϕ : R

n → R ∪ {+∞} be a convex and

lower semicontinuous function such that 0 ∈ ∂ϕ(0). Note that A satisfies condition (H3) with

w1 ≥ sup
‖x‖=1

(−Ax, x).

For (t0, u0) ∈ R × D(∂ϕ), we consider the problem: Find u : [t0, +∞) → R
n such that

(
du

dt
(t) + Au(t), v − u(t)) + ϕ(v) − ϕ(u(t)) ≥ 0, ∀v ∈ R

n, a.e. t ≥ t0 (30)

u(t) ∈ D(∂ϕ), t ≥ t0 (31)

u(t0) = u0. (32)

Here (·, ·) denotes the euclidean scalar product in R
n. It is worth to point out that problem

(30)-(32) has a unique solution u in the sense of (20)-(24). We denote by σ(A) and ρ(A) the

spectrum and the spectral radius of A, respectively.

A particular case of interest is obtained for

ϕ(x) := IK(x),

where K is a closed convex set in R
n such that 0 ∈ K and IK denotes the indicator function of

K. In this case problem (30)-(32)for (t0, u0) ∈ R × K reads: Find u : [t0, +∞) → R
n such

that

(
du

dt
(t) + Au(t), v − u(t)) ≥ 0, ∀v ∈ K, a.e. t ≥ t0 (5.4)

u(t) ∈ K, t ≥ t0 (5.5)

u(t0) = u0. (5.6)

Let us recall that a matrix A ∈ R
n×n is said to be positive stable if each eigenvalue of A has

positive real part.

Theorem 11.1 (Lyapunov) Let A ∈ R
n×n be given. Then A is positive stable if and only if

there exists a positive definite matrix G ∈ R
n×n such that GA + AT G is positive definite.

Remark 11.1 Recall that if A is a nonsingular M-matrix, i.e.

A = αI − P, P ≥ 0, α > ρ(P ),

then there is a positive diagonal matrix D such that DA + AT D is positive definite.

We first state a direct consequence of the results in Section 4.
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Theorem 11.2 Let ϕ ∈ Γ0(R
n) such that 0 ∈ ∂ϕ(0).

(i) If A is positive semi-definite, i.e.

(Ax, x) ≥ 0, x ∈ R
n,

then the (trivial) solution of (30)-(32) with u0 = 0 is stable.

(ii) If A is positive definite, i.e.

(Ax, x) > 0, x ∈ R
n, x 6= 0,

then the (trivial) solution of (30)-(32) with u0 = 0 is asymptotically stable.

12 The Invariance Principle

Let F : R
n → R

n be a continuous operator such that for some ω ≥ 0, F + ωI is monotone.

Here I denotes the identity mapping on R
n. For (t0, x0) ∈ R × D(∂ϕ), we consider the

problem P (t0, x0) : Find a function t 7→ x(t) (t ≥ t0) with x ∈ C0([t0, +∞); Rn),
dx

dt
∈

L∞
loc(t0, +∞; Rn) and such that:































x(t) ∈ D(∂ϕ), t ≥ t0,

〈

dx

dt
(t) + F (x(t)), v − x(t)

〉

+ ϕ(v) − ϕ(x(t)) ≥ 0, ∀v ∈ R
n, a.e. t ≥ t0,

x(t0) = x0.

(33)

Here 〈., .〉 denotes the euclidean scalar product in R
n. The corresponding norm is denoted by

‖.‖. It follows from standard convex analysis that (33) can be rewritten equivalently as the

differential inclusion

dx

dt
(t) + F (x(t)) ∈ −∂ϕ(x(t)). (34)

Remark 12.1 Note that if F : R
n → R

n is Lipschitz continuous with Lipschitz constant k > 0
then F is continuous and F + kI is monotone.

In this section, we will assume that the assumptions of Corollary 5.1 are always satisfied in

order to have the existence and the uniqueness of a solution x(t; t0, x0) for problem (33). We

prove below that for t ≥ t0 fixed, the application x(t ; t0, .) is uniformly continuous on D(∂ϕ).
This property will be used later in Section 3. Let us first recall some Gronwall inequality that is

used in our next result (see e.g. Lemma 4.1 in [32]).
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Lemma 12.1 Let T > 0 be given and let a, b ∈ L1(t0, t0 + T ; R) with b(t) ≥ 0 a.e. t ∈
[t0, t0 + T ]. Let the absolutely continuous function w : [t0, t0 + T ] → R+ satisfy

(1 − α)w′(t) ≤ a(t)w(t) + b(t)wα(t), a.e. t ∈ [t0, t0 + T ],

where 0 ≤ α < 1. Then

w1−α(t) ≤ w1−α(t0)e
R t

t0
a(τ)dτ

+

∫ t

t0

e
R t

s
a(τ)dτb(s)ds,∀t ∈ [t0, t0 + T ].

Theorem 12.1 Let τ ≥ t0 be fixed. The application

x(τ ; t0, .) : x0 7→ x(τ ; t0, x0)

is uniformly continuous on D(∂ϕ).

Proof: Let τ ≥ t0 be fixed. Let ε > 0 be given and set

δ :=
ε√

e2ω(τ−t0)
.

We claim that if x0, x
⋆

0 ∈ D(∂ϕ), ‖x0 − x⋆

0‖ ≤ δ then ‖x(τ ; t0, x0)− x(τ ; t0, x
⋆

0)‖ ≤ ε. Indeed,

let us set x(t) := x(t; t0, x0) and x⋆(t) := x(t; t0, x
⋆

0). We know that

〈dx

dt
(t) + F (x(t)), v − x(t)〉 + ϕ(v) − ϕ(x(t)) ≥ 0, ∀v ∈ R

n, a.e. t ≥ t0 (35)

and

〈dx⋆

dt
(t) + F (x⋆(t)), z − x⋆(t)〉 + ϕ(z) − ϕ(x⋆(t)) ≥ 0, ∀z ∈ R

n, a.e. t ≥ t0. (36)

Setting v = x⋆(t) in (35) and z = x(t) in (36), we obtain the relations:

−〈dx

dt
(t) + F (x(t)), x⋆(t) − x(t)〉 + ϕ(x(t)) − ϕ(x⋆(t)) ≤ 0, a.e. t ≥ t0 (37)

and

〈dx⋆

dt
(t) + F (x⋆(t)), x⋆(t) − x(t)〉 + ϕ(x⋆(t)) − ϕ(x(t)) ≤ 0, a.e. t ≥ t0. (38)

It results that

〈d(x⋆ − x)

dt
(t), x⋆(t) − x(t)〉 ≤ 〈ωx⋆(t) − ωx(t), x⋆(t) − x(t)〉

−〈[F + ωI](x⋆(t)) − [F + ωI](x(t)), x⋆(t) − x(t)〉 ≤ ω‖x⋆(t) − x(t)‖2, a.e. t ≥ t0.
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Recalling that x ∈ C0([t0, +∞); Rn) and
dx

dt
∈ L∞

loc(t0, +∞; Rn), we may write

d

dt
‖x⋆(t) − x(t)‖2 ≤ 2ω‖x⋆(t) − x(t)‖2, a.e. t ≥ t0. (39)

We may apply Lemma 12.1 with T > τ − t0, α = 0, b(.) = 0, a(.) = 2ω and w(.) = ‖x⋆(.) −
x(.)‖2 to get

‖x⋆(t) − x(t)‖2 ≤ ‖x⋆
0 − x0‖2e2ω(t−t0),∀t ∈ [t0, t0 + T ]. (40)

It follows that

‖x⋆(τ) − x(τ)‖ ≤ δ
√

e2ω(τ−t0) = ε.

Suppose now in addition that

0 ∈ D(∂ϕ), F (0) ∈ −∂ϕ(0). (41)

Then

x(t; t0, 0) = 0,∀t ≥ t0,

i.e. the trivial stationary solution 0 is the unique solution of problem P (t0, 0).
Let us here denote by S(F, ϕ) the set of stationary solutions of (33), that is

S(F, ϕ) := {z ∈ D(∂ϕ) : 〈F (z), v − z〉 + ϕ(v) − ϕ(z) ≥ 0,∀v ∈ R
n}.

Condition (41) ensures that 0 ∈ S(F, ϕ).

Let V ∈ C1(Rn; R) be given. We set

E(F, ϕ, V ) := {x ∈ D(∂ϕ) : 〈F (x), V ′(x)〉 + ϕ(x) − ϕ(x − V ′(x)) = 0}. (42)

For x0 ∈ D(∂ϕ), we denote by γ(x0) the orbit

γ(x0) := {x(τ ; t0, x0); τ ≥ t0}

and by Λ(x0) the limit set

Λ(x0) := {z ∈ R
n : ∃{τi} ⊂ [t0, +∞); τi → +∞ and x(τi; t0, x0) → z}.

We say that a set D ⊂ D(∂ϕ) is invariant provided that

x0 ∈ D ⇒ γ(x0) ⊂ D.

Here we denote by d(s,M) the distance from a point s ∈ R
n to a set M ⊂ R

n, that is

d(s,M) := inf
m∈M

‖s − m‖.
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Remark 12.2 Let x0 ∈ D(∂ϕ) be given.

i) It is clear that

γ(x0) ⊂ D(∂ϕ), Λ(x0) ⊂ D(∂ϕ).

ii) It is easy to check that

Λ(x0) ⊂ γ(x0).

iii) If γ(x0) is bounded then Λ(x0) 6= ∅.

Indeed, if γ(x0) is bounded then we may find a sequence x(τi; t0, x0)(τi ≥ t0) such that

x(τi; t0, x0) → z ∈ R
n. It results that z ∈ Λ(x0).

iv) If γ(x0) is bounded then

lim
τ→+∞

d(x(τ ; t0, x0), Λ(x0)) = 0.

Indeed, if we suppose the contrary then we can find ε > 0 and {τi} ⊂ [t0, +∞) such that

τi → +∞ and d(x(τi; t0, x0), Λ(x0)) ≥ ε. The sequence x(τi; t0, x0) is bounded and along a

subsequence, we may suppose that x(τi; t0, x0) → x∗. Thus x∗ ∈ Λ(x0). On the other hand we

get the contradiction d(x∗, Λ(x0)) ≥ ε.

v) The set of stationary solutions S(F, ϕ) is invariant. Indeed, if x0 ∈ S(F, ϕ) then x(τ ; t0, x0) =
x0,∀t ≥ t0, and thus γ(x0) = {x0} ⊂ S(F, ϕ).

Thanks to Theorem 12.1, we can prove that the set Λ(x0)∩D(∂ϕ) is invariant by using standard

topological arguments (see e.g. [30]).

Theorem 12.2 Let x0 ∈ D(∂ϕ) be given. The set Λ(x0) ∩ D(∂ϕ) is invariant.

Proof: Let z ∈ Λ(x0) ∩ D(∂ϕ) be given. There exists {τi} ⊂ [t0, +∞) such that τi → +∞
and x(τi; t0, x0) → z. Let τ ≥ t0 be given. Using Theorem 12.1, we obtain x(τ ; t0, z) =
lim
i→∞

x(τ ; t0, x(τi; t0, x0)). Then remarking that x(τ ; t0, x(τi; t0, x0)) = x(τ − t0 + τi; t0, x0), we

get x(τ ; t0, z) = lim
i→∞

x(τ − t0 + τi; t0, x0). Thus setting wi := τ − t0 + τi, we see that wi ≥ t0,

wi → +∞ and x(wi; t0, x0) → x(τ ; t0, z). It results that x(τ ; t0, z) ∈ Λ(x0) ∩ D(∂ϕ).

Our goal is now to prove an extension of the LaSalle Invariance Principle applicable to the first

order evolution variational inequality given in (33).

Lemma 12.2 Let Ψ be a compact subset of R
n. We assume that there exists V ∈ C1(Rn; R)

such that

(1) 〈F (x), V ′(x)〉 + ϕ(x) − ϕ(x − V ′(x)) ≥ 0, x ∈ D(∂ϕ) ∩ Ψ.

Let x0 ∈ D(∂ϕ) be given. If γ(x0) ⊂ Ψ then there exists a constant k ∈ R such that

V (x) = k, ∀x ∈ Λ(x0).
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Proof: Let T > 0 be given. We define the mapping V ∗ : [t0; +∞) → R by the formula

V ∗(t) := V (x(t; t0, x0)).

The function x(.) ≡ x(.; t0, x0) is absolutely continuous on [t0, t0 + T ] and thus V ∗ is a.e.

strongly differentiable on [t0, t0 + T ]. We have

dV ∗

dt
(t) = 〈V ′(x(t)),

dx

dt
(t)〉, a.e. t ∈ [t0, t0 + T ].

We know (by hypothesis) that

x(t) ∈ D(∂ϕ) ∩ Ψ,∀t ≥ t0,

and

〈dx

dt
(t) + F (x(t)), v − x(t)〉 + ϕ(v) − ϕ(x(t)) ≥ 0, ∀v ∈ R

n, a.e. t ≥ t0. (43)

Setting v = x(t) − V ′(x(t)) in (43), we obtain

〈dx

dt
(t), V ′(x(t))〉 ≤ −ϕ(x(t)) + ϕ(x(t) − V ′(x(t))) − 〈F (x(t)), V ′(x(t))〉, a.e. t ≥ t0.

and thus using assumption 1, we obtain

〈dx

dt
(t), V ′(x(t))〉 ≤ 0, a.e. t ≥ t0. (44)

Thus
dV ∗

dt
(t) ≤ 0, a.e. t ∈ [t0, t0 + T ].

We know that x ∈ C0([t0, t0 + T ]; Rn),
dx

dt
∈ L∞(t0, t0 + T ; Rn) and V ∈ C1(Rn; R). It

follows that V ∗ ∈ W 1,1(t0, t0 + T ; Rn) and applying e.g. Lemma 3.1 in [16], we obtain that V ∗

is decreasing on [t0, t0 + T ]. The real T has been chosen arbitrary and thus V ∗ is decreasing

on [t0, +∞). Moreover V ∗ is bounded from below on [t0, +∞) since γ(x0) ⊂ Ψ and V is

continuous on the compact set Ψ. It results that

lim
τ→+∞

V (x(τ ; t0, x0)) = k,

for some k ∈ R.

let y ∈ Λ(x0) be given. There exists {τi} ⊂ [t0, +∞) such that τi → +∞ and x(τi; t0, x0) → y.

by continuity

lim
i→+∞

V (x(τi; t0, x0)) = V (y).

Therefore V (y) = k. Here y has been chosen arbitrary in Λ(x0) and thus

V (y) = k, ∀y ∈ Λ(x0).
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Lemma 12.3 We assume that there exists V ∈ C1(Rn; R) such that

(1) 〈F (x), V ′(x)〉 + ϕ(x) − ϕ(x − V ′(x)) ≥ 0, x ∈ D(∂ϕ).

Let a ∈ R be given and set

Ψ̄ := {x ∈ R
n : V (x) ≤ a}.

The set D(∂ϕ) ∩ Ψ̄ is invariant

Proof: Let x0 ∈ D(∂ϕ) ∩ Ψ̄ be given. Then x0 ∈ D(∂ϕ) and V (x0) ≤ a. If τ ≥ t0 then

x(τ ; t0, x0) ∈ D(∂ϕ) and as in the proof of Lemma 12.2, we check that V (x(.; t0, x0)) is

decreasing on [t0, +∞). Thus

V (x(τ ; t0, x0)) ≤ V (x(t0; t0, x0)) = V (x0) ≤ a.

It results that

γ(x0) ⊂ D(∂ϕ) ∩ Ψ̄.

Theorem 12.3 (Invariance Theorem) Let Ψ ⊂ R
n be a compact set and V ∈ C1(Rn; R) a

function such that

(1) ϕ(.) − ϕ(. − V ′(.)) is lower semicontinuous on D(∂ϕ) ∩ Ψ;

(2) 〈F (x), V ′(x)〉 + ϕ(x) − ϕ(x − V ′(x)) ≥ 0, x ∈ D(∂ϕ) ∩ Ψ;

(3) D(∂ϕ) is closed.

We set

EΨ(F, ϕ, V ) := E(F, ϕ, V ) ∩ Ψ

and we denote by M the largest invariant subset of EΨ(F, ϕ, V ). Then for each x0 ∈ D(∂ϕ)
such that γ(x0) ⊂ Ψ, we have

lim
τ→+∞

d(x(τ ; t0, x0),M) = 0.

Proof: Here γ(x0) is bounded and thus (see Remark 12.2 iii) and iv)) Λ(x0) is nonempty and

lim
τ→+∞

d(x(τ ; t0, x0), Λ(x0)) = 0.

Let us now check that Λ(x0) ⊂ EΨ(F, ϕ, V ). We first note that

Λ(x0) ⊂ γ(x0) ⊂ D(∂ϕ) ∩ Ψ = D(∂ϕ) ∩ Ψ.
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From Lemma 12.2, there exists k ∈ R such that V (x) = k, ∀x ∈ Λ(x0). Let z ∈ Λ(x0) be

given. Using Theorem 12.2, we see that x(t; t0, z) ∈ Λ(x0),∀t ≥ t0 and thus

V (x(t; t0, z)) = k,∀t ≥ t0.

It results that
d

dt
V (x(t; t0, z)) = 0, a.e. t ≥ t0. (45)

Setting x(.) ≡ x(.; t0, z), we check as in the proof of Lemma 12.2 that

〈V ′(x(t)),
dx

dt
(t)〉 ≤ −〈F (x(t)), V ′(x(t))〉 (46)

−ϕ(x(t)) + ϕ(x(t) − V ′(x(t))), a.e. t ≥ t0. (47)

From (45) and (47) we deduce that

〈F (x(t)), V ′(x(t))〉 + ϕ(x(t)) − ϕ(x(t) − V ′(x(t))) ≤ 0, a.e. t ≥ t0.

Using assumption 1, we see that the mapping

t 7→ 〈F (x(t; t0, z)), V ′(x(t; t0, z))〉 + ϕ(x(t; t0, z)) − ϕ(x(t; t0, z) − V ′(x(t; t0, z)))

is lower semicontinuous on [t0, +∞) and thus taking the lim inf as t → t0, we obtain

〈F (z), V ′(z)〉 + ϕ(z) − ϕ(z − V ′(z)) ≤ 0.

This together with assumption 2 ensure that z ∈ EΨ(F, ϕ, V ). Finally Λ(x0) ⊂ M since

Λ(x0) ⊂ EΨ(F, ϕ, V ) and Λ(x0) is invariant (see Theorem 12.2). The conclusion follows.

Remark 12.3 Note that the conditions of Theorem 12.3 ensure that

S(F, ϕ) ∩ Ψ ⊂ M.

We have, S(F, ϕ) ∩ Ψ ⊂ EΨ(F, ϕ, V ) and S(F, ϕ) ∩ Ψ is invariant.

Corollary 12.1 Let V ∈ C1(Rn; R) be a function such that

(1) ϕ(.) − ϕ(. − V ′(.)) is lower semicontinuous on D(∂ϕ);

(2) 〈F (x), V ′(x)〉 + ϕ(x) − ϕ(x − V ′(x)) ≥ 0, x ∈ D(∂ϕ);

(3) V (x) → +∞ as ‖x‖ → +∞, x ∈ D(∂ϕ);

(4) D(∂ϕ) is closed.
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Let M be the largest invariant subset of E(F, ϕ, V ). Then for each x0 ∈ D(∂ϕ), the orbit

γ(x0) is bounded and

lim
τ→+∞

d(x(τ ; t0, x0),M) = 0.

Proof: Let x0 ∈ D(∂ϕ) be given. We set Ψ̄ := {x ∈ R
n : V (x) ≤ V (x0)} and Ψ = Ψ̄∩D(∂ϕ).

The set Ψ̄ is closed. Assumption 3 and 4 ensure that D(∂ϕ) ∩ Ψ̄ is bounded and closed. Thus

Ψ is compact. Lemma 12.3 ensures that Ψ is invariant. Here x0 ∈ Ψ and thus γ(x0) ⊂ Ψ. It

results that γ(x0) is bounded. Moreover, from Theorem 12.3, we obtain

lim
τ→+∞

d(x(τ ; t0, x0),M∗) = 0,

where M∗ is the largest invariant subset of EΨ(F, ϕ, V ). It is clear that M∗ ⊂ M and the

conclusion follows.

Corollary 12.2 Suppose that condition (41) holds. Suppose that there exists V ∈ C1(Rn; R)
such that

(1)

V (x) ≥ a(‖x‖), x ∈ D(∂ϕ),

with a : R+ → R satisfying a(0) = 0, a strictly increasing on R+;

(2) V (0) = 0;

(3) ϕ(.) − ϕ(. − V ′(.)) is lower semicontinuous on D(∂ϕ);

(4) 〈F (x), V ′(x)〉 + ϕ(x) − ϕ(x − V ′(x)) ≥ 0, x ∈ D(∂ϕ);

(5) D(∂ϕ) is closed;

(6) E(F, ϕ, V ) = {0}.

Then the trivial solution of (33) is (a) the unique stationary solution of (33), (b) asymptotically

stable, (c) globally attractive, i.e. for each x0 ∈ D(∂ϕ), lim
t→+∞

‖x(t; t0, x0)‖ = 0.

Proof: Assertion (a) and the stability are let to the reader.

Moreover, we may apply Corollary 12.1 with M = {0} (since E(F, ϕ, V ) = {0}) to obtain

that for any x0 ∈ D(∂ϕ) the limit

lim
τ→+∞

x(τ ; t0, x0) = 0

holds. Assertions (b) and (c) follow.

Corollary 12.3 Suppose that condition (41) hold. Suppose that there exists σ > 0 and V ∈
C1(Rn; R) such that
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(1)

V (x) ≥ a(‖x‖), x ∈ D(∂ϕ) ∩ Bσ,

with a : [0, σ] → R satisfying a(t) > 0, ∀t ∈ (0, σ);

(2) V (0) = 0;

(3) ϕ(.) − ϕ(. − V ′(.)) is lower semicontinuous on D(∂ϕ) ∩ Bσ ;

(4) 〈F (x), V ′(x)〉 + ϕ(x) − ϕ(x − V ′(x)) ≥ 0, x ∈ D(∂ϕ) ∩ Bσ;

(5) D(∂ϕ) is closed;

(6) E(F, ϕ, V ) ∩ Bσ = {0}.

Then the trivial solution of (33) is (a) isolated in S(F, ϕ), (b) asymptotically stable.

Proof: Assertion (a) and the stability are let to the reader. The stability ensures the existence of

δ > 0 such that if x0 ∈ D(∂ϕ) ∩ Bδ then

γ(x0) ⊂ Bσ.

Applying Theorem 12.3 with Ψ = Bσ, we obtain for x0 ∈ D(∂ϕ) ∩ Bδ that

lim
t→+∞

d(x(t; t0, x0),M) = 0,

where M is the largest invariant subset of EΨ(F, ϕ, V ). It is clear that assumption 6 yields

M = {0}. The attractivity and assertion (b) follow.

Corollary 12.4 Suppose that condition (41) hold. Assume that D(∂ϕ) is closed and suppose

that there exists σ > 0 such that

〈F (x), x〉 + ϕ(x) − ϕ(0) > 0, x ∈ D(∂ϕ) ∩ Bσ, x 6= 0.

Then the trivial stationary solution of (33) is (a) isolated in S(F, ϕ) and (b) asymptotically

stable.

Proof: This follows from Corollary 12.3 that we may apply with V ∈ C1(Rn; R) defined by

V (x) =
1

2
‖x‖2, x ∈ R

n.
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13 Second Order Dynamic Systems with friction

In this Section, we deal with the following class of second order dynamic systems:

Let Φ : R
l → R∪{+∞} be a proper convex and lower semicontinuous function. Let M, C, K ∈

R
m×m, H1 ∈ R

m×l and H2 ∈ R
l×m be given matrices. For (t0, q0, q̇0) ∈ R × R

m × R
m with

H2q̇0 ∈ D(∂Φ), we consider the problem P (t0, q0, q̇0): Find a function t 7→ q(t) (t ≥ t0) with

q ∈ C1([t0, +∞); Rm), and such that:

d2q

dt2
∈ L∞

loc(t0, +∞; Rm), (48)

dq

dt
is right-differentiable on [t0, +∞), (49)

q(t0) = q0, (50)

dq

dt
(t0) = q̇0, (51)

H2
dq

dt
(t) ∈ D(∂Φ), t ≥ t0, (52)

M
d2q

dt2
(t) + C

dq

dt
(t) + Kq(t) ∈ −H1∂Φ(H2

dq

dt
(t)), a.e. t ≥ t0. (53)

The model in (86) can be used in Mechanics to describe the motion of various systems having

frictional contact. For such problems, m is the number of degrees of freedom of the system, M
is the mass matrix of the system, C is the viscous damping matrix of the system and K is the

stiffness matrix. The term H1∂Φ(H2.) is used to model the unilaterality of the contact induced

by friction forces.

The euclidean scalar product in R
m is denoted by 〈., .〉m and the corresponding norm by ‖.‖m.

The subordinate matrix norm is also denoted by ‖.‖m. In this Section, we also use the notations

Im and 0p×q to denote the m × m identity matrix and the p × q null matrix respectively.

Theorem 13.1 (Existence and Uniqueness) Suppose that the following assumptions are satis-

fied:

(1) M is nonsingular;

(2) there exists a matrix R ∈ R
m×m, symmetric and nonsingular such that :

R−2HT
2 = M−1H1;

(3) there exists y0 = H2R
−1x0, (x0 ∈ R

m) at which Φ is finite and continuous.

Let t0 ∈ R, q0, q̇0 ∈ R
m with H2q̇0 ∈ D(∂Φ). Then there exists a unique q ∈ C1([t0, +∞); Rm)

satisfying conditions (84)-(86).
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Proof: Let us here for a function f use the notations f̈ =
d2f

dt2
and ḟ =

df

dt
. We first remark that

(86), i.e.

Mq̈ + Cq̇ + Kq ∈ −H1∂Φ(H2q̇)

is equivalent to

q̈ + M−1Cq̇ + M−1Kq ∈ −M−1H1∂Φ(H2q̇).

Hence,

Rq̈ + RM−1CR−1Rq̇ + RM−1KR−1Rq ∈ −RM−1H1∂Φ(H2R
−1Rq̇). (54)

Setting z = Rq in (54), we get

z̈ + RM−1CR−1ż + RM−1KR−1z ∈ −RM−1H1∂Φ(H2R
−1ż).

Using now assumption 2, we obtain

z̈ + RM−1CR−1ż + RM−1KR−1z ∈ −R−1HT
2 ∂Φ(H2R

−1ż). (55)

Let us here define the function χ : R
m → R ∪ {+∞} by the formula

χ(w) = (Φ ◦ H2R
−1)(w),∀w ∈ R

m.

It is clear that χ is convex and lower semicontinuous. Moreover, thanks to assumption 3, χ is

proper and we have (see e.g. Proposition ??)

∂χ(w) = R−1HT
2 ∂Φ(H2R

−1w),∀w ∈ R
m.

Thus (55) reduces to

z̈ + RM−1CR−1ż + RM−1KR−1z ∈ −∂χ(ż). (56)

We note also that (50), (51) and (52) can be written here respectively in term of the variable

z as z(t0) = Rq0, ż(t0) = Rq̇0 and ż(t) ∈ D(∂χ),∀t ≥ t0. Moreover, Rq̇0 ∈ D(∂χ) since

H2q̇0 ∈ D(∂Φ).

Let us now set

x1 := z, x2 := ż, x =

(

x1

x2

)

. (57)

It is clear that (56) is equivalent to the following first order system :

{

ẋ1 − x2 = 0
ẋ2 + RM−1CR−1x2 + RM−1KR−1x1 ∈ −∂χ(x2).

It results that problem P (t0, q0, q̇0) can be written as follows:

{

ẋ + Ax ∈ −∂ϕ(x)
x(t0) = x0

43



where the matrix A ∈ R
n×n (n = 2m) is defined by

A =

(

0m×m −Im

RM−1KR−1 RM−1CR−1

)

, (58)

the vector x0 ∈ R
n is given by

x0 =

(

Rq0

Rq̇0

)

, (59)

and the proper, convex and lower semicontinuous function ϕ : R
n → R ∪ {+∞} is defined by

ϕ(x) := χ(x2). (60)

The result is thus a direct consequence of Corollary 5.1 (with F (.) = A.). Indeed, A is Lipschitz

continuous (see Remark 12.1).

Suppose that the assumptions of Theorem 13.1 hold and let us now denote by q(.; t0, q0, q̇0) the

unique solution of Problem P (t0, q0, q̇0).

The set W of stationary solutions of (52)-(86) is given by

W = {q̄ ∈ R
m : Kq̄ ∈ −H1∂Φ(0)}.

We suppose that

0 ∈ D(∂Φ). (61)

Remark 13.1 i) If 0 ∈ ∂Φ(0) then it is clear that 0 ∈ W .

ii) If 0 ∈ D(∂Φ) and K is nonsingular then W = −K−1H1∂Φ(0).

iii) If ∂Φ(0) = {0} then W = ker K.

iv) If Φ′(0) exists and K is nonsingular then the trivial stationary solution of (52)-(86) is the

unique stationary solution of (52)-(86). Indeed, here we have W = {−K−1H1Φ
′(0)}.

We consider the stability of a stationary solution with respect to the ”generalized coordinates”

q1, ..., qm and the ”generalized velocities”
dq1

dt
, ...,

dqm

dt
. More precisely, we say that a station-

ary solution q̄ ∈ W is stable provided that for any ε > 0 there exists η(ε) > 0 such that for any

q0 ∈ R
m, q̇0 ∈ R

m, H2q̇0 ∈ D(∂Φ) with
√

‖q0 − q̄‖2
m + ‖q̇0‖2

m ≤ η the solution q(·; t0, q0, q̇0)

of Problem P (t0, q0, q̇0) satisfies

√

‖q(t; t0, q0, q̇0) − q̄‖2
m + ‖dq

dt
(t; t0, q0, q̇0)‖2

m ≤ ε, ∀t ≥ t0.

If there exists a δ > 0 such that for any q0 ∈ R
m, q̇0 ∈ R

m, H2q̇0 ∈ D(∂Φ) with
√

‖q0 − q̄‖2
m + ‖q̇0‖2

m ≤
δ the solution q(·; t0, q0, q̇0) of Problem P (t0, q0, q̇0) satisfies the limits

lim
t→+∞

‖q(t; t0, q0, q̇0) − q̄‖m = 0 (62)

and

lim
t→+∞

‖dq

dt
(t; t0, q0, q̇0)‖m = 0, (63)
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then we say that the stationary solution q̄ is attractive. If the limits in (62) and (63) hold for

any q0 ∈ R
m, q̇0 ∈ R

m, H2q̇0 ∈ D(∂Φ) then we say that the stationary solution q̄ is globally

attractive. Finally, a stable and attractive stationary solution is said asymptotically stable.

Theorem 13.2 (Stability) Suppose that the assumptions of Theorem 13.1 together with condi-

tion (61) hold. Suppose in addition that

(1) RM−1CR−1 is positive semidefinite;

(2) RM−1KR−1 is symmetric and positive definite.

Then W 6= ∅ and any stationary solution q̄ ∈ W of (52)-(86) is stable.

Proof: Condition (61) ensures that ∂Φ(0) 6= ∅ and assumption 2 entails that K is nonsingular.

Thus W = −K−1H1∂Φ(0) 6= ∅.

Let q̄ ∈ W be given. Setting Q := q − q̄, we see that the question of stability of q̄ reduces to

the one of the trivial stationary solution of the system:

MQ̈ + CQ̇ + KQ + Kq̄ ∈ −H1∂Φ(H2Q̇). (64)

Setting x1 := RQ, x2 := RQ̇ and x := (x1 x2)
T , we check as in the proof of Theorem 13.1

that the system in (64) can be written as follows:

ẋ + F (x) ∈ −∂ϕ(x)

where

F (x) = Ax + F̄ ,

A =

(

0m×m −Im

RM−1KR−1 RM−1CR−1

)

,

F̄ =

(

0m×1

RM−1Kq̄

)

,

ϕ(x) = χ(x2) ( := Φ ◦ H2R
−1(x2) ),

and

∂ϕ(x) =

(

0m×1

R−1HT
2 ∂Φ(H2R

−1x2)

)

.

The mapping F (.) is Lipschitz continuous. Moreover, condition (41) holds since q̄ ∈ W ⇔
Kq̄ ∈ −H1∂Φ(0) ⇔ RM−1Kq̄ ∈ −RM−1H1∂Φ(0) ⇔ RM−1Kq̄ ∈ −R−1HT

2 ∂Φ(0) ⇔
RM−1Kq̄ ∈ −∂χ(0) ⇔ F̄ ∈ −∂ϕ(0).

Let V ∈ C1(Rn; R)( n = 2m) be given by

V (x) =
1

2
〈RM−1KR−1x1, x1〉m +

1

2
‖x2‖2

m.

45



We have

V ′(x) =

(

RM−1KR−1x1

x2

)

.

Thus

〈Ax, V ′(x)〉 + 〈F̄ , V ′(x)〉 + ϕ(x) − ϕ(x − V ′(x)) = 〈RM−1CR−1x2, x2〉m
+〈RM−1Kq̄, x2〉m + χ(x2) − χ(0).

Assumption 1 yields

〈RM−1CR−1x2, x2〉m ≥ 0. (65)

Moreover q̄ ∈ W and thus RM−1Kq̄ ∈ −∂χ(0). It results that

〈RM−1Kq̄, x2〉 + χ(x2) − χ(0) ≥ 0. (66)

The conclusion is thus a consequence of Theorem 3 in [2].

It is easy to see from the proof of Theorem 13.2 that the following variant can also be stated.

Theorem 13.3 Suppose that the assumptions of Theorem 13.1 together with condition (61)

hold. Let q̄ ∈ W be a stationary solution of (52)-(86). Suppose that

(1) 〈RM−1CR−1z + RM−1Kq̄, z〉m + Φ(H2R
−1z) − Φ(0) ≥ 0, z ∈ R

m;

(2) RM−1KR−1 is symmetric and positive definite.

Then q̄ is stable.

It follows from Remark 13.1 that an equilibrium point q̄ is in general not isolated in W . The

concept of attractivity is for such case not really appropriated. It is then worthwhile to verify if

the trajectories of the perturbed solutions are attracted by W .

Theorem 13.4 (Attractivity of W) Suppose that the assumptions of Theorem 13.1 together with

condition (61) hold. Suppose also that

(1) RM−1KR−1 is symmetric and positive definite;

(2) 〈RM−1CR−1z, z〉m + Φ(H2R
−1z) − Φ(0) > 0, z ∈ R

m\{0};

(3) D(∂Φ) is closed.

Then (a) for any q0 ∈ R
m, q̇0 ∈ R

m, H2q̇0 ∈ D(∂Φ), the orbit

Ω(q0, q̇0) := {(q(τ ; t0, q0, q̇0)
dq

dt
(τ ; t0, q0, q̇0))

T ; τ ≥ t0}

is bounded and (b) the following asymptotic properties hold:

lim
τ→+∞

d(q(τ ; t0, q0, q̇0),W) = 0 and lim
τ→+∞

dq

dt
(τ ; t0, q0, q̇0) = 0.
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Proof: From the proof of Theorem 13.1, we know that the study of our problem reduces to the

one of the first order system

ẋ + Ax ∈ −∂ϕ(x),

where A is defined in (58) and ϕ is given by (60).

Let us first check that all assumptions of Corollary 12.1 are satisfied with V ∈ C1(Rn; R)( n =
2m) defined as in the proof of Theorem 13.2, i.e.

V (x) =
1

2
〈RM−1KR−1x1, x1〉m +

1

2
‖x2‖2

m.

We have ϕ(x) − ϕ(x − V ′(x)) = χ(x2) − χ(0) and the application x 7→ ϕ(x) − ϕ(x − V ′(x))
is thus lower semicontinuous. It results that hypothesis 1 of Corollary 12.1 is satisfied.

We have

〈Ax, V ′(x)〉 + ϕ(x) − ϕ(x − V ′(x)) = 〈RM−1CR−1x2, x2〉m + χ(x2) − χ(0).

Assumption 2 ensure that hypothesis 2 of Corollary 12.1 holds.

It is clear that hypothesis 3 of Corollary 12.1 is satisfied. Finally hypothesis 4 of Corollary 12.1

follows from assumption 3 which ensures that D(∂ϕ) = R
m × D(∂(Φ ◦ H2R

−1)) is closed.

Here, we have

E(A, ϕ, V ) = {x ∈ D(∂ϕ) : 〈RM−1CR−1x2, x2〉m + χ(x2) − χ(0) = 0}.

Using assumption 2, we get

E(A, ϕ, V ) = {(x1, 0); x1 ∈ R
m}. (67)

Corollary 12.1 ensures that for any x0 ∈ D(∂ϕ), the orbit γ(x0) is bounded. If q0 ∈ R
m,

q̇0 ∈ R
m, H2q̇0 ∈ D(∂Φ) then Rq̇0 ∈ D(∂χ). It results that the conclusion of Corollary 12.1

with x0 = (Rq0 Rq̇0)
T means that the set Ω(q0, q̇0) is bounded. This gives part (a) of our result.

Corollary 12.1 ensures also that

lim
τ→+∞

d(x(τ ; t0, x0),M) = 0,

where M is the largest invariant subset of E(A, ϕ, V ). We have S(A, ϕ) ⊂ E(A, ϕ, V ). From

Remark 12.2 (v), we know also that S(A, ϕ) is invariant. Thus S(A, ϕ) is an invariant subset of

E(A, ϕ, V ). We prove now that S(A, ϕ) is the largest invariant subset of E(A, ϕ, V ).

Since, S(A, ϕ) ⊂ E(A, ϕ, V ), by (67) we have

S(A, ϕ) = {(x1, 0) : 〈RM−1KR−1x1, h〉m + χ(h) − χ(0) ≥ 0,∀h ∈ R
m}.

Let us set

N := {x1 ∈ R
m : RM−1KR−1x1 ∈ −∂χ(0)}.
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Then, we may write

S(A, ϕ) = N × {0}.
Let D be any invariant subset of E(A, ϕ, V ) and let z ∈ D be given. The function x(.; t0, z)
satisfies

〈dx1

dt
(t; t0, z) − x2(t; t0, z), v1 − x1(t; t0, z)〉m ≥ 0,∀v1 ∈ R

m, a.e. t ≥ t0, (68)

and

〈dx2

dt
(t; t0, z) + RM−1KR−1x1(t; t0, z) + RM−1CR−1x2(t; t0, z), v2 − x2(t; t0, z)〉m

+χ(v2) − χ(x2(t; t0, z)) ≥ 0,∀v2 ∈ R
m, a.e. t ≥ t0. (69)

However, γ(z) ⊂ D ⊂ E(A, ϕ, V ) and thus x2(t; t0, z) = 0,∀t ≥ t0. Thus (68) reduces to
dx1

dt
(t; t0, z) = 0, a.e. t ≥ t0 from which we deduce that x1(.; t0, z) = z1,∀t ≥ t0. Then (69)

yields

〈RM−1KR−1z1, v2〉m + χ(v2) − χ(0) ≥ 0,∀v2 ∈ R
m.

Thus

z = (z1, z2) ∈ N × {0}.
It results that D ⊂ S(A, ϕ) and S(A, ϕ) is well the largest invariant subset of E(A, ϕ, V ).

Thus

lim
τ→+∞

d(x(τ ; t0, x0), S(A, ϕ)) = 0.

This implies that

lim
τ→+∞

d(x1(τ ; t0, x0),N ) = 0 (70)

and

lim
τ→+∞

x2(τ ; t0, x0) = 0. (71)

Recall that in terms of the vector q = R−1x1 of ”generalized coordinates” and the vector q̇ =
R−1x2 of ”generalized velocities” we have RM−1KR−1x1 ∈ −∂χ(0)⇔ Kq ∈ −MR−2HT

2 ∂Φ(0) =
−H1∂Φ(0). Thus the limit in (70) reads

lim
τ→+∞

d(q(τ ; t0, q0, q̇0),W) = 0. (72)

On the other hand, the limit in (71) gives

lim
τ→+∞

q̇(τ ; t0, q0, q̇0) = 0. (73)

Part (b) of our result is thus proved.
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Remark 13.2 i) Note that if 0 ∈ ∂Φ(0) then assumption 2 in Theorem 13.4 is satisfied provided

that either RM−1CR−1 is positive definite or RM−1CR−1 is positive semidefinite and {z ∈
R

m : Φ(H2R
−1z) = Φ(0)} = {0}.

ii) If HT
2 = H1 and M is symmetric and positive definite then the matrix R = M

1

2 satisfies

assumption 2 of Theorem 13.1. Then conditions 1 and 2 in Theorem 13.2 hold if and only if C is

positive semidefinite and K is symmetric and positive definite. Indeed, here 〈RM−1CR−1., .〉m =

〈CM− 1

2 ., M− 1

2 .〉m and 〈RM−1KR−1., .〉m = 〈KM− 1

2 ., M− 1

2 .〉m.

iii) The conditions discussed in Remark 13.2 ii) are usually satisfied as soon as concrete appli-

cations in Mechanics are considered.

iv) Assumption 1 in Theorem 13.4 implies that K is nonsingular. Hence W = −K−1H1∂Φ(0).

v) Suppose that the assumptions of Theorem 13.4 hold. Suppose in addition that ∂Φ(0) = {0}.

Then W = {0} and thus the trivial solution of (52)-(86) is (a) the unique stationary solution of

(52)-(86), (b) stable and (c) globally attractive. In particular, the results in (b) and (c) ensure

that the trivial solution of (52)-(86) is asymptotically stable

14 Examples in Unilateral Mechanics

Example 1. The model of Figure 11 consists of a mass m > 0 restrained by a spring with

stiffness constant k > 0 and a damper with viscous damping coefficient c > 0. The motion of

the mass has frictional contact. A Coulomb model is assumed for the friction force f , i.e.

f ∈ −∂Φ(q̇),

with

Φ(x) = γ|x|,
where γ > 0 denotes the coefficient of friction.

The motion of the system is described by the model:

mü(t) + cu̇(t) + ku(t) ∈ −∂Φ(u̇(t)). (74)

Here q = (u), M = (m), K = (k), C = (c), H1 = (1), H2 = (1), D(∂Φ) = R and ∂Φ(0) =
[−γ, +γ]. Setting R = (

√
m), we see that both assumptions of Theorem 13.1 hold. The set of

stationary solutions is here given by

W = [−γ

k
, +

γ

k
].

This set defines a steady zone due to friction.

It is also easy to check that both assumptions of Theorems 13.2 and 13.4 are satisfied. It results

that each stationary solution q̄ ∈ W is stable. Moreover,

lim
τ→+∞

d(u(τ ; t0, q0, q̇0),W) = 0.
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Figure 11: Example 1

and

lim
τ→+∞

u̇(τ ; t0, q0, q̇0) = 0.

Some numerical results (m = 1, k = 1, c = 0.2, γ = 1) are given in Figures 2, 3 and 4 so as to

illustrate and support this last theoretical result.

Example 2. We consider the model given in Figure 5. A mass m > 0 is restrained by a vertical

spring with stiffness constant kV > 0 in parallel with a damper with coefficient of viscous

damping cV > 0 and some inclined device formed by a spring with stiffness constant kI > 0
in parallel with a nonlinear damper whose characteristic (feedback force-speed) is described by

a monotone set-valued graph ∂Φ as the one depicted in Figure 6. The angle of inclination is

denoted by θ ∈ (0,
π

2
). The horizontal and vertical displacement of the mass m are respectively

denoted by uN and uT .

The model describing the motion of this system is of the form given in (86) with

M =

(

m 0
0 m

)

, K =

(

kI sin2 θ −kI sin θ cos θ
−kI sin θ cos θ kV + kI cos2 θ

)

, C =

(

0 0
0 cV

)

,

H1 =

(

sin θ
− cos θ

)

H2 = HT
1 , q =

(

uT

uN

)

and with Φ : R → R as depicted in Figure 14.

Here D(∂Φ) = R, ∂Φ(0) = {0} and Φ(x) > 0,∀x 6= 0.
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It is clear that all the assumptions of Theorem 13.1 hold with

R =

( √
m 0
0

√
m

)

.

The set of stationary solutions reduces here to {0} since K is nonsingular and ∂Φ(0) =
{0}. Thus the trivial stationary solution is here the unique stationary solution. We see that

RM−1CR−1 is positive semidefinite and RM−1KR−1 is symmetric and positive definite.

We may apply Theorem 13.2 and conclude that the trivial stationary solution is stable.

Let us now check that Theorem 13.4 can also be applied. It remains to verify that Assumption

2 in Theorem 13.4 holds. We have

〈RM−1CR−1z, z〉2 + Φ(H2R
−1z) − Φ(0) =

cV

m
| z2 |2 +Φ(

1√
m

sin(θ)z1 −
1√
m

cos(θ)z2).

It is thus clear that 〈RM−1CR−1z, z〉2+Φ(H2R
−1z)−Φ(0) ≥ 0. Suppose now that 〈RM−1CR−1z, z〉2+

+Φ(H2R
−1z) − Φ(0) = 0. Then | z2 |2= 0 and Φ(

1√
m

sin(θ)z1 −
1√
m

cos(θ)z2) = 0. This

yields z2 = 0 and next z1 = 0. Assumption 2 of Theorem 13.4 is thus satisfied.

Theorem 13.4 ensures that the trivial stationary solution is globally attractive.

In conclusion, the trivial stationary solution is (a) the unique stationary solution, (b) stable

and (c) globally attractive. Properties (b) and (c) entail that the trivial stationary solution is

asymptotically stable.

A numerical simulation is given in Figure 7.

52



0 5 10 15 20 25
-5

0

5

10

15

time t

P
o
s
it
io

n
 x

1
(t

)

m=1, cv=0.2, kI=2, kV=1 et theta=pi/4

0 5 10 15 20 25
-10

-5

0

5

10

time t

v
e
lo

c
it
y
 x

1
'(
t)

velocity x1'(t)

0 5 10 15 20 25
-5

0

5

time t

P
o
s
it
io

n
 x

2
(t

)

0 10 20
-5

0

5

time t

v
e
lo

c
it
y
 x

2
'(
t)

-10 0 10 20
-10

-5

0

5

10

x1(t)

x
1
'(
t)

-10 0 10
-5

0

5

x2(t)

x
2
'(
t)

Figure 15: Example 2

15 Necessary conditions for asymptotic stability of evolutional

variational inequalities

This section is based on the article [15] and its aim is to state necessary conditions of asymptotic

stability for a class of unilateral dynamical systems. More precisely, we consider the problem:

Let ϕ : R
n → R ∪ {+∞} be a proper, convex and lower semi-continuous function. Let

F : R
n → R

n be a nonlinear continuous operator. Let x0 ∈ R
n be given. We consider the

problem P (x0): Find a unique continuous mapping t 7→ u(t) such that

du

dt
∈ L∞

loc(0, +∞; Rn); (75)

u(t) ∈ D(∂ϕ),∀t ≥ 0; (76)

〈du

dt
(t) + F (u(t)), v − u(t)〉 + ϕ(v) − ϕ(u(t)) ≥ 0, ∀v ∈ R

n, a.e. t ≥ 0, (77)

and

u(0) = x0. (78)

The variational inequality in (77) can also be formulated as the set-valued differential equation:

du

dt
(t) + F (u(t)) ∈ −∂ϕ(u(t)), a.e. t ≥ 0, (79)

where ∂ϕ denotes the subdifferential of ϕ. It is assumed that F (0) ∈ −∂ϕ(0) i.e. the origin 0
of the system is a trivial stationary solution of (79).
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If ϕ ≡ 0 then (79) reduces to a standard system of differential equations and it is well known

(see e.g. [21]) in this case that if 0 is an isolated zero of F and is asymptotically stable, then

there exists ρ0 > 0 such that

deg(F, Bρ, 0) = 1,∀ρ ∈ (0, ρ0],

where deg(F, Bρ, 0) denotes the Brouwer degree of F with respect to the open ball Bρ := {x ∈
R

n : ‖x‖ < ρ} and 0.

Our goal in this paper is to generalize this famous result to the model in (78)-(79). More

precisely, let us define the mapping Λ as

Λ(x) := x − Pϕ(x − F (x))

where Pϕ := (idRn + ∂ϕ)−1 and idRn denotes the identity mapping on R
n. We will prove that

if 0 is an isolated zero of Λ and is asymptotically stable, then there exists ρ0 > 0 such that

deg(Λ, Bρ, 0) = 1,∀ρ ∈ (0, ρ0].

We suppose that:

(h1) ϕ : R
n → R ∪ {+∞} is convex and lower semi-continuous;

(h2) D(∂ϕ) is closed;

(h3) 0 ∈ D(∂ϕ);

(h4) There exists a neighborhood N of 0 and a constant C1 > 0 such that

| ϕ(x1) − ϕ(x2) |≤ C1‖x1 − x2‖,∀x1, x2 ∈ N ∩ dom{ϕ};

Condition (h2) ensure that D(∂ϕ) = dom{ϕ}. Thus D(∂ϕ) is also convex. The projection

operator PD(∂ϕ) onto D(∂ϕ) is well-defined. Recall that

P 2
D(∂ϕ) = PD(∂ϕ),

‖PD(∂ϕ)x − PD(∂ϕ)y‖ ≤ ‖x − y‖,∀x, y ∈ R
n,

and

〈PD(∂ϕ)x − x, w − PD(∂ϕ)x〉 ≥ 0,∀w ∈ D(∂ϕ).

We suppose also that

(h5) F : R
n → R

n is a continuous operator such that for some ω̄ ∈ R, F + ω̄I is monotone;

(h6) F is locally Lipschitz at 0.

Finally, we suppose that
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(h7) 0 is an isolated stationary solution of (77), i.e.

0 = Pϕ(−F (0)) (80)

and there is a neighborhood V of 0 such that

x 6= Pϕ(x − F (x)),∀x ∈ V\{0}. (81)

Note that the relation in (80) can also be written as

〈F (0), w〉 + ϕ(w) − ϕ(0) ≥ 0,∀w ∈ R
n.

Let us now define the continuous mapping Λ : R
n → R

n by

Λ(x) := x − Pϕ(x − F (x)). (82)

If (h7) is satisfied then for r > 0 small enough, deg(Λ(.), Br, 0) is well defined and constant.

We set

ζ(Λ, 0) := deg(Λ(.), Br, 0) for r > 0 small enough. (83)

Remark 15.1 If n = 1 then ζ(Λ, 0) can be computed by using property 7 (see Section 2) of

degree. More precisely,

ζ(Λ, 0) = 0 if Λ(−r)Λ(+r) > 0, for r > 0 small enough,

ζ(Λ, 0) = +1 if Λ(−r) < 0 and Λ(+r) > 0, for r > 0 small enough,

ζ(Λ, 0) = −1 if Λ(−r) > 0 and Λ(+r) < 0, for r > 0 small enough.

We have the following result (for a proof we refer to [15]).

Theorem 15.1 Suppose that assumptions (h1) − (h7) are satisfied. If the trivial stationary

solution of (77) is asymptotically stable then

ζ(Λ, 0) = 1.

Or equivalently, if ζ(Λ, 0) 6= 1 then the trivial stationary solution of (77) is not asymptotically

stable.

Example 15.1 i) Let F and ϕ be defined by F (x) = 2x and ϕ(x) = IR+
. Here

Λ(x) = x − max{0,−x}.

For r > 0, we have Λ(−r) = −2r < 0 and Λ(r) = r > 0 and thus ζ(Λ, 0) = +1. Hence, the

necessary condition of asymptotic stability ζ(Λ, 0) = 1 is satisfied.

ii) Let F and ϕ be defined by F (x) = −2x and ϕ(x) = IR+
. Here

Λ(x) = x − max{0, 3x}.

For r > 0, we have Λ(−r) = −r < 0 and Λ(r) = −2r < 0 and thus ζ(Λ, 0) = 0. Hence, the

trivial stationary solution is not asymptotically stable.
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Theorem 15.2 Suppose that ϕ : R
n → R is convex and dom{ϕ} = R

n. Suppose that assump-

tions (h5) − (h7) are satisfied. Suppose in addition that there exists σ > 0 and a nonsingular

and symmetric matrix A ∈ R
n×n such that

〈F (x), Ax〉 + ϕ(x) − ϕ(x − Ax) > 0, x ∈ Bσ\{0}.

If det A < 0 then the trivial stationary solution of (77) is unstable.

Example 15.2 Let F and ϕ be defined by

F (x) =

(

a c
c b

) (

x1

x2

)

and

ϕ(x) = d | x2 |,
with a < 0, b > 0, c ∈ R and d > 0. Setting

A =

(

−1 0
0 1

)

,

we see that 〈F (x), Ax〉+ϕ(x)−ϕ(x−Ax) = −ax2
1+bx2

2+d | x2 |> 0, ∀(x1, x2) ∈ R
2\{(0, 0)}.

Here det A = −1 and thus the trivial stationary solution of (77) is unstable.

Second Order Dynamical Systems in Mechanics

Let us here deal with the following class of second order dynamical systems:

Let Φ : R
m → R be a convex function with dom(Φ) = R

m. Let M, C, K ∈ R
m×m be given ma-

trices. We consider the problem: Find a function t 7→ q(t) (t ≥ 0) with q ∈ C1([0, +∞); Rm),
and such that:

d2q

dt2
∈ L∞

loc(0, +∞; Rm), (84)

dq

dt
is right-differentiable on [0, +∞), (85)

M
d2q

dt2
(t) + C

dq

dt
(t) + Kq(t) ∈ −∂Φ(

dq

dt
(t)), a.e. t ≥ 0. (86)

The model in (86) can be used in Mechanics to describe the motion of various systems having

frictional contact. For such problems, m is the number of degrees of freedom of the system,

M is the mass matrix of the system, C is the viscous damping matrix of the system and K is

the stiffness matrix. The term ∂Φ(.) is used to model the unilaterality of the contact induced by

friction forces.

Let us first assume that:

(H1) M is symmetric and positive definite;
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(H2) K is symmetric and nonsingular;

(H3) xT Cx + Φ(x) − Φ(0) > 0,∀x ∈ R
m, x 6= 0;

(H4) 0 ∈ ∂Φ(0).

Let

σ(M, K) := {λ ∈ C : det(λM + K) = 0} = {λ1, ..., λm}.
Using assumptions (H1) and (H2), we may assert that (see e.g. [?]):

σ(M, K) ⊂ R\{0},

and there exists a nonsingular matrix R ∈ R
m×m such that

RT MR = I and RT KR = K0,

where I denotes the m×m identity matrix and K0 is the diagonal matrix defined by (K0)ii = λi,

(i ∈ {1, ...,m}).
Setting

q := Rz,

we may rewrite (86) as follows:

d2z

dt2
(t) + RT CR

dz

dt
(t) + K0z(t) ∈ −RT ∂Φ(R

dz

dt
(t)), a.e. t ≥ 0. (87)

Let us here define the convex function χ : R
m → R by the formula

χ(w) = (Φ ◦ R)(w),∀w ∈ R
m.

Then (see Theorem 23.9 in [29]),

∂χ(w) = RT ∂Φ(Rw),∀w ∈ R
m.

Let us now set

x1 := z, x2 :=
dz

dt
, x = (x1 x2)

T , ẋ1 =
dx1

dt
, ẋ2 =

dx2

dt
. (88)

It is clear that (87) is equivalent to the following first order system :

{

ẋ1 − x2 = 0
ẋ2 + RT CRx2 + K0x1 ∈ −∂χ(x2).

(89)

It results that our problem can be written as in (77) with n = 2m and where F and ϕ are defined

by

F (x) =

(

0 −I
K0 RT CR

) (

x1

x2

)

and

ϕ(x) = χ(x2).
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Let V be defined by

V (x) =
1

2
〈Ax, x〉

where

A =

(

K0 0
0 I

)

.

We see that

V ′(x) = Ax 6= 0,∀x ∈ R
n, x 6= 0, (90)

deg(V ′, Br, 0) = sgn(det A) = sgn(det K0),∀r > 0, (91)

and

〈F (x), V ′(x)〉 + ϕ(x) − ϕ(x − V ′(x)) = xT
2 RT CRx2+

+χ(x2) − χ(0) ≥ 0,∀x ∈ R
n. (92)

Here

S(F, ϕ) = {(x1, 0) : K0x1 ∈ −∂χ(0)}
and

E(F, ϕ, V ) = {x ∈ R
n : xT

2 RT CRx2 + χ(x2) − χ(0) = 0} =

= {(x1, 0); x1 ∈ R
m}.

Moreover, it can be proved that the largest invariant subset M(F, ϕ, V ) of E(F, ϕ, V ) coincides

with the set of stationary solutions of (77) (see the proof of Theorem 9 in [2]), that is:

M(F, ϕ, V ) = S(F, ϕ).

Our theory can be applied provided that the trivial stationary solution of (89) is isolated in

S(F, ϕ). Let us so now assume in place of (H4) that:

(H4)
′ ∂Φ(0) = {0}.

Then S(F, ϕ) = {0}. So, if assumptions (H1) − (H3), (H4)
′ are satisfied, then properties

(90)-(92) hold, M(F, ϕ, V ) = {0} and we may apply Theorem ?? to conclude that if

det K0 < 0

then the trivial stationary solution of (89) is unstable.
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[7] H. BREZIS, Opérateurs maximaux monotones et semi groupes de contractions dans les

espaces de Hilbert, North Holland, 1973.

[8] B. BROGLIATO, Nonsmooth mechanics, Springer CCES, 2nd ed., London, 1999.

[9] B. BROGLIATO (ed.), Impacts in mechanical systems. Analysis and Modelling, LNP 551,

Springer, 2000.

[10] D. GOELEVEN, B. BROGLIATO, Stability and instability matrices for linear evolution

variational inequalities, IEEE Trans. Automat. Control 49 (2004), no. 4, 521–534.

[11] R.W. COTTLE, J.-S. PANG and R.E. STONE, The linear complementarity problem, Aca-

demic Press, 1992.

[12] K. DEIMLING, Multivalued differential equations, W. de Gruyter, 1992.

[13] A.F. FILIPPOV, Differential equations with discontinuous right-hand sides, Kluwer, Dor-

drecht, The Netherlands, 1998.

[14] D. GOELEVEN, D. MOTREANU and V. MOTREANU, On the stability of stationary solu-

tions of first order evolution variational inequalities, Advances in Nonlinear Variational

Inequalities, 6, (2003) pp. 1-30.

[15] D. GOELEVEN, B. BROGLIATO, Necessary conditions of asymptotic stability for unilat-

eral dynamical systems, Nonlinear Anal. 61 (2005), no. 6, 961–1004.

[16] D. GOELEVEN, D. MOTREANU, V. MOTREANU, 2003 “On the stability of stationary so-

lutions of first order evolution variational inequalities”, Advances in Nonlinear Variational

Inequalities, 6, pp. 1-30.

[17] T. KATO, Accretive operators and nonlinear evolution equations in Banach spaces. Non-

linear functional analysis, Proc. Symp. Pure Math., 18, Part 1, A.M.S, 1970.

[18] M. KUNZE and M.D.P. MONTEIRO MARQUES, An introduction to Moreau’s sweeping

process, in Impacts in mechanical systems. Analysis and Modelling, B. Brogliato (ed.),

LNP 551, Springer, 2000.

[19] J. P. LASALLE, The extent of asymptotic stability, Proc. of The National Acad. of Sci-

ences, Vol. 46, no 3 (1960), pp 363-365.

59



[20] N.G. LLOYD, Degree theory, Cambridge University Press, 1978.

[21] J. Mawhin, Continuation Theorems and Periodic Solutions of Ordinary Differential Equa-

tions, in Topological Methods in Differential Equations and Inclusions (ed. A. Granas and

M. Frigon), NATO ASI Series, Mathematical and Physical Sciences, Vol. 472, Kluwer

Academic Publishers, 1994.

[22] R.K. MILLER, A. N. MICHEL, Ordinary differential equations, Academic Press (1982).

[23] R.K. MILLER, Asymptotic behaviour of solutions of nonlinear differential equations,

Trans. of the AMS, Vol. 115, Issue 3 (1965), pp 400-416.

[24] M.D.P. MONTEIRO MARQUES, Differential Inclusions in Nonsmooth Mechanical Prob-

lems : Shocks and Dry Friction, vol. 9 Progress in Nonlinear Differential Equations and

their applications. Birkhauser Verlag, Basel, Boston, Berlin, 1993.

[25] P. QUITTNER, 1989 “On the principle of linearized stability for variational inequalities”,

Math. Ann., Vol. 283, pp. 257-270.

[26] P. QUITTNER, 1990 “An instability criterion for variational inequalities”, Nonlinear Anal-

ysis TMA, Vol. 15, pp. 1167-1180.

[27] J.J. MOREAU, Fonctionnelles convexes, in Seminaire sur les Equations aux Derivees Par-

tielles, College de France, II (1966-1967), pp. 1-108.

[28] J.J. MOREAU, Evolution problem associated with a moving convex set in a Hilbert space,

J. Differ. Equations, 26 (1977) 347-374.

[29] R.T. ROCKAFELLAR, Convex analysis, Princeton University Press, Princeton, 1970.

[30] N. ROUCHE, J. MAWHIN, 1973 Equations Différentielles Ordinaires, Tome 2, Masson
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