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ABSTRACT

Distinguishing between pest and pollinator butterfly species
is a major challenge in precision agriculture. However, tradi-
tional RGB cameras, capturing only shape and surface color,
are insufficient for detailed insect analysis. This work ex-
plores the rich spectral information provided by hyperspectral
imaging for effective butterfly species identification. For this
purpose, we use a single spatio-spectral image that provides
partial spectral information to identify the butterfly species.
The proposed classification approach consists of a convex
combination of the probabilistic decisions obtained by the
Gaussian Naive Bayes and Z-score methods for each butter-
fly reflectance. Compared to traditional classification models,
this approach showed higher robustness and performance.

Index Terms— Precision agriculture, Hyperspectral
Imaging, Spatio-spectral camera, Butterfly recognition, Gaus-
sian mixture models

1. INTRODUCTION

Butterflies are crucial in maintaining the balance of ecosys-
tems. While some species significantly contribute to pol-
lination and biodiversity, others pose substantial threats by
laying eggs on plant leaves, leading to larvae that devastate
crops. Unfortunately, control methods are often deployed
too late, after damage has already begun, resulting in the
hazard use of harmful pesticides and an estimated 20-40%
annual loss in global agricultural production [1]. An ef-
fective approach would involve taking preventive measures
when pest butterflies are detected to prevent them from laying
eggs. The success of such an approach depends on having
a robust detection system that distinguishes pest butterflies
from pollinators. With recent advances in precision agri-
culture, several butterfly species recognition systems based
on conventional RGB cameras have emerged. Using tradi-
tional machine learning techniques, models are built from
various features extracted from labeled butterfly images. Tex-
ture and pattern features are typically derived using methods
like Gray Level Co-occurrence Matrix (GLCM) and Local
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Binary Pattern (LBP). These features are then used to train
algorithms such as K-Nearest Neighbours (K-NN) [2], Sup-
port Vector Machine (SVM) [3] and Multinomial Logistic
Regression (MLR) [4] for butterfly species recognition. In
addition, advanced deep learning methods such as YOLO
[5] and AlexNet [6] have been explored on large datasets of
over 80 butterfly species. However, a study shows that RGB
cameras have limitations because they only capture surface
color with three channels, which may not accurately reflect
the complex characteristics of insects [7]. Therefore, our
study investigates the use of Hyperspectral Imaging (HSI) for
butterfly species recognition. HSI generates a 3D hyperspec-
tral datacube with two spatial dimensions and one wavelength
dimension, allowing analysis on over 100 wavelengths, un-
like Multispectral Imaging (MSI) which processes far fewer
than 100 wavelengths. Among them, MSI snapshot cam-
eras have limited spectral resolution and require demosaicing
steps [8] while CASSI HSI cameras [9] are not commercially
available. We then choose a specific spatio-spectral camera
owing to its high spectral resolution, enable to distinguish
between species with similar color patterns and detect them
in complex vegetation environments.

However, to the best of our knowledge, no study has used
HSI for butterfly species classification. Existing research fo-
cuses only on the spectral analysis of their wing structure
[10, 11]. From our side, our first proposed approach [12]
uses a spatio-spectral camera for butterfly species classifica-
tion, applying Gaussian Naive Bayes and Z-score methods for
pixel voting. However, this binary decision strategy was too
strict, as it ignores significant trends toward multiple species,
favoring the dominant one and eliminating the doubt between
similar species. In this paper, we propose a more robust ap-
proach for butterfly species classification using a single raw
image from a compact spatio-spectral camera. The challenge-
with a spatio-spectral camera lies in the necessity of a com-
plete scan to capture an object across all spectral strips, fol-
lowed by datacube reconstruction [13]. This process is time-
consuming and impractical for real-time tasks like early de-
tection of crop-damaging butterflies. The work presented in
this paper is the initial phase of a new research that introduces
an unconventional use of the spatio-spectral camera for real-
time detection of pest butterflies. The approach involves set-



Fig. 1. General methodology of the classification process

ting up a stationary camera to monitor a vegetation-covered
field. Then, the random movement of butterflies across the
camera spectral layers provides partial spectral data used to
recognize the species in real-time, without needing datacube
reconstruction. The real-time recognition is based on a prior
species characterization step performed offline. Here, the pre-
liminary task focuses on identifying the species of a station-
ary butterfly detected in a limited number of spectral layers
within a single raw image.

The general scheme is described in Fig 1 and the paper
is organized as follows: Sec. 2 describes the camera and data
collection. Sec. 3 outlines the proposed methodology. Sec. 4
presents the results and comparisons with existing methods.

2. DATA COLLECTION

2.1. Spatio-spectral Camera Description

The camera employed in the present study is a compact
hyperspectral camera designed for industrial applications,
specifically the XIMEA xiQ MQ022HG-IM-LS150 VISNIR
model. With a high resolution, it covers a spectral range of
470-900 nm, which provides images in both the visible (VIS)
and near-infrared (NIR) spectrum. The camera, equipped
with the IMEC CMV2K-LS150 sensor model, incorporates
a Fabry-Perot filter array that captures 192 spectral profiles.
Fig. 2-c shows a typical raw image structure whose effective
area is 960 × 2048 pixels, with 192 spectral strips, each 5
pixels wide. Unlike traditional hyperspectral cameras, which
provide a complete spectral cube (see Fig. 2-a), the spatio-
spectral camera offers only a staircase-like portion, as shown
in Fig. 2-b. Because a single camera capture provides partial
spectral content, a full scan of the specimen across all spec-
tral strips is required to build a complete cube. To achieve
this, strips of the same wavelength from the partial images
are rearranged across successive frames, followed by heavy
additional processing to ensure a high-quality hyperspectral
cube [13] (see Fig. 3). This process generates 192 2D spec-
tral images which are sequentially concatenated to form the
hyperspectral datacube.

(a) (b) (c)

Fig. 2. HSI content of (a) Conventional, (b) Spatio-spectral
camera. (c) Raw spatio-spectral image

(a) Scanning by moving the butterfly (b) datacube

Fig. 3. HSI cube formation using a spatio-spectral Camera

2.2. Butterfly Species

This paper focuses on four butterfly species : Hypolimnas
Misippus (HM), Danaus Chrysippus (DC), Amauris Ochlea
(AO), and Acraea Egina (AE) belonging to the Nymphali-
dae family. In their butterfly stage, they mainly act as pol-
linators. However, an overabundance of these species could
result in crop damage. These species were captured and stud-
ied in a citrus field at the International Institute of Tropical
Agriculture (IITA) of Benin. Data collection of these species
was performed in two stages. The first involved full scans
of different specimens for each species to build complete hy-
perspectral cubes which were used for characterization of the
species. The second stage was to acquire single images of dif-
ferent specimens, resulting in a dataset of raw spatio-spectral
images on which our classification approach was applied.

3. PROPOSED METHODOLOGY

3.1. Species Characterization

Firstly, we identify the similar spectral regions within the
complete hyperspectral cubes of each species. For this pur-
pose, we used the K-means method to cluster similar spectra
for each species. However, selecting the appropriate number
of clusters,Ku for each species u ∈ {HM,DC,AO,AE} ,
{1, 2, 3, 4} can significantly affect the performance. A min-
imal number of clusters can result in overlapping features
between species, while a huge number can result in features
that are unrepresentative of the species. Based on some em-
pirical experiences and the using of the Elbow Curve method,
the best Ku values found are: KHM = 3, KDC = 4,
KAO = 4 and KAE = 3, respectively for species HM,



DC, AO and AE. Fig. 4 presents the similar spectral regions
for each species. Let si = [r1i , r

2
i , ...r

192
i ]T , the spectrum

of pixel pi in any hyperspectral cube, where rbi is the re-
flectance of a spectral layer b ∈ {1, . . . , 192} of pi. The
clustering step of similar spectra produced the set of spec-
tra G(u,k) for cluster k ∈ K , {1, . . . ,Ku} from each
species u. Let I(u,k) , {i ∈ N s.t. sui ∈ Cluster k} the
set of indices of extended pixels indices that belong to Clus-
ter k. G(u,k) is defined such that ∀ i ∈ {1, . . . ,#I(u,k)},
G(u,k)(i) , sI(u,k)(i). Then, we assume that for any species
u, the reflectance values within the same spectral layer b in
cluster k are modeled by a random variable that follows a
Gaussian distribution denoted as N (µ

(u,k)
b , σ

(u,k)
b ) whose

parameters depend on the band number. Each Gaussian
distribution is identified using the n(u,k) reflectance val-
ues G(u,k)(b, :) = [G(u,k)(b, 1) . . . G(u,k)(b, n(u,k))]. To
estimate the parameters of the Gaussian distributions, we as-
sume that the identified spectral regions within each species
have equal probabilities of occurrence. Thus, for a clus-
ter k of a species u, we get the 2 x 192 matrix M (u,k)

and its extension Mu to the Ku clusters of species u:
Mu = [M (u,1)T . . .M (u,Ku)T ]T . Our species character-
ization step corresponds to a Gaussian Mixture Model with
14 classes per spectral layer (3 classes for HM, 4 classes for
DC and AO, and 3 classes for AE).

M (u,k) =

[
µ
(u,k)
1 µ

(u,k)
2 ... µ

(u,k)
192

σ
(u,k)
1 σ

(u,k)
2 ... σ

(u,k)
192

]
(1)

3.2. Extraction of Butterfly Reflectances

To extract butterfly reflectances from a raw spatio-spectral im-
age I(x, y), we first compute the mask Mask(x, y) through
normalization and background subtraction using a reference
image, as shown in Fig. 5. The mask is then split into spectral
layers: Mask(x, y, b), b ∈ {1, . . . , 192} but we retain only
the Mask(x, y, b∗) of spectral layers b∗ where the butterfly
was detected with b∗ ∈ B∗ and B∗ the set of detection layers.
For each detection pixel pib∗ in b∗, reflectance rib∗ is evalu-
ated using the part of spectralon in the same layer, produc-

ing the reflectance vector rb∗ =
[
r1b∗ , r2b∗ , . . . (r

nb∗

)b∗
]T

,

where nb
∗

is the pixel number in layer b∗ where the butterfly
is present.

3.3. Classification strategy of the butterfly species

Based on b∗ ∈ B∗, we extract the parameters (µ
(u,k)
b∗ , σ

(u,k)
b∗ ),

∀ k ∈ {1, . . . ,Ku} of b∗, from the Gaussian distributions ob-
tained in the characterization phase of each species. Then, we
try to assign each reflectance rib∗ , of the butterfly to one of the
extracted distribution according to b∗. Some studies explore
either Gaussian Naive Bayes (GNB) alone [14], or Z-Score
(ZS) indexes [15], but none use both indexes. Practically, we

(a) HM (b) HM clusters (c) DC (d) DC clusters

(e) AO (f) AO clusters (g) AE (h) AE clusters

Fig. 4. Clustering of Similar Spectra for Each Species

(a) Raw image (b) Normalization (c) Butterfly mask

Fig. 5. Butterfly mask computation

noticed that GNB and ZS decisions may diverge due to over-
lapping Gaussians caused by spectral similarities between the
species. Then, it is crucial to propose a robust strategy to deal
with Gaussian overlaps to predict the corresponding species
in the raw image. Let denote Θ

(u,k)
b∗ , (µ

(u,k)
b∗ , σ

(u,k)
b∗ ). In

our context, GNB uses the Naive Bayes conditional proba-
bility to identify the most probable distribution for a given
reflectance rib∗ ∈ rb∗ . Eq. 2 enables to calculate the set of
posterior probabilities p(u = ui, k = ki|rib∗) according to
species u and cluster k, knowing rib∗ . It relies on the univari-
ate Gaussian probability density function f(rib∗ ,Θ

(u,k)
b∗ ) of

the variables rib∗ and Θ
(u,k)
b∗ while πu,k accounts for the prior

probability that rib∗ belongs to Species u and cluster k. Since
we assume equal probabilities for the 14 Gaussian distribu-
tions as mentioned in Subsect. 3.1, ∀ u ∈ {1, 2, 3, 4}, ∀ k ∈
{1, . . . ,Ku}, πu,k = 1/14. ZS consists of finding the closest
distribution to rib∗ using the distance defined in Eq. 3.

p(u = ui, k = ki|rib∗) =
πu,k · f(rib∗ ,Θ

(u,k)
b∗ )∑4

u=1

∑Ku

k=1 πu,k · f(rib∗ ,Θ
(u,k)
b∗ )

(2)

z(u = ui, k = ki, r
i
b∗) =

|rib∗ − µ
(u,k)
b∗ |

σ
(u,k)
b∗

(3)

In [12], the classification strategy we proposed, named
Voting Pixel-based Detection for Global Image (VPG), in-
volves propagating and combining the votes of each rib∗ ob-
tained with the GNB and ZS, unlike the new strategy, which
propagates confidence indexes. To address this, we propose a
convex combination of GNB and ZS decisions. First, we esti-
mate the four probabilities p(u = ui|rib∗) of each reflectance
rib∗ belonging to a species u using GNB. They result from



the marginalization over k ∈ {1, . . . ,Ku} of the conditional
probability to belong to one of the clusters k from species u,
p(u = ui|rib∗) =

∑Ku

k=1 p(u = ui, k = ki|rib∗). We propose
here to introduce a log-likelihood index for each species u

defined as : pu ,
∑B∗

b∗
∑nb∗

i=1 log(p(u = ui|rib∗)). This
produces the likelihood vector describing the GNB decisions
for each species defined by p , [p1, p2, p3, p4]. Secondly,
using the ZS index, we compute the distance z(u = ui, r

i
b∗)

of rib∗ belonging to a species u, which is the minimum
absolute ZS z(u = ui, k = ki, r

i
b∗) obtained across the

various clusters k ∈ {1, . . . ,Ku} of a specific species u
with z(u = ui, r

i
b∗) = arg min

k=1,..,Ku

z(u = ui, k = ki, r
i
b∗).

Subsequently, we can generate a cumulative similarity dis-

tance zu =
∑B∗

b∗
∑nb∗

i=1 z(u = ui, r
i
b∗) for each species

u. This results in the cumulative similarity distance vector
z , [z1, z2, z3, z4].

Finally, a convex combination of the likelihood vector p
weighted by α ∈ [0, 1] and the cumulative similarity distance
z weighted by 1 − α is performed. This involves normal-
izing each element of p and z by its original vector sum be-
fore performing the convex combination. Let’s denote this ap-
proach : Probabilistic Pixel-based Detection for Global Image
(PPG). The combination result is a decision vector cPPG(α)
(see Eq. (4)), where the index of the smallest value represents
the corresponding species uPPG in the spatio-spectral image
with uPPG = arg min

u=1,..,4
cPPG(α).

cPPG(α) = α
p∑4

u=1 p
u

+ (1− α)
z∑4

u=1 z
u

(4)

4. RESULTS AND DISCUSSIONS

First, we introduce a preliminary step to determine the best α
on each spectral zone. To achieve this, we implement a new
phase focused on identifying the α value that gives the best
performance on a training dataset composed of 176 spatio-
spectral images with 88 detection images in the VIS and 88
in the NIR. The accuracy trends are then obtained on the
training dataset, using a learning rate of αlr = 0.02, with
α ∈ [0; 1]. By replacing the best α obtained per spectral zone
in Eq. (4), the decision vector cPPG(0.84) will be used for
the detection images in VIS area and cPPG(0.92) for the de-
tection in NIR area. To evaluate our classification strategy
using the best alpha values, we apply it on an independent
test dataset. This dataset consists of 160 raw spatio-spectral
images, composed of 40 images per species, with 20 detec-
tion images in each spectral range (VIS and NIR). Generally,
the butterfly is detected in 30 to 40 consecutive spectral strips.
Tab. 1 shows the confusion matrix obtained from the test data.
The results indicate that the proposed PPG strategy, which
involves a convex combination, produces better results than
both GNB-PPG (α = 1) and ZS-PPG (α = 0). These lat-
ter approaches correspond to decisions based exclusively on

Table 1. Confusion matrix obtained with PPG vs others
Result of all samples Result of samples in VIS Result of samples in NIR

Predict

Target
HM DC AO AE HM DC AO AE HM DC AO AE

HM 38 2 3 8 20 2 3 8 18 0 0 0
DC 0 27 9 5 0 7 2 5 0 20 7 0
AO 0 9 28 3 0 9 15 3 0 0 13 0
AE 2 2 0 24 0 2 0 4 2 0 0 20

Sum (%
good pred)

38/40
(95)

27/40
(67.50)

28/40
(70)

24/40
(60)

20/20
(100)

7/20
(35)

15/20
(75)

4/20
(20)

18/20
(90)

20/20
(100)

13/20
(65)

20/20
(100)

PPG Accuracy : 117/160 (73.12 %) Accuracy : 46/80 (57.50 %) Accuracy : 71/80 (88.75 %)
GNB-PPG [14] Accuracy : 113/160 (70.62 %) Accuracy : 44/80 (55 %) Accuracy : 69/80 (86.25 %)
ZS-PPG [15] Accuracy : 89/160 (55.62 %) Accuracy : 28/80 (35 %) Accuracy : 61/80 (76.25 %)

VPG [12] Accuracy : 104/160 (65 %) Accuracy : 39/80 (48.75 %) Accuracy : 65/80 (81.25 %)
KNN-VPG [2] Accuracy : 75/160 (46.87 %) Accuracy : 39/80 (48.75 %) Accuracy : 36/80 (45 %)
MLR-VPG [4] Accuracy : 47/160 (29.37 %) Accuracy : 27/80 (33.75 %) Accuracy : 20/80 (25 %)
SVM-VPG [3] Accuracy : 44/160 (27.5 %) Accuracy : 23/80 (28.75 %) Accuracy : 21/80 (26.25 %)

GNB and ZS, according to Eq. (4). Our classification strategy
also performs better than the approach previously proposed
in [12], as well as strategies based on traditional classification
models used on RGB images, such as KNN [2], SVM [3] and
MLR [4]. As deep learning approaches require large amounts
of data—which are difficult to obtain—to achieve good per-
formance, we do not explore them in this work. Our approach
also shows the advantage of propagating confidence indexes
of each butterfly pixel, rather than making binary decisions
for each pixel. The high performance of the butterfly detec-
tion images in the NIR spectrum highlights the relevance of
the hyperspectral camera in our study. The results also indi-
cate some confusion between the DC and AO species. This
confusion comes from the overlap of some Gaussian distribu-
tions during the species characterization phase owing to spec-
tral similarities. Since there is a strong correlation between
closely related spectral layers, this overlap can occur over sev-
eral successive layers. To evaluate the robustness to noise of
the PPG strategy compared to the VPG strategy proposed in
[12], we performed a new experiment on our test data. We
add different levels of Gaussian noise on the reflectance vec-
tors rb∗ measured through the Signal to Noise Ratio (SNR)
and evaluate the performance of both strategies. This experi-
ment is designed to simulate the noise generated by the cam-
era when its internal temperature rises significantly. Results
presented in Fig. 6-a show better robustness of PPG com-
pared to VPG over all noise levels. Furthermore, PPG reaches
its best performance more quickly at around 35 dB, whereas
VPG achieves it at 40 dB. The robustness on images of each
spectral detection zone is also evaluated using the PPG strat-
egy, as depicted in Fig. 6-b. It appears that the detection im-
ages in NIR show greater robustness regardless of the noise
level. This further highlights the high discriminative potential
provided by the NIR wavelengths.

5. CONCLUSION

Exploring HSI for butterfly species recognition holds great
potential. In this study, we propose a robust approach for
butterfly species recognition based on partial spectral infor-
mation from a single raw image. Unlike our previous method
[12] which was based on propagating pixel decisions, we pro-



(a) PPG vs. VPG (b) PPG for each spectral zone

Fig. 6. Accuracy given multiple SNR on test data

pose here a global method based on a convex combination of
global probabilistic indexes and global z-scores. This method
has proven robust in the presence of overlapping Gaussian
distributions caused by spectral similarities between species
in certain spectral layers. An additional advantage of using
a hyperspectral camera with more than a hundred spectral
bands for recognition is that, even if certain species have spec-
tral similarities that cause Gaussian overlap in several bands,
there is still an opportunity to find spectral distinctions in
a few bands. Our method also outperforms some state-of-
the-art machine learning models used on RGB images. Fu-
ture work will focus on recognizing butterflies in free flight
within their natural habitats using tracking methods [16]. Our
database will also be expanded with new data and species to
evaluate our approach’s generalization capability and the ef-
fectiveness of a deep learning approach on raw spatio-spectral
images.
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