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Some metrological means, such as Shack-Hartmann, deflectometry sensors or fringe projection profilometry, 
measure the shape of an optical surface indirectly from slope measurements. Zonal shape reconstruction, a method 
to reconstruct shape with a high number of degrees of freedom, is used for all of these applications. It has risen in 
interest with the use of deflectometers for the acquisition of high resolution slope data for optical manufacturing, 
especially because shape reconstruction is limiting in terms of shape estimation error.
Zonal reconstruction methods all rely on the choice of a data formation model, a basis on which the shape will 
be decomposed, and an estimator. In this paper, we first study the canonical Fried and Southwell models of the 
literature and analyze their limitations. We show that modeling the slope measurement by a point-wise derivative 
as they both do can induce a bias on the shape estimation, and that the bases on which the shape is decomposed 
are imposed because of this assumption.
In the second part of this paper, we propose to build an unbiased model of the data formation, without constraints 
on the choice of the decomposition basis. We then compare these models to the canonical models of Fried and 
Southwell.
Lastly, we perform a regularized MAP reconstruction, and compare the performance in terms of total shape 
error of this method to the state of the art for the Southwell and Fried models, first by simulation, then on 
experimental data. We demonstrate that the suggested method outperforms the canonical models in terms of 
total shape reconstruction error on a deflectometry measurement of the high-frequency content of a freeform 
mirror.
1. Introduction

Some metrological means, such as Shack-Hartmann, deflectometry 
sensors or fringe projection profilometry, measure the shape of an op-
tical surface indirectly by means of slope measurements. In the context 
of optical manufacturing, the variable of interest for reworking an opti-
cal part is the shape map of the optical surface 𝜙(𝑥, 𝑦). Thus, the slope 
measurements acquired by a deflectometry or a Shack-Hartmann sensor 
are an indirect measure of the shape of the optical surface under study, 
and require the use of shape reconstruction algorithms. The study of the 
reconstruction problem represents an important issue for phase shift de-
flectometry because the shape reconstruction step in the data-processing 
chain is limiting in terms of shape reconstruction performance [1,2, Sect. 
7].

Due to the use of Shack-Hartmann sensors for wavefront reconstruc-
tion [3], the problem of shape reconstruction from slope measurements 
has been a well-studied inverse problem since the 1980s. The first step 
to solve this problem is to choose a basis for the decomposition of the 
variable of interest. Usually, a distinction is made between modal meth-
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ods (decomposition on a basis of functions with extended support) and 
zonal methods (basis of functions with reduced support). Modal methods 
are characterized by a finite family of functions with extended support 
called modes, for example polynomial functions, splines, etc... These 
functional bases have been widely studied in the context of phase shift 
deflectometry [4–6]. While the state-of-the-art modal shape reconstruc-
tion methods have demonstrated good performance in the reconstruc-
tion of low and medium spatial frequencies, these bases limit the size 
of the solution space [4]. The low-pass filtering induced by this space 
restriction does not allow the exploitation of all the information mea-
sured by a deflectometric measurement, in particular the measurement 
of frequencies close to the sampling frequency, unless a complete ba-
sis is used, such as the Fourier basis. In contrast, in order to reconstruct 
the full set of spatial frequencies measured by phase-shift deflectome-
try or by a Shack-Hartmann, zonal methods use a shape decomposition 
basis composed of a large number of locally supported functions. While 
modal basis is popular in adaptive optics, as measuring the high spatial 
frequencies of the wavefront is sometimes not essential, some metrol-
ogy applications, in particular optical manufacturing, require the high 
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Fig. 1. Geometric configurations for a) the Southwell model and b) the Fried model.
spatial frequencies to be estimated. Therefore, we will rule out modal 
bases in favor of zonal bases in this paper.

The second step is to define a data formation model, named direct 
model or forward model to model the physical formation of the data. 
This model takes as an input the parameters of interest to generate the 
outcome of a measurement given these parameters. In the field of de-
flectometry, this issue has been completely neglected, both for zonal 
and modal bases. However, this issue is central because a data forma-
tion model that is far from the physics can induce systematic errors in 
the reconstructed shape. In this paper, we propose to design direct mod-
els corresponding to the physics of image formation, and to analyze the 
impact of the choice of the direct model on the total shape reconstruc-
tion error in an inverse problem formalism.

Finally, the third step corresponds to the choice of an estimator for 
solving the inverse problem corresponding to the direct model. The 
propagation of the slope measurement noise on the estimated shape is 
one of the major contributors to the total shape error [7]. The state of 
the art shape reconstruction algorithms in adaptive optics has very early 
used estimators based on regularization methods to limit the amplifi-
cation of the measurement noise during the wavefront reconstruction 
[3, Chap. 5]. These estimators, such as Minimum Mean Square Error 
(MMSE) or Maximum A Posteriori (MAP) estimators, which are some-
times also used in the field of machine vision [8], have not, however, 
been adopted for shape reconstruction in deflectometry. In the last sec-
tion of this paper, we propose the use of the so-called Maximum A 
Posteriori estimator, which, coupled with a direct model designed in 
this paper, leads to a systematic error-free shape reconstruction algo-
rithm that is robust to the propagation of measurement noise on the 
estimated shape. We then experimentally validate the performance of 
this algorithm in terms of shape reconstruction error by comparison with 
experimental data acquired on a free-shape mirror by phase-shift inter-
ferometry.

2. Study of the canonical models for zonal shape reconstruction

Before diving into the discussion on the choice of a data formation 
model, we first discuss the preliminary question of the choice of the 
decomposition basis of the shape.

The problem of choosing a decomposition basis has been consider-
ably studied in the context of deflectometry [9]. These studies, however, 
systematically neglect the question of the data formation model in favor 
of the question of the choice of the decomposition basis. Hence, all these 
algorithms are based on the same data formation model [9,1,7], the 
2

Southwell model described in the section below. Because an erroneous 
data formation model leads to systematic errors on the reconstructed 
form, we propose in this section to study the canonical models of data 
formation, in order to then choose a shape reconstruction algorithm 
which minimizes the total shape reconstruction error.

Three canonical slope formation models have been widely studied: 
the Southwell model, the Fried model, and the Hudgin model [10–12]. 
These models differ in their geometrical configurations and in the cho-
sen decomposition basis. The Hudgin configuration corresponds to a 
model where the two components of the slope vector field s are mea-
sured at two distinct positions [12]. In the case of an experimental 
deflectometric measurement or a Shack-Hartmaan sensor, the two com-
ponents of the slope vector field of the optical surface s are measured 
at the same position. This model does not correspond to the physics 
of the data acquisition, so the use of the Hudgin model will generate 
a systematic error on the reconstructed shape. For this reason, we will 
study in this paper only the Southwell and Fried configurations. Fig. 1
represents the geometric configurations associated with the Southwell 
and Fried models. The intersection of the arrows indicates the sampling 
point of the two slope components. The blue dot indicates the sampling 
of the points of the desired shape.

We emphasize that these models assume a pointwise measurement 
of slopes, hence the data corresponds to the pointwise analytical deriva-
tive of the sought shape. In order to properly differentiate the models 
developed in this paper from the canonical Southwell and Fried models, 
the latter will be referred to in this manuscript as the Pointwise South-
well model (PS) and the Pointwise Fried model (PF).

In the Southwell geometric configuration, the shape sampling grid 
points are located at the same positions as the slope measurement lo-
cations, while in the Fried geometric configuration, the shape sampling 
grid is shifted by half a pixel along the axes relative to the slope sam-
pling. In this sense, Fried’s model assumes that the shape is sampled 
on the corners of the slope detector p̈ixels.̈ We can emphasize that the 
notion of pixel is used here to describe the position of the different sam-
plings but these models being pointwise, they do not involve a detector 
pixel per se. In addition to the geometrical configurations, these two 
direct models also differ by their choice of the basis of the shape de-
composition.

2.1. Pointwise Southwell model

The pointwise Southwell (PS) model is based on a decomposition of 
the shape into a quadratic spline [11], which assumes that the shape 
of the optical surface on the segment connecting two slope sampling 

points is a polynomial of order 2. Because the shape is decomposed on 
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a support consisting of separated segments, it is locally defined by a 
polynomial defined on a support of vertical and horizontal lines. The PS 
model does not have an explicit continuous shape in 2-dimensions, and 
the user needs to define continuous two dimensional shape if needed.

Thus, we obtain for example on the Ox axis:

∀𝑥 ∈ [0, 𝑝] , 𝜙(𝑥) = 𝑎𝑥2 + 𝑏𝑥+ 𝑐,

where 𝑎, 𝑏 and 𝑐 are polynomial coefficients and 𝑝 the sampling step 
of the slope. This model is pointwise, i.e. it assumes that the measured 
slope corresponds to the sampling at a point of a continuous gradient 
of the shape of the optical surface, and that the quantity of interest, the 
shape itself, also corresponds to the sampling at a point of a continuous 
function. By numbering (ℎ, 𝑘) the point of the sampling grid located in 
(0,0), we obtain:

⎧⎪⎨⎪⎩
𝑠𝑥(ℎ,𝑘) = 𝑏

𝑠𝑥(ℎ+ 1, 𝑘) = 2𝑎𝑝+ 𝑏

𝜙(ℎ,𝑘) = 𝑐

𝜙(ℎ+ 1, 𝑘) = 𝑎𝑝2 + 𝑏𝑝+ 𝑐

,

where 𝑠𝑥 is the component along the Ox axis of the slope field s. This 
leads to the well-known equation describing the formation of the data 
along the Ox axis in the Southwell model:

𝑠𝑥(ℎ+ 1, 𝑘) + 𝑠𝑥(ℎ,𝑘)
2

=
𝜙(ℎ+ 1, 𝑘) − 𝜙(ℎ,𝑘)

𝑝
. (1)

By an analogous reasoning along Oy, we obtain:

𝑠𝑦(ℎ,𝑘+ 1) + 𝑠𝑦(ℎ,𝑘)
2

=
𝜙(ℎ,𝑘+ 1) − 𝜙(ℎ,𝑘)

𝑝
. (2)

These equations derived by Southwell in his seminal paper in 
1980 [11] and subsequently used in solving the inverse problem raise 
several points. On the one hand, the equations describing the forma-
tion of the data do not directly calculate the value of the slope at a 
point for a given shape, but generate a system of coupled linear equa-
tions. It is therefore not a classical direct model of the type s =  (𝜙)
(see [Chap. 1][13]).

It can be seen from equations (1) and (2) that this model can, on the 
other hand, be considered a direct model with respect to an effective 
measurement of the pre-processed slope data s’:

s’ = A𝑆𝑃 s,

where A𝑆𝑃 the matrix performing the local averaging of the slopes de-
scribed in Equations (1) and (2). The pre-processing matrix thus creates 
an average slope point shifted by half a pixel, located between the two 
original slope points. This averaging is performed along two different di-
rections for the two measured slope components, so this pre-processing 
is an-isotropic. Finally, this model makes the assumption of a shape de-
composable on a basis of quadratic 1-d spline functions. This assumption 
generates systematic errors if the residual of the projection of the optical 
surface shape on this basis is non negligible.

2.2. Pointwise Fried model

The pointwise Fried model (PF) is based on a decomposition of the 
shape into bi-linear splines [10,11,14], which assumes that the shape of 
the optical surface within a square composed of four slopes is:

∀(𝑥, 𝑦) ∈ [0, 𝑝]2 𝜙(𝑥, 𝑦) = 𝑎𝑥+ 𝑏𝑦+ 𝑐𝑥𝑦+ 𝑑, (3)

where 𝑎, 𝑏, 𝑐 and 𝑑 are polynomial coefficients and 𝑝 the sampling step of 
the slope. Like Southwell’s model, this model is pointwise, i.e. it assumes 
that the measured slope corresponds to the sampling at a point of a 
continuous gradient. Indeed, identifying by (𝑖, 𝑗) the slope sampling grid 
point located in (𝑖, 𝑗) = (0, 0), and by (ℎ, 𝑘) the shape sampling grid point 
3

located in (− 𝑝

2 , −
𝑝

2 ), we obtain:
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⎧⎪⎨⎪⎩
𝑠𝑥(𝑖, 𝑗) = 𝑎+ 𝑐

𝑝

2
𝜙(ℎ+ 1, 𝑘) − 𝜙(ℎ,𝑘) = 𝑎𝑝

𝜙(ℎ,𝑘+ 1) − 𝜙(ℎ,𝑘) = 𝑏𝑝

𝜙(ℎ+ 1, 𝑘+ 1) − 𝜙(ℎ,𝑘+ 1) = 𝑎𝑝+ 𝑐𝑝2

.

This leads to the equation describing the formation of data along Ox in 
the Fried model:

𝑠𝑖,𝑗
𝑥

= 1
2𝑝

(
𝜙ℎ+1,𝑘 − 𝜙ℎ,𝑘 +𝜙ℎ+1,𝑘+1 − 𝜙ℎ,𝑘+1

)
. (4)

And by analogous reasoning along Oy:

𝑠𝑖,𝑗
𝑦

= 1
2𝑝

(
𝜙ℎ+1,𝑘 − 𝜙ℎ,𝑘 +𝜙ℎ+1,𝑘+1 − 𝜙ℎ,𝑘+1

)
. (5)

Unlike the PS model, the PF model leads to an equation that allows the 
direct calculation of measured slopes from any shape. Moreover, the 
definition support of the polynomials related to the decomposition into 
bi-linear splines is two-dimensional and identical for both components. 
This model assumes a shape decomposable on bi-linear splines, and thus 
a global shape of class 0. Depending on the residual error of the pro-
jection of the optical surface shape on this basis, this assumption can 
generate systematic errors.

2.3. Remarks and discussion on the definition of pointwise Fried’s and 
Southwell’s models

The choice made by the authors to use bi-linear forms for the Fried 
model or quadratic forms for the Southwell model is dictated here by 
the number of degrees of freedom that these models can support. The 
choice of a linear spline for the Southwell model would imply that 
the slopes 𝑠𝑥(𝑖, 𝑗) and 𝑠𝑥(𝑖 + 1, 𝑗) are equal. In contrast, choosing a bi-
quadratic spline shape decomposition for the PF model would imply 
that the number of polynomial coefficients to be estimated on this sup-
port exceeds the number of shape points adjacent to a slope point. Thus, 
through the number of degrees of freedom, i.e. through the number of 
shape points influencing the value of a slope point in these models, the 
choice of a geometry constrains the choice of a decomposition into basis 
functions. For example, the approach of Huang et al. [15] using a PS data 
formation model and a base of 4th order spline functions is constrained 
to use the value of the 4 shape points neighboring the considered slope 
point, still in a one-dimensional model.

This constraint on the choice of basis functions brought by the def-
inition of the data formation models is problematic. Indeed, we would 
like to have a real choice of the shape decomposition basis, for exam-
ple to model the frequency aliasing phenomenon, or to choose locally 
supported bases of class ∞.

To our knowledge, no algorithm in the literature for zonal recon-
struction in deflectometry uses the Fried [9,1,7] model. The Southwell 
model is valued for the correspondence between the slope and shape [7]
sampling grids, and the idea that a shape decomposition on a quadratic 
spline basis would be more optimal than a shape decomposition on a bi-
linear spline basis. Contrary to Huang et al. [7] claim’s, it is not clear that 
using a quadratic spline model guarantees Southwell’s model a lower 
systematics error. Indeed, and as Southwell already pointed out [11], 
the problem of interpolating a continuous shape should not be confused 
with the problem of reconstructing a grid of shape points from discrete 
measurements.

While the bibliography on basis function selection is extensive (see 
e.g. Section 2 of this paper), the model for data formation in deflec-
tometry is consistently the SP [9,1,7] model. Yet, both the PS and PF 
models make the assumption of pointwise slope measurements, which 
does not correspond to the physics of data formation. Indeed, the ac-
quired slope data physically correspond to the average of the slope value 
on a sub-aperture for a Shack-Hartmann sensor, or on a detector pixel 
for a deflectometer. Moreover our analysis shows that the PS model is 
not a direct model in the strict sense of the word, as it relies on an over-

looked anisotropic preprocessing that filters the slope data.
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3. Building an unbiased & non-limiting model of data formation

In this section, we propose to design direct models corresponding to 
the physics of data formation, and to analyze the impact of the choice of 
the direct model on the total error of shape reconstruction in an inverse 
problem formalism. To our knowledge, this approach is original in the 
field of zonal reconstruction in deflectometry and adaptive optics.

3.1. Physics-based model of the measured slope

Consider the value of the slope associated with a detector pixel in the 
case of deflectometry or a sub-aperture of a Shack-Hartmann sensor, cor-
responding to one element of a discrete set of slopes measured from a 
continuous shape (or phase). The physical process of forming the slope 
data corresponds to averaging the value of the gradient of the shape to 
be reconstructed on a surface that we will call the integration support 
[3, Chap. 5]. In the case of deflectometry, this surface corresponds to 
the surface of the optical part optically conjugated to the surface of a 
detector pixel, while in the case of a Shack-Hartmann sensor, it corre-
sponds to the surface of the sub-aperture of the Shack-Hartmann sensor. 
Therefore, the horizontal component of the slope 𝑠𝑥 associated with the 
integration surface (or pixel) (ℎ, 𝑘) is [3]:

𝑠ℎ,𝑘
𝑥

= 1
𝑝2

𝑝

2

∫
− 𝑝

2

𝑝

2

∫
− 𝑝

2

𝜕𝜙

𝜕𝑥
(𝑥+ ℎ𝑝, 𝑦+ 𝑘𝑝) d𝑥d𝑦, (6)

where 𝑝 is the width of a pixel, 𝜙 is the continuous shape of the optical 
surface under inspection, and the origin of the reference frame 𝑂𝑥𝑦 is 
taken at the center of the pixel (0, 0). Following, we will refer to this 
model as a model with integral approach. Since the shape is continuous, 
we obtain the model [14]:

𝑠ℎ,𝑘
𝑥

= 1
𝑝2

𝑝

2

∫
− 𝑝

2

[
𝜙

(
(ℎ+ 1

2
)𝑝, 𝑦+ 𝑘𝑝

)
− 𝜙

(
(ℎ− 1

2
)𝑝, 𝑦+ 𝑘𝑝

)]
d𝑦. (7)

It can be seen that under the assumption of a continuous shape, and in-
dependently of the choice of the decomposition basis, the local slope 
measured along Ox corresponds to the difference of the integral of the 
shape along the two vertical boundaries of the integration support. By 
symmetrical reasoning, it can be shown that the local slope measured 
along Oy corresponds to the difference of the shape integral along the 
two horizontal boundaries of the integration support. The dependence 
of direct models on the values of the basis functions on the boundaries of 
the integration support demonstrated in Equation (7) implies, in partic-
ular, that the sampling geometry of the shape relative to the integration 
support, i.e., the choice of a Southwell or Fried type geometric configu-
ration, is of particular importance for these direct models. Hence, we 
define two integral approach models, respectively Integral Approach 
Southwell (IAS) model and Integral Approach Fried (IAF) model.

Fig. 2 shows the Southwell and Fried geometric configurations for 
the IAS & IAF models. The intersection of the arrows indicates the cen-
ter of the slope measurement (center of the detector pixel). The blue 
dots indicate the centers of the local basis function of the shape decom-
position. The red squares indicate the boundaries of the detector pixels. 
The green circle represents an example of a finite support chosen for the 
local basis functions of the shape decomposition. Recall that the area of 
the latter was assumed to be at least the size of the integration medium, 
but not more than four times the area of the latter. Note that although 
in Eq. (6) & (7) the pixels of the detector are assumed to be a square ar-
ray, the IAF & IAS models are not limited to square geometries, and can 
be extended to any given geometrical configuration. In practice, due to 
alignment or aberration in the optical system, the integration support of 
the slopes measurement can be distorted (e.g., quadrilateral). For these 
cases, the following calculations need to be updated for the correspond-
4

ing grid geometry. Note that for a rectangular integration support, the 
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model correction is straightforward, and simply consists in considering 
different pixel widths 𝑝𝑥 and 𝑝𝑦 for the two axes 𝑂𝑥 and 𝑂𝑦. The origin 
of the datum 𝑂𝑥𝑦 is taken at the center of the slope pixel for both con-
figurations ((ℎ, 𝑘) for the Integral Approach Southwell model, and (𝑖, 𝑗)
for the Fried Integral Approach model).

In the IAS model, the local functions of the shape decomposition 
basis are centered on the center of the detector pixel, while in the IAF 
model, these functions are centered on the corners of the integration 
medium.

In the following section, we will calculate the discrete model we 
obtain by choosing a basis of decomposition for the shape.

3.2. Decomposition of the shape on a basis of local support functions

As explained in the introduction to this section, a direct model is 
characterized by a number of assumptions about the physics of data 
formation and a basis for shape decomposition. Because we are look-
ing for a local shape decomposition that allows us to exploit the slope 
information over the set of measured spatial frequencies, we wish to 
decompose the shape on a basis of locally supported continuous func-
tions. The supports of the basis functions related to a zonal model must 
partially overlap to reconstruct a continuous shape without systematic 
error, but in the idea of preserving a basis of local functions, we make 
the assumption in this calculation that the shape is decomposed on a set 
of identical functions 𝜙0 translated and centered on pixels (𝑖, 𝑗), which 
we note 𝜙𝑖,𝑗 (𝑥, 𝑦) = 𝜙0(𝑥 − 𝑖𝑝, 𝑦 − 𝑗𝑝):

𝜙(𝑥, 𝑦) =
𝑁 ′∑
𝑖=1

𝑀 ′∑
𝑗=1

𝑐𝑖,𝑗𝜙𝑖,𝑗 (𝑥, 𝑦) =
𝑁 ′∑
𝑖=1

𝑀 ′∑
𝑗=1

𝑐𝑖,𝑗𝜙0(𝑥− 𝑖𝑝, 𝑦− 𝑗𝑝), (8)

where 𝑁 ′𝑀 ′ the number of points of the decomposition of the shape 𝜙. 
In order to minimize the dependencies in the direct model, we assume 
that the width of the local support of the function 𝜙0 is between one 
and two times the width of the integration support. We also assume, per 
simplicity, that this function is symmetric with respect to the axes 𝑂𝑥

and 𝑂𝑦. Finally, without loss of generality, we impose a normalization 
condition on the decomposition basis, i.e. that 𝜙0(0, 0) = 1. Thus, taking 
into account the assumption on the width of the local support, we have:

𝜙(ℎ𝑝,𝑘𝑝) = 𝑐ℎ,𝑘 (9)

Note that to avoid discontinuity errors in the shape 𝜙 estimation, the 
function 𝜙0 must be continuous and must cancel at the boundary of its 
support.

3.2.1. Equation of the IAF direct model

The calculation being too long, it is given in Appendix A, and we 
obtain a model:

𝑠𝑖,𝑗
𝑥

= 𝛼(
𝑐𝑖+1,𝑗 − 𝑐𝑖,𝑗 + 𝑐𝑖+1,𝑗+1 − 𝑐𝑖,𝑗+1

2𝑝
). (10)

We recognize an equation proportional to the equation derived from the 
Fried model, within a coefficient 𝛼 which depends only on the choice of 
the basis of decomposition of the shape. Additionally, we demonstrate 
the point-wise Fried model is a specific case of the IAF model in Ap-
pendix C.1. The Point-wise Fried model is thus in good agreement with 
the formation of the data in a deflectometry setup, and thus does not 
generate a systematic modeling error in the shape reconstruction prob-
lem.

3.2.2. Equation of the IAS direct model

Calculation is given in Appendix B as well, and we obtain:

𝑠𝑖,𝑗
𝑥

= 𝛽(
𝑐𝑖+1,𝑗 − 𝑐𝑖−1,𝑗

2𝑝
). (11)

The IAS model results in a different equation than the Southwell 

model, which does not incorporate pre-processing of the slope data, and 
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Fig. 2. Geometric configurations for (a) the Integral Approach Southwell model and (b) the Integral Approach Fried model. The origin of the datum 𝑂𝑥𝑦 is taken at 
the center of the slope pixel for both configurations ((ℎ, 𝑘) for the Southwell Integral Approach model, and (𝑖, 𝑗) for the Fried Integral Approach model).
thus does not filter the data, unlike the PS model. Additionally, unlike 
the Southwell model, which relied on an-isotropic pre-processing of the 
slopes, the IAS model is symmetric. In Appendix D, we demonstrate that 
the point-wise Southwell model is not a specific case of the IAS model. 
Hence, the PS model generates systematic modeling error in the esti-
mated shape.

3.3. Note on the choice of 𝜙0

The IAF and IAS models both depend on a constant (respectively 𝛼

and 𝛽) which depends only on the choice of the basis function 𝜙0. This 
coefficient characterizes the equation associated with the IAS and IAF 
models, and the question of the choice of this coefficient arises.

In this paper, we have dealt with the bases of continuous shape de-
composition without ever worrying about the surjectivity of the bases 
used. In order for our physical model to correctly describe the forma-
tion of the data, it is necessary that the continuous shape we are looking 
for belong to the vector space of functions generated by the locally sup-
ported function base.

Note that a tilt shape (a polynomial of order 1) belongs to this vector 
space only if 𝛼 = 1 in the IAF case and 𝛽 = 1 in the IAS case. Hence, for 
basis that can perfectly fit a tip or a tilt:{

𝛼 = 1
𝛽 = 1. (12)

3.3.1. Conclusion: direct models & integral approach

We have shown in the previous section that the PS model is not 
strictly speaking a direct model. Indeed, the underlying assumptions 
of the PS data formation model induce an anisotropic pre-processing 
of the measured slope data. Even though this pre-processing filters out 
part of the measurement noise, it also alters the high spatial frequen-
cies of the slope data, which induces a systematic error, i.e. a bias on 
the reconstructed shape as will be shown in the simulations described 
in Section 4.

Furthermore, the FP and PS models are both non-physical data for-
mation models, as they assume that the slope measurement is point-
wise. To avoid systematic errors, we designed two original models, 
respectively IAF and IAS, based on an integral approach, and thus in 
agreement with the physics of data formation. These direct models im-
pose minimal constraints on the choice of basis functions, and allow one 
to study the impact of the assumptions underlying the FP and PS models 
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in a common formalism.
We have shown that the IAF model leads to a discrete equation 
proportional to that of the PF model. This PF model can therefore be in-
terpreted as a particular IAF model, and is therefore in agreement with 
the physics of data formation. On the contrary, the IAS model leads 
to a discrete equation that is incompatible with the PS model. The PS 
model therefore generates a systematic error (bias) on the reconstructed 
shape. The IAS model leads to a symmetric discrete equation, but lim-
its the choice of basis functions to a subset with restricted support (as 
demonstrated in Appendix B).

From the point of view of the definition of the direct model in the 
context of zonal shape reconstruction, we do not recommend the use of 
the PS model, although it is currently the most widely used model in the 
deflectometry literature, and prefer for all the reasons mentioned above 
the proposed IAS and IAF models. Simulations in later Section 4 of this 
paper demonstrate confirm this result.

4. Investigating the performance of these models by means of 
simulation

Once a direct model is defined, it is necessary to choose an estimator 
to solve the associated inverse problem. A zonal shape reconstruction 
algorithm corresponds to the numerical implementation of an estima-
tor associated to a direct problem. This section explains the problems 
related to the choice of an estimator associated to a direct model (PS, 
PF, IAS or IAF), in particular the propagation of the measurement noise 
through the shape reconstruction. We recall that the criteria for choos-
ing the estimator and the direct model for zonal shape reconstruction 
are the propagation of noise and the systematic error (or bias) of shape 
reconstruction. These two criteria make up the total shape reconstruc-
tion error as the Mean Square Error is the sum of the variance and of 
the squared bias.

4.1. Least square estimator

The most popular estimator in deflectometry is the well-known least 
squares estimator [15,7,16].

4.1.1. Application of the least squares estimator to shape reconstruction

Since the equations describing the direct models PS, PF, IAS and IAF 
are linear (see Equations (1), (4), (10) and (11)), it is possible to write 
them in matrix shape. Respectively, for the PS model [11,10]:
A𝑆𝑃 s = D𝑆𝑃𝝓+ A𝑆𝑃 n, (13)
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and for the PF, IAF and IAS models (see Equations (4), (10), (11)
and [10]):

s = D𝑚𝝓+ n, (14)

where s = (𝑠𝑥, 𝑠𝑦) is the vector of the measured slope fields of the optical 
surface, 𝝓 is the shape of the optical surface, D𝑚, 𝑚 ∈ [PF, IAF, IAS] and 
D𝑆𝑃 matrices represent the linear model of data formation, A𝑆𝑃 is the 
matrix averaging the adjacent slopes in Equation (13) and n is a real-
ization of the unavoidable noise. The least squares estimator associated 
with the PS model is then:

𝜙̂ = argmin
𝜙

(‖A𝑆𝑃 s −D𝑆𝑃𝝓‖2) , (15)

and that associated with the PF, IAF and IAS models:

𝜙̂ = argmin
𝝓

(‖s − D𝑚𝝓‖2) . (16)

4.1.2. Errors associated with the use of a least squares estimator for the PS 
model

We are interested here in the case of the least squares estimator asso-
ciated with the PS model. However, we have seen in the Section 2 that 
the PS model induces an an-isotropic pre-processing of the slopes which 
gives rise to pseudo-measurements of slopes. This pre-processing acts as 
a filtering of the slope measurement noise, but also of the slope data, in 
particular of the high spatial frequencies. While this filtering improves 
the propagation of noise, it also biases the PS model by filtering out some 
of the measured information, and studying the performance of the PS 
model without taking into account the total reconstruction error is there-
fore a methodological error. To our knowledge, the performance of the 
Southwell model from the point of view of noise propagation is not iden-
tified in the literature as corresponding to a trade-off between the bias 
and the variance, and the error on the reconstructed shape associated 
with the PS model has in fact been systematically underestimated in the 
literature. Thus, Zou et al. recommend using the Southwell model rather 
than the Fried model from the point of view of measurement noise prop-
agation by studying only the variance of the noise on the reconstructed 
shape [17]. Similarly, C. Correia has studied in detail the different zonal 
shape reconstruction methods and points out the good performance of 
the Southwell model with respect to noise propagation without men-
tioning the underlying filtering of the slope data [14, Sect. 4].

Moreover, for a white, isotropic and Gaussian noise on the slopes, the 
effective noise on the pseudo-slopes A𝑆𝑃 n is no longer white: its Power 
Spectral Density (PSD) is proportional to the squared transfer function 
of the operator A𝑆𝑃 . The least squares estimator then no longer corre-
sponds to the maximum likelihood [18]. The bibliography concerning 
deflectometry makes to our knowledge no mention of maximum likeli-
hood estimator, and the methods for solving the PS model are based on 
a least squares estimator [15,7,16]. It is necessary when using the PS 
model to study the performance of this model from the point of view of 
the total error on the reconstructed shape, i.e. by including both vari-
ance and bias in the error calculation.

4.2. Maximum A Posteriori estimator

Zonal least squares reconstruction is a well known ill-conditioned 
problem [8,3], in which noise propagation has been identified as a phe-
nomenon limiting the high frequency reconstruction performance [14,
2]. The bibliography associated with adaptive optics suggests to use 
Maximum A Posteriori (MAP) estimators for shape reconstruction, by 
modal or zonal methods. Indeed, if the prior and noise distributions 
are both Gaussian distributions, the MAP estimator is identical to the 
Minimum Mean-Square Error estimator [19, Sect. 2.4]. The Maximum 
A Posteriori (MAP) estimator to regularize the shape reconstruction is 
expressed as:(

1 2 1
)

6

𝜙̂ = argmin
2𝜎2

‖D𝜙− s‖ +
2
𝑅(𝜙) , (17)
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where D is the matrix associated with the chosen direct model, and 𝑅(𝜙)
is a regularization term. Adopting a centered Gaussian a priori probabil-
ity distribution for the shape leads to the following regularization term:

𝑅(𝜙) = 𝜆
∑
𝑘𝑥

∑
𝑘𝑦

|𝜙̃(𝑘𝑥, 𝑘𝑦)|2
𝑆𝜙(𝑘𝑥, 𝑘𝑦)

, (18)

where k =
(
𝑘𝑥, 𝑘𝑦

)
is the spatial frequency vector, 𝜆 a regularization 

coefficient weighting the influence of the regularization term with re-
spect to the least squares term, 𝑋̃ denotes the Fourier transform of a 
variable 𝑋 and 𝑆𝜙(k) the prior shape Power Spectral Density (PSD). We 
assume, following [20], that the shape PSD follows for optical manufac-
turing applications an inverse power law:

𝑆𝜙(k) ∝
1‖k‖2 . (19)

The regularization term 𝑅(𝜙) is penalizing the ratio of the squared mod-
ulus of the Fourier transform of the shape to a PSD. This regularization 
term is expressed in the Fourier domain, but as we are using a 2-power 
law, we can express this regularization term in the direct domain using 
the Parseval theorem [21]:

𝑅(𝜙) ∝ 𝜆‖∇𝜙)‖2, (20)

where ∇ denotes the discrete gradient operator. We underline that ex-
pressing the regularization term in the direct domain allows for shape 
reconstruction on any given aperture using a sparse matrix formal-
ism [13]. The regularization coefficient 𝜆 which minimizes the mean-
square error can be derived analytically from the prior on the power 
spectral density of the shape to be reconstructed [21,13]. This result in-
duces that no trial-and-error is needed with regards to the 𝜆 coefficient.

4.3. Simulation of the performance in terms of mean square error on the 
reconstructed shape

In order to assess the performance a direct model/estimator pair, 
it is necessary to perform numerical simulations quantifying the total 
shape error due to the sum of the systematic shape reconstruction error 
(or bias) and the propagation of measurement noise for each of these 
model/estimator pairs. Assuming periodic boundary conditions, and us-
ing a convolution formalism, we analytically derive the total quadratic 
shape error (bias & variance) of a MAP estimator averaged on a large 
number of noise and shape realizations given a prior on the power spec-
tral density (PSD) of shape to be reconstructed and the noise distribution 
standard deviation on the measurement. As the calculation is long, it is 
postponed in Appendix E, and we obtain:

𝜖2
𝜙
= 1

𝑁2

𝑁∑
𝑚𝑥=1

𝑁∑
𝑚𝑦=1

⎛⎜⎜⎜⎝
𝜆

𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2 + 𝜆
𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

⎞⎟⎟⎟⎠
2

𝑘𝑥,𝑘𝑦

𝑆𝜙(𝑘𝑥, 𝑘𝑦)

+ 𝜎2

𝑁2

𝑁∑
𝑚𝑥=1

𝑁∑
𝑚𝑦=1

⎛⎜⎜⎜⎜⎝
||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2(||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2 + 𝜆

𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

)2

⎞⎟⎟⎟⎟⎠
𝑘𝑥,𝑘𝑦

,

where (ℎ𝑥, ℎ𝑦) are the convolution kernel specific to the model con-
sidered and 𝑋̃ = F(𝑥) denotes the Fourier transform. This analytical 
development of the MAP total quadratic shape error displays a clear 
distinction between a systematic error term (left) and a noise propaga-
tion term (right). For 𝜆 → 0, the MAP estimator converges towards the 
least squares estimator and is dominated by the noise propagation term. 
For 𝜆 → +∞, the total quadratic error is dominated by the a priori power 
spectral density of the shape. Optimal regularization coefficient can be
demonstrated to be 1 if the a priori distribution is correctly chosen [13, 

Chap. 4]. Please note that due to the pre-processing, the PS model leads 
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Fig. 3. Simulation of the total error on the reconstructed shape as a function of the signal-to-noise ratio (SNR) for the pairs direct model & PS LC, PS MAP, IAS MAP, 
and IAF MAP estimator and for different Signal-to-Noise-Ratio (SNR) values. Root-mean-square of the shape to be reconstructed is 200 nm. We underline that the 

PF model is identical to the IAF model for well-chosen basis.

to a slightly different total shape error equation, displaying a systematic 
error even for 𝜆 = 0. The power spectral density of the shape is chosen 
such as:

𝜎𝜙 = ‖𝜙‖ = 200 nm, (21)

which corresponds to the typical RMS shape error of an optical surface 
in the deflectometry field.

We therefore performed a series of numerical simulations and com-
puted the total error on a reconstructed shape for different values 
of Signal-to-Noise-Ratio (SNR) for the various direct model/estimator 
pairs. Following the formalism defined in the section 4.2, we assume a 
PSD of the estimated form defined by Equations (21) and (19). From the 
PSD of the shape, we can calculate the PSD of the slopes given a forward 
model. Using the Parseval theorem, we then define the signal-to-noise 
ratio SNR of the data as the ratio between the norm of the slopes and the 
standard deviation of the measurement noise on the slopes 𝜎, assumed 
to follow a known, white, Gaussian distribution:

SNR = ‖s‖
𝜎

. (22)

Because the PSD of the slope is fixed by the choice of the prior PSD of the 
shape, imposing the value of the SNR therefore set up the noise value 𝜎. 
The contribution of the mean value has been subtracted from the set of 
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estimated mean square errors because this mode is unseen by the set 
of direct models considered. Following [21] & [13], the regularization 
coefficient is then calculated to minimize the mean-square error. The 
sensitivity to the value of this regularization coefficient is studied in 
the reference [13, Chap. 4]: this study demonstrates the slow, weak, 
typically logarithmic, dependency of the MSE with 𝜆.

Fig. 3 represents the total error on the reconstructed shape com-
puted by numerical simulation as a function of the signal-to-noise ratio 
(SNR) for the pairs of direct model & estimator PS LS, PS MAP, IAS MAP, 
and IAF MAP and for different values of SNR. The total error, or mean-
square-error (MSE) on the estimated shape is the quadratic sum of the 
bias and of the noise contaminating the measure propagated through 
the reconstruction.

The simulations presented in Fig. 3 show that the IAF/MAP model 
estimator pair performs better in terms of MSE than all the other es-
timator/model pairs for any given SNR. The MSE associated with the 
IAF model is lower than the MSE associated with the IAS model for any 
given SNR. The observed MSE in this case is correlated to the number 
of unseen modes by the direct model considered. The more the num-
ber of unseen modes by a direct model is important, the more the MSE 
on the shape estimated by a MC estimator is important. The IAS model 
is systematically less efficient than the IAF model because it has the 
same properties in terms of systematic un-biasedness as the IAF model, 
while having a larger number of unseen modes than the IAF model [13, 

Chap. 4].
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Fig. 4. Shape reconstruction (in nm) measured of the freeform mirror polished by SAFRAN REOSC for CNES by a MAP estimator, respectively associated with the 
IAF (top left), IAS (top center) models and phase shift interferometry (top right). The first 36 Zernike polynomials were subtracted from all shape maps to visualize 
the high frequencies of the mirror. The residuals between the shape reconstruction and interferometry are displayed in the second row (bottom left and center). The 
residuals between the IAS and IAF reconstruction are shown at a different scale for visualization purposes (bottom right).
The PS model paired either with the LS or MAP estimator performs 
worse in terms of MSE for SNR higher than 1 than the IAS/IAF models. 
This error is stable with different level of noise (i.e. SNR), as the sys-
tematic error due to the pre-processing of the slope data dominates the 
total shape reconstruction error. For a SNR of 1, because it incorporates 
a regularization, the PS/MAP pair performs better in terms of MSE than 
the PS/LC pair, but still worse than the IAS/MAP and IAF/MAP pairs. 
The bias term in the MSE due to the pre-processing of the slope data by 
the PS model makes it perform worse in terms of MSE than the unbiased 
models, even for an SNR of 1 and paired with a MAP estimator.

In conclusion, the use of the PS model and the IAS model is never
justified and we recommend, whatever the SNR encountered experimen-
tally is, the use of the IAF/MAP estimator couple.

5. Application to shape reconstruction by experimental 
deflectometry

We have simulated in the previous section the performance in terms 
of mean square error on the estimated shape of different model/esti-
mator pairs. In order to apply our approach to experimental data, we 
compare in this section the shape estimated by different model/esti-
mator pairs to data acquired during a shape measurement of a highly 
aspherical freeform mirror polished by SAFRAN REOSC in the frame-
work of a research and technology project in cooperation with CNES 
(maximum aspherical slope greater than 50 mrad). The useful surface 
of the optical surface is a rectangle of 120 mm x 220 mm. The optical sur-
face of this mirror was measured both by deflectometry and phase-shift 
interferometry (using a computer-generated hologram as a wavefront 
reference) to evaluate the quality of the MAP shape reconstruction meth-
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ods. The mirror was measured during polishing, and we stress that these 
measurements do not represent the final quality of the polished mirror. 
Deflectometry setup consists of a 1280x1024 display, 19 inches Terra 
MF190D-L03, for which the manufacturer indicates a gamma value of 
2.2. The camera used is a FLIR CM3-U3-13S2M-CS (1.3 MP, 30 FPS) with 
a SONY ICX445 MONO detector. The objective is a 1∕1.8′′10-40 mm var-
ifocal objective from Edmund Optics. Camera and display were set up 
next to the center of curvature of the freeform mirror (∼640 mm). The 
geometric setup has not been calibrated, hence positioning uncertain-
ties lie in the order of magnitude of the mm. The experimental setup 
corresponds to the same setup as in Figure 3 of [22]. This setup being 
off-axis, the integration support of the slopes is approximately rectan-
gular. As described in Section 3 of this paper, this rectangle integration 
support is included in the AIF/AIS models.

Fig. 4 shows the result of the IAF, and IAS model shape recon-
structions shape reconstruction of the freeform mirror, as well as the 
shape obtained by phase shift interferometry. The residuals between the 
deflectometry-based and the phase shift interferometry measurements 
are shown in the second row. The residuals between the IAF and IAS re-
constructions as shown on a different scale (zoomed-in) for waffle mode 
visualization purposes. To obtain high-frequency shape maps, all shape 
maps shown in Fig. 4 were filtered out of the first 36 Zernike polyno-
mials. The PSD of the mirror shape was estimated from the phase shift 
interferometry measurement and is in good agreement with a power law 
decreasing as the square of the spatial frequency. Therefore, the regu-
larization term has been chosen as in Equation (17).

The MAP reconstructions of IAS and IAF are in good agreement with 
the phase-shift interferometry data. The root mean square residuals be-
tween the IAF reconstruction and the phase shift interferometry maps 

are 11 nm RMS, for an initial map RMS value greater than 54 nm RMS, 
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while the residuals between the IAS reconstruction and the phase shift 
interferometry maps are 14.7 nm RMS. While the residuals between the 
IAF reconstruction and phase-shift interferometry are dominated by reg-
istration errors and spurious bangs due to the phase-shift interferometry 
experimental setup, the residuals between the IAS reconstruction and 
phase-shift interferometry exhibit additionally a large amplitude waffle 
mode. The residuals between the Fried and Southwell reconstructions 
are dominated by this waffle mode, with a root mean square of 9.7 nm. 
For the IAS model, a fraction of the waffle mode is present on the shape 
reconstructed. We point out that this waffle mode is absent from the 
IAF MAP reconstruction. These results show that the MAP reconstruc-
tion method associated with the IAF model allows to obtain a total shape 
reconstruction error compared to phase shift interferometry lower than 
11 nm RMS.

6. Conclusion

Shape reconstruction in deflectometry is an inverse problem, which 
can be decomposed into three parts: choice of a direct model i.e., the 
data formation model, choice of a decomposition basis, and choice of 
an estimator. The choice of a data formation model, and of a basis for 
zonal methods has been considerably studied in the state of the art for 
the reconstruction of high spatial frequencies for deflectometry, but no 
study existed on the impact of the choice of a direct model on the error 
on the reconstructed shape. Additionally, all the shape reconstruction 
algorithms in deflectometry are based on the Southwell model.

In this paper, we have studied the impact of the choice of the di-
rect model on the total shape reconstruction error. For this purpose, we 
have designed two original models, the Fried Integral Approach (IAF) 
and Southwell Integral Approach (IAS), based on an integral model in 
accordance with the physics of data formation. These models do not gen-
erate systematic modeling errors. This study allowed us to conclude that 
the Pointwise Fried (PF) model belongs to the class of IAF models and 
therefore does not generate any systematic error. On the contrary, the 
Pointwise Southwell (PS) model performs an overlooked pre-processing 
of the data that leads to a filtering of the data, which has led the liter-
ature, both in adaptive optics and deflectometry, to underestimate the 
error that this model induces on the estimation of the reconstructed 
shape. Moreover, the PS model does not belong to the class of integral 
models and generates a systematic bias, due to the hidden filtering of 
the data. We therefore do not recommend its use and have shown that 
the IAS and IAF models are to be preferred.

Concerning the third step of the inverse shape reconstruction prob-
lem, we studied the performance of several estimators from the point of 
view of the total shape reconstruction error, whose contributors are the 
systematic modeling error and the propagation of measurement noise. 
To stabilize the inversion and avoid the propagation of slope noise on 
the reconstructed shape in the shape of high spatial frequencies, we 
propose to use a Maximum A Posteriori (MAP) estimator based on ex-
perimentally validated assumptions on the spectral power density of 
the shape to be measured. By means of numerical simulations, we have 
demonstrated that the IAF/MAP model/estimator pair is more efficient 
in terms of mean square error on the estimated shape than all the other 
model/estimator pairs, whatever the signal-to-noise ratio considered ex-
perimentally.

We then validated the use of this IAF/MAP model/estimator pair 
from the point of view of the total reconstruction error on experimental 
deflectometry data (obtained on a freeform mirror) by comparison with 
another metrological mean, namely phase shift interferometry. The use 
of the direct Fried Integral Approach (IAF) model coupled with a MAP 
estimator allows us to obtain a measurement of the high spatial frequen-
cies of the freeform mirror in agreement with phase shift interferometry.

These results open the way to more economical optical manufac-
turing processes of freeform mirrors, which do no rely on phase-shift 
interferometry and mirror-specific wavefront correctors. We underline 
9

that these models are here applied to deflectometry for optical manufac-
Optics and Lasers in Engineering 184 (2025) 108615

turing, but also apply to zonal shape reconstruction for Shack-Hartmaan 
sensors, both for optical metrology and for adaptive optics. In particu-
lar, the IAF/MAP model/estimator pair presented in this paper has been 
used for deflectometry measurements within the European Extremely 
Large Telescope project, as a metrology tool for the manufacturing of 
the segments of the primary mirror [13, Chap. 6].
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Appendix A. IAF model equation derivation

Using the IAF geometry (Fig. 2) with a reference frame origin in (𝑖, 𝑗), 
the local basis function 𝜙ℎ,𝑘 is centered in (ℎ, 𝑘) = (𝑖 − 1

2 , 𝑗−
1
2 ). In order 

to clarify the notations and to avoid using two separate frames of ref-
erence for the shape and slope sampling, the remainder of this section 
will move to the slope frame of reference and use half-index notations 
for the shape sampling. From the shape decomposition (Eq. (8)), we thus 
obtain:

𝑠𝑖,𝑗
𝑥

= 1
𝑝2

𝑁− 1
2∑

ℎ= 1
2

𝑀− 1
2∑

𝑘= 1
2

𝑐ℎ,𝑘

𝑝

2

∫
− 𝑝

2

[
𝜙0

(
(𝑖+ 1

2
− ℎ)𝑝, 𝑦+ (𝑗 − 𝑘)𝑝

)

−𝜙0

(
(𝑖− 1

2
− ℎ)𝑝, 𝑦+ (𝑗 − 𝑘)𝑝

)]
d𝑦,

where we choose for this modeling a shape decomposed on (𝑁 −1)(𝑀 −
1) points, (𝑁, 𝑀) being the number of points measuring the slopes. Due 
to the fact that the function 𝜙0 has a finite support of width less than 2 
pixels, a pixel of slope (𝑖, 𝑗) cannot interact with a shape function that 
is too distant, and we have:

∀ℎ ≠ 𝑖− 1
2
,∀𝑘 ∉ {𝑗− 1

2
, 𝑗+ 1

2
},

𝑝

2

∫
− 𝑝

2

𝜙0

(
(𝑖− 1

2
− ℎ)𝑝, 𝑦+ (𝑗 − 𝑘)𝑝

)
d𝑦 = 0,
and:
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∀ℎ ≠ 𝑖+ 1
2
,∀𝑘 ∉ {𝑗− 1

2
, 𝑗+ 1

2
},

𝑝

2

∫
− 𝑝

2

𝜙0

(
(𝑖+ 1

2
− ℎ)𝑝, 𝑦+ (𝑗 − 𝑘)𝑝

)
d𝑦 = 0,

which leads to:

𝑠𝑖,𝑗
𝑥

= 1
𝑝2

𝑝

2

∫
− 𝑝

2

⎡⎢⎢⎢⎣
𝑗+ 1

2∑
𝑘=𝑗− 1

2

𝑐
𝑖+ 1

2 ,𝑘
𝜙0 (0, 𝑦+ (𝑗 − 𝑘)𝑝)

−
𝑗+ 1

2∑
𝑘=𝑗− 1

2

𝑐
𝑖− 1

2 ,𝑘
𝜙0 (0, 𝑦+ (𝑗 − 𝑘)𝑝)

⎤⎥⎥⎥⎦ d𝑦,
or finally:

𝑠𝑖,𝑗
𝑥

= 1
𝑝2

𝑝

2

∫
− 𝑝

2

[
𝑐
𝑖+ 1

2 ,𝑗+
1
2
𝜙0

(
0, 𝑦− 𝑝

2

)
+ 𝑐

𝑖+ 1
2 ,𝑗−

1
2
𝜙0

(
0, 𝑦+ 𝑝

2

)
−

𝑐
𝑖− 1

2 ,𝑗+
1
2
𝜙0

(
0, 𝑦− 𝑝

2

)
− 𝑐

𝑖− 1
2 ,𝑗−

1
2
𝜙0

(
0, 𝑦+ 𝑝

2

)]
d𝑦.

Now, because the function 𝜙0 is symmetrical about the Ox axis, we have:

𝑝

∫
0

[
𝜙0(0, 𝑦)

]
d𝑦 =

0

∫
−𝑝

[
𝜙0(0, 𝑦)

]
d𝑦,

we obtain by change of variable in the integrals and factorization:

𝑠𝑖,𝑗
𝑥

= (
𝑐
𝑖+ 1

2 ,𝑗+
1
2
− 𝑐

𝑖− 1
2 ,𝑗+

1
2
+ 𝑐

𝑖+ 1
2 ,𝑗−

1
2
− 𝑐

𝑖− 1
2 ,𝑗−

1
2

2𝑝
) 2
𝑝

𝑝

∫
0

[
𝜙0(0, 𝑦)

]
d𝑦.

We then define a dimensionless constant 𝛼, as:

𝛼 = 2
𝑝

𝑝

∫
0

[
𝜙0(0, 𝑦)

]
d𝑦.

And we get:

𝑠𝑖,𝑗
𝑥

= 𝛼(
𝑐
𝑖+ 1

2 ,𝑗+
1
2
− 𝑐

𝑖− 1
2 ,𝑗+

1
2
+ 𝑐

𝑖+ 1
2 ,𝑗−

1
2
− 𝑐

𝑖− 1
2 ,𝑗−

1
2

2𝑝
),

or if one prefers conventions without half-indexes once the calculation 
is done, and thus taking the origin of the numbering of the sampling of 
the shape in (− 1

2 , −
1
2 ):

𝑠𝑖,𝑗
𝑥

= 𝛼(
𝑐𝑖+1,𝑗 − 𝑐𝑖,𝑗 + 𝑐𝑖+1,𝑗+1 − 𝑐𝑖,𝑗+1

2𝑝
), (23)

Appendix B. IAS model equation derivation

Using the IAS geometry (Fig. 2) and shape decomposition (Eq. (8)), 
we obtain:

𝑠𝑖,𝑗
𝑥

= 1
𝑝2

𝑁∑
ℎ=1

𝑀∑
𝑘=1

𝑐ℎ,𝑘

𝑝

2

∫
− 𝑝

2

[
𝜙0

(
(𝑖+ 1

2
− ℎ)𝑝, 𝑦+ (𝑗 − 𝑘)𝑝

)

− 𝜙0

(
(𝑖− 1

2
− ℎ)𝑝, 𝑦+ (𝑗 − 𝑘)𝑝

)]
d𝑦.

Because the function 𝜙0 has a finite support of width less than 2 pixels, 
a pixel of slope (𝑖, 𝑗) cannot interact with a function of shape (ℎ, 𝑘) too 
distant, which leads to:
10

∀𝑖, (𝑖− ℎ) ∉ {−1,0} ,∀𝑗, |𝑗 − 𝑘| > 1,
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𝑝

2

∫
− 𝑝

2

𝜙0

(
(𝑖− ℎ+ 1

2
)𝑝, 𝑦+ (𝑗 − 𝑘)𝑝

)
d𝑦 = 0,

and:

∀𝑖, (𝑖− ℎ) ∉ {0,1} ,∀𝑗, |𝑗 − 𝑘| > 1,
𝑝

2

∫
− 𝑝

2

𝜙0

(
(𝑖− ℎ− 1

2
)𝑝, 𝑦+ (𝑗 − 𝑘)𝑝

)
d𝑦 = 0,

we obtain:

𝑠𝑖,𝑗
𝑥

= 1
𝑝2

𝑖+1∑
ℎ=𝑖

𝑗+1∑
𝑘=𝑗−1

𝑐ℎ,𝑘

𝑝

2

∫
− 𝑝

2

𝜙0

(
(𝑖− ℎ+ 1

2
)𝑝, 𝑦+ (𝑗 − 𝑘)𝑝

)

− 1
𝑝2

𝑖∑
ℎ=𝑖−1

𝑗+1∑
𝑘=𝑗−1

𝑐ℎ,𝑘

𝑝

2

∫
− 𝑝

2

𝜙0

(
(𝑖− ℎ− 1

2
)𝑝, 𝑦+ (𝑗 − 𝑘)𝑝

)
d𝑦.

Since the function 𝜙0 is symmetric along Ox, the contributions to 𝑠
𝑖,𝑗
𝑥 of 

the basis functions located on the 𝑗𝑖 column are zero and we have:

∀𝑘,∀𝑗,

𝑝

2

∫
− 𝑝

2

[
𝜙0

(
− 𝑝

2
, 𝑦+ (𝑗 − 𝑘)𝑝

)
−𝜙0

(
𝑝

2
, 𝑦+ (𝑗 − 𝑘)𝑝

)]
d𝑦 = 0,

and the terms in ℎ = 𝑖 therefore cancel, which leads to:

𝑠𝑖,𝑗
𝑥

= 1
𝑝2

𝑘+1∑
𝑗=𝑘−1

𝑐𝑖+1,𝑗

𝑝

2

∫
− 𝑝

2

𝜙0

(
− 𝑝

2
, 𝑦+ (𝑗 − 𝑘)𝑝

)
d𝑦

− 1
𝑝2

𝑘+1∑
𝑗=𝑘−1

𝑐𝑖−1,𝑗

𝑝

2

∫
− 𝑝

2

𝜙0

(
𝑝

2
, 𝑦+ (𝑗 − 𝑘)𝑝

)
d𝑦.

Fig. 5 shows the different interaction configurations as a function of 
the size of the 𝜙0 support, which is called the local support. Configu-
ration (a) presents the case where the detector pixel is inscribed in the 
local support. The configuration (b) presents the case where the local 
support is larger than the side of the detector pixel, without the detec-
tor pixel being inscribed in the local support. The case where the local 
support is inscribed in the detector pixel is not shown because it repre-
sents a case where the direct model is not sensitive to any local basis 
function. The value of the slope measured in (𝑖, 𝑗) depends on the local 
function (ℎ, 𝑘) if the latter’s support intercepts the detector pixel (in red 
on Fig. 5). We thus note on Fig. 5a that in the case of a square local sup-
port and of side strictly greater than the side of the integral support, the 
value of the slope measured in (𝑖, 𝑗) depends on six coefficients 𝑐ℎ,𝑘. On 
the other hand, in the configuration of Fig. 5b, the value of the slope 
measured in (𝑖, 𝑗) depends only on two coefficients: 𝑐𝑖−1,𝑗 and 𝑐𝑖+1,𝑗 .

Thus, and contrary to the IAF geometrical configuration, the IAS con-
figuration restricts the choice of basis functions to functions with a local 
support strictly greater than the size of the detector pixel, but without 
the detector pixel being inscribed in the local support if we wish to limit 
the internal dependencies of the direct model. We recall that the basis 
function 𝜙0 must cancel at the boundary of its support to respect the 
continuity condition of the local basis. However, it must have a value as 
large as possible on the sides of the detector pixel so that the sensitivity 
of the IAS model to the measured shape is not negligible. This condition 

imposes a fast variation of the function 𝜙0 on the interval

[
𝑝

2 ∶ 𝑝√
2

]
. 
Note that in the case of a detector pixel inscribed in the local support, 
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Fig. 5. Dependence on local functions of the shape decomposition basis as a function of the size of the support of 𝜙 in the IAS model.
the contribution to the slope of the pixels in the corners is less than the 
contribution of the horizontally adjacent pixels, which implies that the 
signal-to-noise ratio of the inversion will be degraded.1

Subsequently, in order to avoid a model with a 6-coefficient slope 
dependence, we make the assumption for the IAS model of a function 𝜙0
of local support strictly greater than the size of the detector pixel, but 
without the detector pixel being inscribed in the local support. It follows:

𝑠𝑖,𝑗
𝑥

= (
𝑐𝑖+1,𝑗 − 𝑐𝑖−1,𝑗

2𝑝
) 2
𝑝

𝑝

2

∫
− 𝑝

2

[
𝜙0(

𝑝

2
, 𝑦)

]
d𝑦.

We then define a constant 𝛽, which depends only on the choice of 𝜙0, 
as:

𝛽 = 2
𝑝

𝑝

2

∫
− 𝑝

2

𝜙0(
𝑝

2
, 𝑦)d𝑦 = 4

𝑝

𝑝

2

∫
0

𝜙0(
𝑝

2
, 𝑦)d𝑦. (24)

Hence:

𝑠𝑖,𝑗
𝑥

= 𝛽(
𝑐𝑖+1,𝑗 − 𝑐𝑖−1,𝑗

2𝑝
). (25)

Appendix C. Link between integral and point-wise models

C.1. Link between the PF model and the IAF model

Following the Equation (3), the derivative of 𝜙 along the direc-
tion 𝑂𝑥 evaluated at the center of the pixel is:
𝜕𝜙

𝜕𝑥

(
𝑝

2
,
𝑝

2

)
= 𝑎+ 𝑐𝑝

2
.

And the average of this derivative over the pixel area is:

1
𝑝2

𝑝

∫
0

𝑝

∫
0

𝜕𝜙

𝜕𝑥
d𝑥d𝑦 = 𝑎+ 𝑐𝑝

2
.

Therefore, in the case of Fried’s model, when using the same basis as 
the PF model, the IAF model estimates the same value of slopes as the 
PF model, and hence leads to the same discrete equation from the PF 
model as derived in Equation (4). The two models IAF and FP thus lead 
11

1 See section 4 of this paper.
0

to the same discrete equation. Moreover, if we choose 𝜙0 as the product 
of two pyramidal functions:

𝜙0(𝑥, 𝑦) =
(𝑝− |𝑥|)(𝑝− |𝑦|)

𝑝2
Π𝑝(𝑥, 𝑦),

where Π𝑝(𝑥, 𝑦) is the gate function of support equal to the integration 
support, then the associated IAF model is equivalent to Fried’s model, 
essentially because bi-linear splines and pyramidal functions shifted by 
half a pixel describe the same functional space. The Fried model can thus 
be interpreted as a particular integral approach model, and coincides 
with an IAF model for pyramidal basis functions and 𝛽 = 1.

Appendix D. Link between the PS model and the IAS model

Let us consider an IAS model with 𝛼 = 1, of discrete equation given 
by the equation (11):

𝑠𝑖,𝑗
𝑥

= (
𝑐𝑖+1,𝑗 − 𝑐𝑖−1,𝑗

2𝑝
).

Then by forming an average slope in a similar way to the pre-processing 
of the PS model data:

𝑠
𝑖,𝑗
𝑥 + 𝑠

𝑖,𝑗+1
𝑥

2
= (

𝑐𝑖+2,𝑗 + 𝑐𝑖+1,𝑗 − 𝑐𝑖,𝑗 − 𝑐𝑖−1,𝑗

2𝑝
).

The IAS and PS models can only lead to the same discrete equation if 
Equation (1) from the discrete PS model:

𝑠
𝑖,𝑗
𝑥 + 𝑠

𝑖+1,𝑗
𝑥

2
= (

𝜙𝑖+1,𝑗 −𝜙𝑖,𝑗

𝑝
)

is true for all the continuous shapes to be estimated. We recall that in 
the framework of the AIS model, we have:

𝜙(𝑖, 𝑗) = 𝑐𝑖,𝑗 ,

which imposes, for the set of possible continuous shapes to be estimated:

∀ℎ,∀𝑘, 𝑐𝑖+1,𝑗 − 𝑐𝑖,𝑗 = 𝑐𝑖+2,𝑗 − 𝑐𝑖−1,𝑗 .

This constraint is not met for any general shape. Hence the IAS and 
PS models are different data formation models, and thus the PS model 

cannot be interpreted as a particular model of the IAS class.



H. Jonquière, L.M. Mugnier, V. Michau et al.

Appendix E. Total shape error estimated by zonal MAP 
reconstruction assuming periodic boundary conditions

Assuming periodic boundaries for the shape reconstruction problem, 
models described in Equations (11), (10), (4), and (1) can be expressed 
in a convolution formalism:{

𝑠𝑥 = ℎ𝑥 ∗ 𝜙,
𝑠𝑦 = ℎ𝑦 ∗ 𝜙,

(26)

where ℎ𝑥, ℎ𝑦 a convolution kernel specific to the model at hand. The 
MAP estimator can then be expressed as a Wiener filter in the Fourier 
domain [23, Chap. 6]:

𝜙̂ = F
−1

⎛⎜⎜⎜⎝
ℎ̃𝑥

∗(𝑠′
𝑥
+ 𝑛′

𝑥
) + ℎ̃𝑦

∗(𝑠′
𝑦
+ 𝑛′

𝑦
)

|ℎ̃𝑥|2 + |ℎ̃𝑦|2 + 𝜆
𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

⎞⎟⎟⎟⎠ ,
where 𝑥̃ = F(𝑥) the Fourier transform of a variable. The noises 𝑛𝑠,𝑥, 𝑛𝑠,𝑥
are two independent realizations of the measurement noise on the slopes 
and ∗ denotes the conjugate. Replacing the slopes by their definition in 
Equation (26), we obtain:

𝜙̂ = F
−1

⎛⎜⎜⎜⎜⎝

(||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2
)
𝜙̃

|ℎ̃𝑥|2 + |ℎ̃𝑦|2 + 𝜆
𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

⎞⎟⎟⎟⎟⎠
+ F

−1

⎛⎜⎜⎜⎝
ℎ̃𝑥

∗
𝑛′
𝑥
+ ℎ̃𝑦

∗
𝑛′
𝑦|ℎ̃𝑥|2 + |ℎ̃𝑦|2 + 𝜆
𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

⎞⎟⎟⎟⎠ .
(27)

We emphasize that the least-squared estimator corresponds to the case 
where 𝜆 = 0, and that this notation therefore covers all pairs of direct 
models & estimators. From Equation (27) we can calculate the mean 
square error 𝜖𝜙 on the estimated form:

𝜖2
𝜙
= 1

𝑁2 ⟨‖𝜙̂− 𝜙‖2⟩, (28)

where square brackets denote the average value over a large number of 
measurements. Hence:

𝜖2
𝜙
= 1
𝑁2

⟨||||||||||
||||||||||
F
−1

⎛⎜⎜⎜⎜⎝

(||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2
)
𝜙̃

||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2 + 𝜆
𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

⎞⎟⎟⎟⎟⎠
+ F

−1

⎛⎜⎜⎜⎝
ℎ̃𝑥

∗
𝑛′
𝑥
+ ℎ̃𝑦

∗
𝑛′
𝑦||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2 + 𝜆
𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

⎞⎟⎟⎟⎠− 𝜙

||||||||
||||||||
2⟩

.

Assuming isotropic white noise with mean zero and standard deviation 
𝜎 on the slopes, we have according to [18, Sect 9.4]:{ ⟨𝑛′

𝑥
⟩ = 0,⟨𝑛′

𝑦
⟩ = 0,

the cross terms proportional to ⟨𝑛′
𝑥
⟩ or ⟨𝑛′

𝑦
⟩ cancel out and we obtain:

𝜖2
𝜙
= 1
𝑁2

⟨||||||||||
||||||||||
F
−1

⎛⎜⎜⎜⎜⎝

(||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2
)
𝜙̃

||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2 + 𝜆
𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

− 𝜙̃

⎞⎟⎟⎟⎟⎠
||||||||||
||||||||||

2⟩

+ 1
𝑁2

⟨||||||||
||||||||F

−1

⎛⎜⎜⎜⎝
ℎ̃𝑥

∗
𝑛′
𝑥
+ ℎ̃𝑦

∗
𝑛′
𝑦||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2 + 𝜆
𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

⎞⎟⎟⎟⎠
||||||||
||||||||
2⟩

,

12

which leads, using Parserval’s equality [24], to:
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𝜖2
𝜙
= 1
𝑁2

⟨|||||||||
|||||||||

(||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2
)

||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2 + 𝜆
𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

− 1

|||||||||
|||||||||
2

||||𝜙̃||||2
⟩

+ 1
𝑁2

⟨||||||||
||||||||

ℎ̃𝑥
∗
𝑛′
𝑥
+ ℎ̃𝑦

∗
𝑛′
𝑦||ℎ̃𝑥|||2 + |||ℎ̃𝑦|||2 + 𝜆
𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

||||||||
||||||||
2⟩

.

In the case where the assumptions made about the shape to be recon-
structed are correct, the shape 𝜙 of the optical part is a realization of 
the a posteriori distribution 𝜌(𝜙), and we therefore recognize the spectral 
power density 𝑆𝜙 of the shape to be reconstructed:

𝑆𝜙 = ⟨‖𝜙̃‖2⟩,
where ⟨ · ⟩ denotes the average over a large number of realizations of 𝜙, 
which is here a random variable following a probability distribution a 
posteriori. We identify here the two contributors to the total error on 
the estimated shape, the bias linked to the direct model chosen and 
the propagation of noise on the slope measurements to the estimated 
shape. The standard deviation of the noise on the estimated shape is 
then 𝑠𝑖𝑔𝑚𝑎𝜙 and we have:

𝜎2
𝜙
= 1

𝑁2

⟨||||||||
||||||||

ℎ̃𝑥
∗
𝑛′
𝑥
+ ℎ̃𝑦

∗
𝑛′
𝑦||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2 + 𝜆
𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

||||||||
||||||||
2⟩

,

using the 𝐿 − 2 norm, we obtain:

𝜎2
𝜙
=

⟨
1
𝑁2

𝑁∕2∑
𝑚𝑥=−𝑁∕2

𝑁∕2∑
𝑚𝑦=−𝑁∕2

|||||||||
⎛⎜⎜⎜⎝

ℎ̃𝑥
∗

̃𝑛𝑠,𝑥 + ℎ̃𝑦
∗

̃𝑛𝑠,𝑦||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2 + 𝜆
𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

⎞⎟⎟⎟⎠𝑘𝑥,𝑘𝑦
|||||||||
2⟩

,

where 𝑁 is the lateral resolution of the camera used for acquisition and 
where the wave numbers (𝑚𝑥, 𝑚𝑦) are related to the spatial frequen-
cies (𝑘𝑥, 𝑘𝑦) by:

𝑘𝑥 =
2𝜋𝑚𝑥

𝑁𝑝

𝑘𝑦 =
2𝜋𝑚𝑦

𝑁𝑝
.

From [18, Sect 9.4], we obtain for a white noise statistic:

⟨𝑛̃𝑠,𝑥 × 𝑛̃𝑠,𝑦⟩ = 0,

and:

⟨𝑛̃𝑠,𝑥 × 𝑛̃𝑠,𝑥⟩ = 𝜎2.

Hence:

𝜎2
𝜙
= 𝜎2

𝑁2

𝑁∕2∑
𝑚𝑥=−𝑁∕2

𝑁∕2∑
𝑚𝑦=−𝑁∕2

⎛⎜⎜⎜⎜⎝
||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2(||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2 + 𝜆

𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

)2

⎞⎟⎟⎟⎟⎠
𝑘𝑥,𝑘𝑦

.

By replacing the norm in the bias term with its definition, we obtain the 
root mean square error on the shape estimated by a MAP estimator:

𝜖2
𝜙
= 1

𝑁2

𝑁∑
𝑚𝑥=1

𝑁∑
𝑚𝑦=1

⎛⎜⎜⎜⎝
𝜆

𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2 + 𝜆
𝜎2

𝑆𝜙(𝑘𝑥,𝑘𝑦)

⎞⎟⎟⎟⎠
2

𝑘𝑥,𝑘𝑦

𝑆𝜙(𝑘𝑥, 𝑘𝑦)

+ 𝜎2

𝑁2

𝑁∑
𝑚𝑥=1

𝑁∑
𝑚𝑦=1

⎛⎜⎜⎜⎜
||ℎ̃𝑥||2 + |||ℎ̃𝑦|||2(|ℎ̃ |2 + ||ℎ̃ ||2 + 𝜆

𝜎2
)2

⎞⎟⎟⎟⎟ .
⎝ | 𝑥| | 𝑦| 𝑆𝜙(𝑘𝑥,𝑘𝑦) ⎠
𝑘𝑥,𝑘𝑦
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We emphasize again that (ℎ̃𝑥, ℎ̃𝑦) depend on the direct model consid-
ered, and that these terms can be calculated analytically for each direct 
model.
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