N

N

Federated Representation Learning for Encrypted
Application Type Classification in beyond 5G RAN
Sid Ali Hamideche, Marie Line Alberi Morel, Kamal Singh, César Viho

» To cite this version:

Sid Ali Hamideche, Marie Line Alberi Morel, Kamal Singh, César Viho. Federated Representation
Learning for Encrypted Application Type Classification in beyond 5G RAN. IEEE Consumer Com-
munications and Networking Conference, IEEE, Jan 2025, Las Vegas, United States. hal-04771982

HAL Id: hal-04771982
https://hal.science/hal-04771982v1

Submitted on 7 Nov 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04771982v1
https://hal.archives-ouvertes.fr

Federated Representation Learning for Encrypted
Application Type Classification in beyond 5SG RAN

Sid Ali Hamideche
Univ Rennes, IRISA
Rennes, France
sid-ali.hamideche @irisa.fr

Marie Line Alberi Morel
Nokia Paris Saclay
Massy, France

Abstract—Mobile application classification is essential for ad-
vanced network management and application-based QoS policy
enforcement in future, Al-enhanced, beyond 5G and 6G mobile
networks. This article proposes to use AI methods to categorize
applications as functional types (e.g., Video, Audio, Browsing)
despite encryption and limited labeled data. We tackle these
challenges through unsupervised representation learning, which
maximizes the use of abundant unlabeled data in mobile net-
works. Due to the distributed nature of beyond 5G and 6G
networks, we use this method in federated learning scenarios
and compare it to the centralized ones. Our findings highlight
that unsupervised learning improves model performance, espe-
cially with scarce labeled data. Additionally, federated learning
provides effective results as compared to centralized methods.

Index Terms—Application classification, Beyond 5G, 6G, Deep
learning, Representation learning, Federated learning

I. INTRODUCTION

The transition to advanced 5G networks, has brought major
changes in how we live, work, and connect. With more devices
and users seeking high-speed and low-latency connectivity,
future generations need advanced networks beyond 5G and
6G. Users also expect new services including multimedia
offering like high resolution video streaming and low latency
gaming. To address these challenges, Al integration in mo-
bile networks has become essential. Al can provide optimal
management and scaling based on users’ needs and habits,
such as the type of applications being used. Concrete scenarios
that exploit user application knowledge to improve network
performance include resource allocation and migration, traffic
shaping, compression, prioritization, and congestion control,
QoS control and enforcement among others. Consequently,
detecting mobile applications is important. Application classi-
fication methods include: port-based, payload-based (e.g, Deep
Packet Inspection), statistical-based, and deep learning meth-
ods. However modern networks introduce challenges like en-
cryption and dynamic port changes that limit the performance
of the first two methods. Furthermore the statistical methods
require manual feature extraction which is time-consuming
and requires human expertise. In response, recently, deep
machine learning algorithms are increasingly used to identify
applications through network data analysis. In this work, we
focus on deep learning methods for application classification.

Supervised deep learning models have gained significant
attention in recent years due to their ability to automatically
learn complex patterns from large datasets. This makes them
well-suited for traffic classification tasks, where it is challeng-

marie_line.alberi-morel@nokia.com kamal.singh @univ-st-etienne.fr

César Viho
Univ Rennes, IRISA
Rennes, France
cesar.viho@irisa.fr

Kamal Singh
Laboratoire Hubert Curien
Saint-Etienne, France

ing to manually extract relevant features, especially with en-
crypted traffic. However, the major constraints associated with
supervised deep learning models is the manual data labeling.
It is expensive and complex, which can limit the scalability
and efficiency of these models in real-world applications. As
a result, techniques that leverage unlabeled data have become
more prominent. One such approach is unsupervised learning
which does not require labeled data at all. However, these
methods often under-perform when compared directly with
supervised learning models. Another type of technique that has
gained attention is semi-supervised learning which combines
the benefits of both supervised and unsupervised learning.
They can leverage both labeled and unlabeled data, making
them particularly useful in situations where a limited amount
of labeled data is available. Recent research in semi-supervised
learning involves unsupervised representation learning as a
pre-training step which can use large amounts of unlabeled
data which is easy to acquire. This approach is specifically
designed to learn patterns and extract high-level, generalizable
features that can be used for a variety of tasks. These learned
representations are then combined with a fine-tuning step using
labeled data for the specific task at hand, referred to as the
downstream task. These techniques have demonstrated success
in various fields, including natural language processing [1], [2]
and computer vision [3] while only few works have explored
those in the context of application classification [4], [5].
Another challenge facing data-driven systems is data cen-
tralization, which requires significant bandwidth to transfer
data to a central server where it is processed and mod-
els trained. To overcome this issue, federated learning has
emerged as a solution. Unlike centralized methods, it involves
training the model on the edge using local data rather than
sending data to a central server. Only models, which are
significantly smaller than data, are sent the server, where they
are aggregated to represent the learned knowledge from all
distributed entities. This approach can capitalize on the inher-
ently distributed nature of beyond 5G and 6G networks Future
wireless networks are built using modern architectures such
as O-RAN (Open Radio Access Network) that are massively
distributed systems and designed to include Al in mind with
components such as RIC (Radio Intelligent Controller).
Building on this, in our work, we also investigate similar
supervised deep learning approaches as those studied in [6]—
[9] to distinguish between various types of mobile application
services. This idea aligns with the QoS Class Identifier (QCI)

categorization used by 3GPP (Third Generation Partnership
Project). We use these approaches as baselines to differentiate
popular services between buffered video or audio (download),
non-real-time video, live conversational video calls and voice
calls, and browsing activities. To go further, our contribution is
to introduce semi-supervised and federated learning techniques
to improve the performances in the face of limited labels and
distributed networks. In addition, our work stands out from
most others in its focus on mobile network traffic, rather than
PC-generated traffic, thus presenting a more complex scenario.
Key contributions are:

1) Semi-supervised learning for application type appli-
cation (SSL): To explore unlabeled data, we employ
semi-supervised learning which combines unsupervised
representation learning pre-training with supervised fine-
tuning for application type classification. This methodol-
ogy has shown success in various other fields; however,
its application to network traffic [4], [5], particularly
mobile network traffic, has been limited. In our work, we
utilize Denoising Autoencoder (DAE), for pre-training to
improves performances compared to supervised learning
approaches [6]—[8], and maintain the performances when
there is a limited amount of data.

2) Federated semi-supervised Learning (FL-SSL): We
adopt federated learning to match the highly distributed
nature of next-generation mobile networks, and to avoid
drawbacks brought by data centralization, such as addi-
tional bandwidth and latency. In our work, we implement
federated learning for the unsupervised representation
learning step, which does not require labeled data and
can be trained locally without human intervention. In
contrast to most work on Federated Learning for ap-
plication classification, our solution is intended to be
implemented on the RAN side not on the user device.

This paper is organized as follows. Sec. II presents related
work. Sec. III discusses the data. Sec. IV outlines the applica-
tion classification method. Sec. V presents the performances.
Lastly, Sec. VI provides conclusions and perspectives.

II. RELATED WORK

Traffic classification encompasses several tasks, including
intrusion detection, protocol detection, and application identi-
fication. Application classification can be further divided into
other sub-tasks which can involve recognizing the name of an
application (e.g., Google, Facebook, or Spotity). Alternatively,
it may refer to type determination, also known as application
categorization, which consists of identifying the function or
purpose of the application (e.g., video, voice, instant messag-
ing). These tasks can be accomplished using similar methods,
either traditional or machine learning-based. However, recent
years have seen a shift away from traditional methods, such as
Deep Packet Inspection (DPI), port-based, and payload-based
analysis [10]-[13]. This transition is primarily driven by the
prevalence of encryption like SSL/TLS in modern networks,
making DPI techniques obsolete.

Machine learning approaches, particularly deep learning
methods, have gained significant prominence in recent times
[6], [14]-[18]. Deep learning models can automatically learn
high-level representations from data, reducing the need for
manual feature engineering. These models demonstrate scala-
bility to large datasets and high-dimensional spaces. Addition-
ally, they have shown the ability to identify application-specific
patterns and signatures in raw payload content. However,
encryption limits what patterns and signatures these models
can learn. As a result, some research has focused on using
time series of packet statistics instead [9], [19]. Recently,
multimodal models that combine both approaches have been
proposed [20], offering a promising solution. Another area
of study is representation learning, which aims to address
the challenges of data labeling. One approach is ET-BERT
[4], a version of BERT (NLP) adapted for network traffic
pre-training and classification. Similarly, YaTC [5] employs
transformer-based Masked Autoencoders (MAE) for network
traffic pre-training. Multitask learning is also employed in
[21], [22] as a means of reducing the amount of labelled
data required. The popularity of federated learning has grown
considerably, particularly leveraging the user device for train-
ing application classification models. The main motivation
is to address privacy and security concerns associated with
centralized learning [23]-[25].

Our work uses real-world data from various mobile ap-
plications, presenting a challenging labeling task due to the
noisy and complex nature of the traffic. In contrast to most
application classification studies, our approach does not isolate
specific types of data or control for only foreground apps
being labeled. Instead, we collect and analyze real-world
phone traffic, unlike laboratory-based studies that rely on
computer tools to capture traffic in a controlled environment.
We also explore representation learning and federated learning
for application classification in mobile networks, an area that
has not been extensively investigated to our knowledge. This
research direction aligns with the decentralized nature of new
generation mobile networks, where data is generated and
processed at the edge rather than in centralized locations.

III. DATA
A. Data processing

The data collected includes pcap files of network traffic
for smartphones and corresponding label files captured on
the devices. They indicate the time intervals and the type
of application being used during that duration (e.g., Video
(Download); start: ”Date” 19:31:06; end: “Date” 20:12:48..
This signifies that the user was consuming “Video (Down-
load)” data during this time frame. However, some labeling
noise occurs because not all packets within the labeled interval
correspond to the application being used. In mobile phones,
numerous applications run in the background.

Thus, to minimize the amount of data, particularly in case
of data-intensive applications such as video), we compute
statistics of packets per second instead of utilizing all the
packets. This approach results in a single measurement point

per second. We begin by identifying the flow having the
maximal data rate (in bytes) within a one-second period. A
flow is uniquely identified by a 5-tuple consisting of [IP
source, port source, IP destination, port destination, protocol].
We then proceed to extract features from this identified flow:

o Raw payload content (encrypted) of the largest packet.

o Total number of packets transmitted per second for both
uplink and downlink directions.

o Total amount of data (Bytes) transferred per second for
each direction: downlink and uplink.

o Mean interarrival (seconds) between successive packets.

Table I presents the pre-processed dataset statistics, showing
the total number of data points and data collection campaign
duration (the collection wasn’t 24h/24h, hence the number of
data points is smaller compared to the duration).

B. Application type versus labels

We focus on application classification for identifying service
groups. Determining whether an application belongs to Video
or Audio is more important than identifying particular names,
as one name can be used for multiple service groups. For
instance, Facebook can be used for video streaming, audio
calls, and text messaging. Its identification is less interesting
for a network that wants, for example, to allocate more
resources for a video session than an audio session due to
its high bandwidth consumption.

For our work, we have selected a comprehensive set of
labels that effectively capture a wide range of user activities
and are aligned with 3GPP service classes. These labels
are: Video (Download), Audio (Download), Browsing, Voice
Call (live), and Video Call (live). Accurately distinguishing
between these categories is of paramount importance. For in-
stance, the ability to differentiate between ’Video (Download)’
and *Video Call’ is essential. These categories have vastly dif-
ferent requirements and priorities from a network perspective.
A call application, known for its sensitivity to latency, requires
different network management compared to other Video-type
applications. Buffering strategies can be employed in the latter
case, and latency is not a major concern. The network might
prioritize Voice Calls over other types of traffic to ensure
quality and continuity of real-time communication. Figure 1
shows the usage frequency of different application categories,
revealing popular types and usage trends in our dataset. It also
underscores classes imbalance.

C. Data input relation to application type

Application classification tasks is widely performed using
IP packets. IP traffic can be analyzed using various methods,
including manual computation of relevant features or direct
use of raw payload as input. In our work, we have chosen

TABLE I: Data collection description

Total number of data points : 113951
Labeled: 40666 and Unlabeled: 73285

Period : ~ 119 days
Not continuously

to employ both methods. Consequently, we utilize multimodal
learning, combining two types of inputs (modalities): TCP or
UDP payload content and a time series of statistical data.

o TCP or UDP Payload content (encrypted): the content
of payload. [17], [18] have shown that deep learning
models can discern patterns and identify applications,
even with encrypted network traffic.

« Time Series of Packet Statistics: A sequence of data
points of length L seconds of the same flow. This input
captures temporal signatures and application patterns.
This is also less affected by encryption.

To examine the connection between application types and
network traffic statistics, we conduct an in-depth visual anal-
ysis. Fig. 2b shows cumulative distribution functions for
downlink and uplink data, revealing that ”Video-based” ap-
plications produce larger amounts of data, while ”Call-based”
applications produce almost identical amounts of data in
both directions. Fig. 2a displays variations in total data sizes
(bytes/second) for targeted application classes over a 30-
second time frame. This figure shows that real-time appli-
cations produce a constant amount of data throughout the
time frame, as content is generated continuously rather than
buffered. However, browsing applications are more complex
and diverse. They can generate small text-based data or large
media, resulting in traffic patterns similar to video or audio.

IV. APPLICATION TYPE CLASSIFICATION

A. Classification in O-RAN

Application type classification in RAN is a key problem.
Placing the classifier within the RAN directly benefits the
management function, avoiding intricate cross-layer interac-
tions that would occur if implemented in user equipment or
the core network. This approach prevents additional delays
detrimental to real-time low latency applications (URLLC), as
well as enhancing resource allocation, L2 packet scheduling,
and traffic shaping for other applications (eMBB) with specific
Quality of Service (QoS) requirements.

In an O-RAN network, traffic data can be accessed at the
Protocol Data Unit (PDCP), which is located either at the
Central Unit (CU) or Distributed Unit (DU), depending on the
split option being used. The training itself can be implemented

in either a near-Real-Time or non-real-time RIC. Furthermore,

10t

2T 18162)

Count

1+ 9,104 B

0.5 N
3,066

1,535 1,381

[Voice Call (live) (0 Video Call (live) [EEtM Video (Download)
MW Browsing [Audio (Download)

Fig. 1: Data distribution: Number of data points for each class.

Video (Download)

Audio Call (live) Browsing

C T T T T T 3 T T T T
10°

101

10%

Bytes/second
<
Bytes/second

102

|

- NV

Audio (Download) —— Video Call (live)

10! L I I I L L I
0 5 10 15 20 25 0 5 10 15 20 25

Seconds (downlink) Seconds (uplink)

(a) Evolution of data size (Bytes/second) by in 30-seconds time window

1F T 1 [T

0.5

CDF

S —

0 [} rmT——————_——
10° 10 10% 10% 10* 10°
Total data size Bytes/second (uplink)

Il Il
10° 10°

- Il
10*
Total data size Bytes/second (downlink)

(b) Cumulative distribution of total data size (Bytes/second)

Fig. 2: Data size for different application categorizations : (a) time evolution and (b) cumulative probability distribution

Payload Time series Stats
-~y
EIC B OIS e
. |
(Input 1) (Input 2)
== *l* e
{ Conv Block I | LSTM Layer 1

- ~
{ Conv Block N |

LSTM Layer M

Fully Connected Network

Fig. 3: Multimodal architecture for application classification.
the distributed architecture of O-RAN can also be leveraged
for optimal application classification, as will be discussed later.

B. Multimodal deep learning for classification

To effectively utilize the two aforementioned input types, we
adopted a multimodal architecture. This architecture combines
Convolutional Neural Network (CNN) layers for extracting
features from raw payload content and Long Short-Term
Memory (LSTM) networks for extracting features from time-
series packets statistics. The extracted features from each input
are concatenated. Then, these features are passed through fully
connected layers, followed by a softmax layer representing
the output mobile user application class. Fig. 3 illustrates the
proposed architecture of the two-branch model. Each branch
is trained traditionally like the monomodal training.

C. Unsupervised representation learning

To leverage unlabeled data, we employ representation learn-
ing to pre-train the first layers of the models. Specifically,
we train the feature extraction layers from each input of
the multimodal model. For every input, we train a denois-
ing autoencoder (DAE) with an encoder that shares similar
parameters as the feature extraction layers (2 DAEs since we
have two modalities). This technique is useful for learning
patterns and meaningful representations without label [26],
[27]. Once trained, the encoder part of each input is used to
initialize the feature extraction layers, followed by supervised
application classification, a process called transfer learning.
Here, we have a source task (DAE) and a downstream task:
application classification. This approach is also a type of semi-
supervised learning as it uses both unlabeled data for pre-
training and labeled data for fine-tuning.

D. Federated representation learning

As mobile networks are massively distributed and machine
learning models require large amounts of data for training,
classical approaches suggest gathering data in a centralized
location as seen in Fig. 4a. However, this approach has several
drawbacks. Data must be transmitted from their locations to
a central server and stored there, for example, from CU/DU
to RIC in O-RAN. This requires a significant amount of
network bandwidth, especially for eMBB applications that
already demand large bandwidth, and necessitates a powerful
server to process all the incoming data. In addition to other
concerns that large bandwidth can bring, such as cost and
carbon footprint, having user data stored in a single centralized
server poses privacy risks. Consequently, federated learning
has emerged as a modern solution in mobile network research.

This technique allows multiple models to train locally
without data transmission, transferring only learned knowledge
like weights or deep learning model parameters to the server.
The server aggregates these parameters and returns updated
model. In our study, we use this method for unsupervised rep-
resentation learning to be able to exploit large unlabeled data
in distributed entities. For supervised training, we minimize
labeled data usage and assume that relatively small amount
of it is present on the server. We categorize data based on
unique cell IDs to mimic real-life scenarios where each cell
(representing CU/DU in O-RAN) has distinct data and entities.

As illustrated in Figure 4b, we showcase an implementation
of federated representation learning for application classifi-
cation in O-RAN networks. We have multiple edge units
(CU/DUs) acting as distributed clients where local models
are trained, and a near-RT RIC as the server to aggregate
the models for federated learning. Fine-tuning for application
type classification is also carried out at the RIC. Figure 4a
illustrates a centralized approach where data is instead sent to
the near-RT RIC for unsupervised pre-training.

V. EXPERIMENTS

This section describes the configuration setup and then
presents the experiment results. We show and discuss the
performance of new proposed approaches applied to the clas-
sification of applications compared with that of the reference
methods. We aim to examine the extent to which unsupervised
representation learning can prevent significant performance
decreases when there are a limited amount of labeled data.

TABLE II: Methods tested for application classification.

Learning Mode Approach Central Pre-training Fine-tuning

Central SL / Payload [6], [7] No CNN
Central SL / Time series [9] No LSTM
Central SL / Multimodal No Multimodal
Central C-SSL DAE Multimodal
Federated FL-SSL Federated DAE ~ Multimodal

A. Configuration setup

Table II summarizes all the approaches used in the ex-
periments for application classification (baseline and new)
using Central Learning (CL) as well as Federated Learning
(FL) mode. The baseline models classify the application using
CNN [6], [7] or LSTM [9] model respectively without pre-
training. They are referred to as: SL (Supervised Learning).
All the other models comprise a multimodal supervised model
with or without a pre-training step. They are referred to as,
respectively: C-SSL (Centralized Semi-supervised Learning)
and FL-SSL (Federated Semi-supervised learning).

To assess performance, we use Accuracy and F1-Score met-
rics. We also investigate the effect of introducing unsupervised
representation learning by reducing the amount of labeled data

U/DU

=1

[]

1<

7

3

m

z

Q

]

g

3

]

g

3
4

LIICAIED
leHslls|

nsfer learnir

g NS

‘ A
Labeled (2" /7

o
@ Centralized unsupervised e
representation learning

@

added classification layers
® supervised learning

Local model 1

y
- NS
S %
Local /

data 1 ~

@ Local unsupervised
representation learning

near-RT RIC (FL-server) St
—00

Local model 2

— &
- NS
dataz N7

(@ Local unsupervised
representation learning

e

® Aggregate (11 ; l;iim'“)
mtu\‘lc

® Transfer learning
Supervised model

G/ANS
-
Labeled (2 7>

data
added classification layers
® Supervised learning

FL-clients
(distributed
entities)

Local model n

! 5
- NS
data n —~ /

(@ Local unsupervised
representation learning

(b) Federated Learning

Fig. 4: Proposed application classification approach for O-
RAN in centralized and federated learning

from 100% (all labeled data) to less than 20%. As shown in
Tab. I, the total number of labeled data is 40,666 points and
unlabeled data is 73,285 points. It is always 100% when used.
We separately analyzed the performance metrics for each class
and visualized performance over individual classes using the
confusion matrix. Lastly, we evaluate the bandwidth savings
for federated learning vs. centralized learning.

B. Overall Performances

Tab. III presents the performance of all tested models with
100% and 20% labeled data. The results indicate that models
pre-trained using unsupervised representation learning, regard-
less of centralized or federated learning configurations, outper-
form models without pre-training, although a slight decrease
in performance was observed for federated learning techniques
in comparison to centralized learning. In addition, the results
also shows that multimodal approaches that explore both raw
payload and time-series of packets statistics outperform the
ones that uses only one of those and not both.

Fig. 5 illustrates F1 score versus labeled data size. The
impact of unsupervised representation learning as a pre-
training step is evident in all cases, as the gap in performances
grows with the decrease in the amount of labeled data. With
100% of labeled data, unsupervised pre-training improves
performances. And with 50% and 25%, pre-trained models
outperform non pre-trained models using 100% labeled data.
Moreover, even when using less than 20% of initial labeled
data (as shown in Tab. III), pre-training helps the model main-
tain good performances above 70%;, not far from performances
of using 100% data without pre-taining, whereas models
that do not exploit unlabeled data collapse with Fl-scores
below 50%. This shows that unlabeled data adds value and
reduces labeled data need for application classification through
unsupervised representation learning. The models pre-trained
using federated learning perform equivalently to models pre-
trained using centralized learning with only a slight decrease
in performance which is significant given FL’s advantages.

C. Application wise evaluation

Here, we provide an individual evaluation for each class.
Fig. 6 displays confusion matrices for both and non pre-
trained and pre-trained models. With ratios of labeled data
usage 100% and 20%. The impact of pre-training on improving
accuracy in detecting applications correctly, particularly when
using only 20% labeled data, can be clearly observed from
these matrices. In the absence of pre-training for 20% la-
beled data, the model struggled to distinguish between ”Video
(Download)” and ”Video Call” (Figure 6d) as opposed to pre-
trained models (Figures 6e and 6f). The browsing class,

TABLE III: Accuracy and F1-Score comparison

100% labeled data 20% labeled data

Accuracy Fl-score Accuracy Fl-score
SL / Payload [6], [18] 58.49 52.05 34.85 23.15
SL / Time series [9] 74.15 71.32 47.58 38.78
SL / Multimodal 77.42 76.10 49.61 40.82
C-SSL 82.19 82.04 75.55 7291
FL-SSL 79.76 79.52 73.17 72.37

—e— SL

C-SSL —— FL-SSL
T T

F1-score

0.4

20 40 60 80 100
% of labeled data used

Fig. 5: F1-Score performances highlighting the added value of
pre-training as the number of labeled data decrease

which is typically the most challenging due to its diversity
(it may include applications from other classes), was also
better handled overall by the pre-trained model. This superior
performance can be attributed to the fact that supervised
models with insufficient labeled data and no exploration of
unlabeled data were unable to learn specific patterns defining
different classes (Video and Video Call which are both video-
based). However, models that effectively leveraged unlabeled
data learned patterns that may not have been available in
limited labeled data.

D. Centralized vs federated: bandwidth overhead

One of the primary aims of utilizing FL in mobile networks
is to save bandwidth. The amount of bandwidth saved by not
sending traffic data to a central server depends on the number
of weight exchanges required in FL. In a CL setup, clients
would need to send data of size ~ 185 GB per user (the total
size of pcap files generated by one user in our study) and
~ 1.9 TB for 10 users as shown in Table IV. In contrast in
FL, models is trained for 100 epochs and weights is exchanged
every 5 epochs. Consequently, each local client sends data to
the server 20 times and the server has to send same amount
(aggregated weights to each client). So, for 3 local clients, the
total number of weight exchanges amounts to (20+20) x 3 =
120. Furthermore, each weight exchange involves transmitting
a model with a size of ~ 1.5 MB. Therefore, the total data
exchanged between clients and server during the entire FL
training process is roughly equal to 1.5 MB x120 = 180
MB. This is significantly smaller than the minimal data size
transmitted for CL. Assuming that the data processing and
filtering is done on local clients rather than on central server,
the local clients would still send ~ 1.3 GB of data per user
or ~ 13 GB for 10 users. Thus, this is still larger than the
size of data exchanged for FL. The observation is that more
users lead to more data being collected. Consequently, the
efficiency thanks to FL. becomes increasingly higher. Despite
the limited amount of data we used in our experiment, we still
observed FL’s advantages. In real-world applications, networks
generate significantly larger quantities of data, resulting in
even more important bandwidth save using FL rather than
CL. Tab. V shows the total amount of weights transmitted for
FL for different number of clients (assuming one model per
client) versus the data size generated in CL for 1 user. More
clients mean more data is collected for the training phase but

TABLE IV: Size of info exchanged during centralized learning
training w.r.t number of users in network

Number of users 1 5 10

185GB 925GB 19TB

Data size exchanged (centralized)

also more diverse situations are observed. This would lead to
increased classification performance. The table indicates that
even in larger networks where more than 3 DUs/CUs train
their own models, the bandwidth savings using FL remain
significantly superior as compared to transmitting data to a
central server (i.e., 5.4 GB for training 100 CUs/DUs versus
185 GB per user in CL).

VI. CONCLUSION

We showed the added value of unsupervised representa-
tion learning for mobile networks to identify five popular
types of Application. We have demonstrated that Denoising
Autoencoders (DAE) can learn meaningful representations
that are effectively transferred to this downstream tasks. Our
results reveal improved performances, particularly with limited
amounts of labeled data. Even using only 20% of the labeled
data that non pre-trained models require, pre-trained models
maintain an Fl-score above 70%. In contrast, no pre-trained
models collapse with an Fl-score under 50%. Our research
also illustrates that pre-training can be performed using feder-
ated learning, avoiding sending data to a central server while
maintaining similar results to centralized learning. However,
this approach may be challenging to deploy in real-world mo-
bile networks, as it requires sufficient processing power to train
the model, at each distributed node. The use of a multimodal
architecture combining CNN and LSTM may increase compu-
tational complexity, which could be a challenge for resource-
constrained devices at the network edge. In future works, it
would be worthwhile to experiment with this approach in
real-world networks where these problems can be addressed.
Additionally, other potential issues that may arise during real-
world implementation, such as introduced additional latency,
will need to be investigated. We also plan to investigate more
representation learning techniques and alternative source tasks
beyond Denoising Autoencoders. Furthermore, we intend to
explore multitask learning by incorporating auxiliary tasks to
enhance application classification performances.

REFERENCES

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

TABLE V: Total size of models to be transmitted w.r.t to
number of clients (models) in federated learning compared
to total data of 1 user transmitted in centralized learning

Number of clients/models ~ CL (traffic data) FL (models weights)

3 ~ 180 MB
10 ~ 185 GB ~ 540 MB
100 ~ 5.4 GB

(a) No unsupervised pre-training (100% (b) Centralized unsupervised pre-training (c) Federated unsupervised pre-training
labeled data) (100% labeled data) (100% labeled data)
9 3% | 8% | 0% | 0% 4% |129% | 1% | 1% 0% | 26% | 8% | 0%
Y 34% | 9% | 0% | 0% . 26% 4% | 0% | 2% " 32% 8% | 0% | 0%
@; 6% 2 2% | 20% 0% | 0% § 0% | 22% 0% | 0%
g 0% g 0% | 0% | 0% & 0% g 0% | 1% | 0% [EE) 0%
3% 0% | 0% | 0% | 0% QL 2% | 0% | 0% | 0% Pk
(d) No unsupervised pre-training (20% (e) Centralized unsupervised pre-training (f) Federated unsupervised pre-training
labeled data) (20% labeled data) (20% labeled data)
1% | 9% | 8% | 12% 22% | 22% | 43% | 13% | 0% 47% | 14% | 25% | 13% | 0%
R 1% | 37% | 4% | 25% | 34% . 14% 7% | 0% | 0% R 26% 0% | 0% | 3%
C; 0% | 1% | 5% & 0% i) 1% | 11% P& 4% | 0% §
g 0% | 0% | 0% PR 0% g 0% | 1% | 0% &I 0% g
4% | 0% | 0% | 0% (& 4% | 0% | 0% | 1% &
N & & & S &
.Goof & ooof & & ,°°°§ = fﬁ & & B
?9& & v"& <« ‘?‘o&
Target Class Target Class Target Class
Fig. 6: Confusion matrix of the models using 100% and 20% ratio sizes of labeled data
[2] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever ef al., “Improving [16] M. Soysal and E. G. Schmidt, “Machine learning algorithms for accurate
language understanding by generative pre-training,” 2018. flow-based network traffic classification: Evaluation and comparison,”
[3] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework Performance Evaluation, vol. 67, no. 6, pp. 451-467, 2010.
for contrastive learning of visual representations,” in International [17] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end
conference on machine learning. PMLR, 2020, pp. 1597-1607. encrypted traffic classification with one-dimensional convolution neural
[4] X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, and J. Yu, “ET-BERT: A networks,” in 2017 IEEE international conference on intelligence and
Contextualized Datagram Representation with Pre-training Transformers security informatics (ISI). 1EEE, 2017, pp. 43-48.
for Encrypted Traffic Classification,” in Proceedings of the ACM Web [18] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
Conference 2022, Apr. 2022, pp. 633-642. packet: a novel approach for encrypted traffic classification using deep
[5] “Yet Another Traffic Classifier: A Masked Autoencoder Based learning,” Soft Computing, vol. 24, pp. 1999 — 2012, 2017. [Online].
Traffic Transformer with Multi-Level Flow Representation | Pro- Available: https://api.semanticscholar.org/CorpusID:35187639
ceedings of the AAAI Conference on Artificial Intelligence,” [19] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning
https://ojs.aaai.org/index.php/AA Al/article/view/25674, 2023. for networking: Workflow, advances and opportunities,” Ieee Network,
[6] Z. Wang, “The Applications of Deep Learning on Traffic Identification,” vol. 32, no. 2, pp. 92-99, 2017.
p. 10, 2015. [20] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Distiller: En-
[71 M. Lotfollahi, R. S. H. Zade, M. J. Siavoshani, and M. Saberian, “Deep crypted traffic classification via multimodal multitask deep learning,”
Packet: A Novel Approach For Encrypted Traffic Classification Using Journal of Network and Computer Applications, vol. 183, 2021.
Deep Learning,” arXiv:1709.02656 [cs], Jul. 2018. [21] K. Wang, J. Gao, and X. Lei, “Mtc: A multi-task model for encrypted
[8] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescape, “Mobile Encrypted network traffic classification based on transformer and 1d-cnn.” Intelli-
Traffic Classification Using Deep Learning,” in 2018 Network Traffic gent Automation & Soft Computing, vol. 37, no. 1, 2023.
Measurement and Analysis Conference (TMA). Vienna: IEEE, Jun. [22] S. Rezaei and X. Liu, “Multitask learning for network traffic classifica-
2018, pp. 1-8. tion,” in 2020 29th International Conference on Computer Communica-
[9] S. Rezaei and X. Liu, “Deep learning for encrypted traffic classification: tions and Networks (ICCCN). IEEE, 2020, pp. 1-9.
An overview,” IEEE communications magazine, vol. 57, no. 5, 2019. [23] H. Mun and Y. Lee, “Internet traffic classification with federated
[10] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “Blinc: multilevel learning,” Electronics, vol. 10, no. 1, p. 27, 2020.
traffic classification in the dark,” in Proceedings of the 2005 conference ~ [24] E. Bakopoulou, B. Tillman, and A. Markopoulou, “Fedpacket: A feder-
on Applications, technologies, architectures, and protocols for computer ated learning approach to mobile packet classification,” IEEE Transac-
communications, 2005, pp. 229-240. tions on Mobile Computing, vol. 21, no. 10, pp. 3609-3628, 2021.
[11] A. Callado, C. Kamienski, G. Szabd, B. P. Gero, J. Kelner, S. Fernan- [25] M. Abbasi, A. Taherkordi, and A. Shahraki, “Flitc: A novel federated
des, and D. Sadok, “A survey on internet traffic identification,” IEEE learning-based method for iot traffic classification,” in 2022 [EEE
communications surveys & tutorials, vol. 11, no. 3, pp. 37-52, 2009. International Conference on Smart Computing (SMARTCOMP). 1EEE,
[12] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian 2022, pp. 206-212.
analysis techniques,” in Proceedings of the 2005 ACM SIGMETRICS [26] D. Erhan, A. Courville, Y. Bengio, and P. Vincent, “Why does unsuper-
international conference on Measurement and modeling of computer vised pre-training help deep learning?” in Proceedings of the thirteenth
systems, 2005, pp. 50-60. international conference on artificial intelligence and statistics. JMLR
[13] M. Tliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, Workshop and Conference Proceedings, 2010, pp. 201-208.
and G. Varghese, “Network monitoring using traffic dispersion graphs [27] S. A. Hamideche, M. L. Alberi Morel, K. Singh, and C. Viho, “Federated
(tdgs),” in Proceedings of the 7th ACM SIGCOMM conference on Representation Learning for Indoor-Outdoor Detection in Beyond 5G
Internet measurement, 2007, pp. 315-320. Networks,” in 2023 IEEE Globecom Workshops (GC Wkshps). Kuala
[14] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural networks for Lumpur, Malaysia: IEEE, Dec. 2023, pp. 860-865.
internet traffic classification,” IEEE Transactions on neural networks,
vol. 18, no. 1, pp. 223-239, 2007.
[15] W.Liand A. W. Moore, “A machine learning approach for efficient traf-

fic classification,” in 2007 15th International symposium on modeling,
analysis, and simulation of computer and telecommunication systems.
IEEE, 2007, pp. 310-317.

