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A Surrogate Optimization Approach for Inverse Problems :
Application to Turbulent Mixed-Convection Flows

M. Oulghelou1, C. Beghein2, C. Allery3

LaSIE, UMR-7356-CNRS, Université de La Rochelle Pôle Science et Technologie, Avenue Michel
Crépeau, 17042 La Rochelle Cedex 1, France.

Abstract

Optimal control of turbulent mixed-convection flows has attracted considerable attention

from researchers. Numerical algorithms such as Genetic Algorithms (GAs) are powerful

tools that allow to perform global optimization. These algorithms are particularly of great

interest in complex optimization problems where cost functionals may lack smoothness and

regularity. In turbulent flow optimization, the hybridization of GA with high fidelity Com-

putational Fluid Dynamics (CFD) is extremely demanding in terms of computational time

and memory storage. Thus, alternative approaches aiming to alleviate these requirements

are of great interest. Nowadays, surrogate approaches gained attention due to their potential

in predicting flow solutions based only on preexisting data. In the present paper, we propose

a near-real time surrogate genetic algorithm for inverse parameter identification problems

involving turbulent flows. In this optimization framework, the parametrized flow data are

used in their reduced form obtained by the POD (Proper Orthogonal Decomposition) and

solutions prediction is made by interpolating the temporal and the spatial POD subspaces

through a recently developed Riemannian barycentric interpolation. The validation of the

proposed optimization approach is carried out in the parameter identification problem of

the turbulent mixed-convection flow in a cavity. The objective is to determine the inflow

temperature corresponding to a given temperature distribution in a restricted area of the

spatial domain. The results show that the proposed surrogate optimization framework is
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able to deliver good approximations of the optimal solutions within less than two minutes.

Keywords: Flow inverse problem, optimal control, Surrogate optimization, indoor flows,

heat problems, Genetic Algorithm, Proper Orthogonal Decomposition.
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1. Introduction

Decreasing energy consumption of buildings is an important aspect of the reducing of

global warming. However, the energy reduction has to be compromised with the quality of

thermal comfort inside buildings. To achieve that, optimization applied to indoor airflows,

which is aimed at determining optimal flow values for some well chosen parameters are of

great interest. The optimization objective can be expressed in the whole or a part of the

domain, in terms of field variables such as inlet velocity, wall temperature, heat source,

etc. For flows in buildings, which are mostly mixed convection turbulent flows, high fi-

delity solvers are privileged for parameter identification problems. A usual class of flow

optimization algorithms consists in standard gradient descent algorithms using high fidelity

adjoint equations. The search direction is computed as the functional cost sensitivity over

the design variables and the solution is moved along until an optimal solution is reached.

This approach was used for instance by Liu et al. to find optimal thermo-fluid boundary

conditions in a two-dimensional cavity [1] and to optimize the air supply location, size, and

parameters in a two dimensional non isothermal ventilated cavity [2]. It was also used to

optimize buoyancy-driven ventilation flows governed by Boussinesq equations [3, 4]. A ma-

jor limitation of high fidelity adjoint-based algorithms is that they are more likely to stuck

in local optima. To overcome this issue, a global optimization search can be carried out by

Genetic Algorithms (GAs) [5]. In the context of mixed-convection flows, high fidelity solvers

combined with GA have been investigated and validated in [6, 7]. Compared to high fidelity

adjoint based optimization approach, high fidelity based GA is more efficient in terms of

finding global optimal solutions, yet it requires a tremendous computing load, leading to

turn the attention to techniques of model reduction.

Reduced-order models have been extensively used in fluid dynamics in order to reduce the

computational burden in optimization and control applications. Recently, POD (Proper

Orthogonal Decomposition) reduced order models based on Galerkin projection were suc-

cessfully combined with optimization approaches allowing a drastic alleviation of the opti-
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mization computational effort. A standard approach used by Tallet et al. [8] and Bergmann

et al. [9] consists in using high fidelity simulations to extract a POD basis representing the

main structures of a set of snapshots sampled at different parameter values. The temporal

dynamics is afterwards calculated by solving an ordinary system of differential equations

resulting from Galerkin projection of the governing equations onto the global POD basis.

By considering the global POD/Galerkin reduced order model (ROM) as the state equa-

tions, a reduced scale optimization problem can be formulated and solved in near-real time.

However, in many physical cases, the global POD/Galerkin ROM may experience issues of

accuracy due to the overload of information in the global POD basis. Sophisticated subspace

interpolation techniques such as the the Grassmann interpolation proposed by Amsallem et

al. [10] is an efficient local method meant to restrict the ROM predictions to the wanted

physical regime. In the context of the Galerkin/ROM adjoint-based optimal control, the

Grassmann interpolation was successfully embedded in a suboptimal control strategy to

achieve a near-real time optimal control of transfer phenomena [11].

In the last two decades, interest in surrogate models for flow optimization problems is

increasingly growing. Interestingly, the power of these methods is their dispense on the

underlying mathematical model. Surrogate Genetic Algorithms are intensively used in the

context of airfoil and aerodynamics design. In these cases, in order to decrease the compu-

tational time, the fitness is evaluated with metamodels such as radial basis function network

[12], feed-forward multi-layer perceptron [12, 13, 14, 15], support vector regression algorithm

[16], Gaussian Process Regression [17], the Kriging model [18] or POD (Proper Orthogonal

Decomposition) for separating the space and parameters [19], etc. For more details the

reader can refer to the review article [18]. It is worth noting that in these applications, the

performed studies involve only steady flows, and the aim of the present article is to study

unsteady flows. Few attempts have been carried out in this subject, namely by using POD

based reduced order models and interpolation in the Grassmann manifold [20] and Artificial
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Neural Networks (ANN) [21, 22, 23, 24, 25, 26].

In this paper, we formulate a new surrogate optimization technique based on the Rieman-

nian Barycentric interpolation of subspaces. This interpolation method is based upon the

geometry of the manifold of fixed rank matrices studied in detail in [27]. It was initially

used to interpolate low-rank solutions of the Luyapunov equations resulting from paramet-

ric linear input-output reduced order system [28], and recently adapted to interpolate the

parametric Navier-Stokes Galerkin/ROM [29]. In contrast to a similar approach needing a

calibration phase for the interpolated POD subspaces [30, 20], the barycentric interpolation

naturally results in modes that are arranged according to the POD energetic content. This

property allows to interpolate the time and space matrices separately and simply multiply

them to form an approximation of the sought untrained solutions. The aim of the following

study is to use preexisting time dependent flow solutions to solve the inverse parameter

identification problem involving the turbulent mixed-convection flow in a cavity. The opti-

mization objective is to determine the inlet temperature that optimizes the cost functional

related to maintaining a desired temperature distribution in the occupied zone of the cavity.

The remainder of this article is organized as follows. First, the studied Mixed convection

inverse problem is presented in section 2. In section 3, the barycentric interpolation used

for parametrized time dependent solutions prediction is detailed. Next, the surrogate Ge-

netic Algorithm is outlined in section 4. In section 5, numerical experiments assessing the

potential of this approach are carried out on the inverse problem involving the turbulent

mixed-convection flow in a cavity. Finally, conclusions are drawn in section 6.

2. Mixed convection inverse problem

2.1. Optimization problem settings

This study focuses on the inverse problem of temperature distribution in a two-dimensional

ventilated cavity, whose dimensions are 1.04m×1.04m, and which is shown in figure 1. The
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temperature θhot of the bottom wall of the cavity is higher than the temperature θcold of

the other walls:

θhot = 35.5oC and θcold = 15oC (1)

The air inlet (resp. outlet) is located at the top left (resp. bottom right) corner of the

Figure 1: Description of the studied mixed-convection flow

cavity. The vertical dimension of the air inlet (resp. outlet) is 0.018 m (resp. 0.024 m). The

inlet air temperature θ is meant to be variable and the inlet velocity U is set to a constant.

The turbulent air flow in the cavity is governed by the equations of mass conservation,

momentum conservation, energy conservation, of an incompressible Newtonian fluid with

Boussinesq’s assumption

∇ · v = 0

ρ∂tv + ρv · ∇v = −∇p+ µ∆v + ρg β(Θ−Θ0)ey +∇σt

ρ cp ∂tΘ + ρ cp v · ∇Θ = λ∆Θ +∇qt

(2)

where v, Θ, p are the time averaged velocity4, temperature and pressure obtained with an

Unsteady Reynolds Averaged Navier-Stokes (URANS) turbulence model. ρ, µ, Cp, λ are the

density, dynamic viscosity, heat capacity and heat conductivity of the fluid at the reference

4In these equations, v, Θ and p should have been written v, Θ and p. To alleviate the notations in the

reminder of the paper, the time averaged notation will not be used.
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temperature Θ0, g is the gravitational acceleration, β is the thermal expansion coefficient.

σt and qt are the turbulent Reynolds stress and the turbulent heat flux given by

σtij = −ρv′iv′j qti = −ρ cp v′iΘ′

where v′ and Θ′ stand for the temporal mean values of the fluctuating velocity and tem-

perature. The aim of the following study is to solve the constrained nonlinear optimization

problem

min
θ
J (y) subject to N (y, θ) = 0 (3)

where J is the functional describing the cost to minimize, N the non-isothermal Navier-

Stokes equations (2) and y(θ) the state variable which might be represented for example by

the velocity field v or the temperature Θ. In the present article, since the turbulent mixed-

convection flow is strongly influenced by the inlet temperature θ, we use this quantity as

optimization variable. For a given temperature distribution Θ̂, the goal is to recover the

inlet temperature θ that minimizes the objective functional

J (Θ) =

∫ tf

0

∫
Ωint

(Θ− Θ̂)2 dx dt (4)

where [0, tf ] is the time frame of simulation and Ωint the restricted occupied zone of the

spatial domain depicted in figure 1. It is worth mentioning that one could also think

about optimizing on different parameters, such as inlet air velocity and the coordinates

or the intensity of a heat source in the domain Ω. Since a GA strategy is to be used,

these parameters can easily be incorporated into the cost functional without inducing any

modification in the optimization process.

2.2. Standard GA approach

The general idea of GA is illustrated in the flowchart 2. GA consists in starting from

a randomly generated set (of size N
chrom

) of chromosomes θ1, θ2, . . . , θN
chrom

, forming a

population. The size of populations is unchanged and fixed to N
chrom

along the generations.

In each population, a fitness value [31] is assigned to each chromosome θj . Virtually, any
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no!
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new

2 , . . . , θ
new

N
chrom

Figure 2: Outline of the generic Genetic Algorithm.

fitness function can be chosen given that no requirement for continuity in the derivatives is

needed. Some examples of the choice of fitness functions can be found in [32, 33, 34, 35]. In

the present paper, the fitness function f is chosen as the inverse of the objective function,

i.e, the fitness of the jth chromosome is calculated as follows

f(yj) =
1

J (yj , θj)

where yj is obtained by solving the constraint problemN (yj , θj) = 0. In order to evolve pop-

ulations, three main genetic operators [36], modeled on the Darwinian concepts of natural

selection and evolution are used. These are :

Selection. There are several methods for selecting the best chromosomes and their transfer

to the next generation. In general, a new population of chromosomes is chosen to survive

based on their fitness values. That means that a chromosome θj with a large fitness value

has higher probability of being reproduced and passed down into the next generation. The
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probability of reproduction can be calculated as follows

P js = f(yj)

/N
chrom∑
i=1

f(yi)

Using this reproduction probability, N
chrom

solutions from the current generation are selected

by the roulette rule [37] to survive for the next generation. These reproduced solutions are

afterwards modulated by the crossover and mutation operators [36] .

Crossover. The crossover is the operation wherein genes are exchanged between two chro-

mosomes. In particular, all the surviving chromosomes by the roulette selection rule are

randomly paired. Precisely, two individuals are randomly selected as parent individuals,

then arbitrary positions on both individuals are chosen for crossing locations where ex-

change of genes takes place. In practice, a random number ranging from 0 to 1 is generated.

If the random number is greater than a probability Pc, the two chromosomes in the original

pair remain into the next generation. Otherwise, the crossover takes place, and two new

chromosomes are created to replace the parent chromosomes.

Mutation. The mutation operator is responsible for bringing new information to the pop-

ulation. With a probability Pm ranging from 0 to 1, the mutation operator accidentally

changes one of the resulted genes.

The above genetic operations are repeated for a predetermined number of generations ar-

bitrarily set by the user. The best chromosome of the final generation is declared as the

global optimized solution. Despite their superiority with respect to other optimization ap-

proaches, a serious weakness of high fidelity based GAs is their considerable requirements

in computational effort and memory storage [38]. In fact, GA needs to perform high fi-

delity simulations many times for each evolved population (iteration). With the increase

in the number of generations, the populations and their required crossovers and mutations

will increase. These, in turn increase the time complexity of GA, making unfeasible their

application in near-real time. In order to tackle this issue, an interpolation strategy suited
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for non-linear parameterized data and intended to replace the high fidelity solver in the GA

is proposed in the next section.

3. Barycentric interpolation for nonlinear parametrized data

3.1. Data compression strategy by using the POD

Consider a set of parametrized matrices {Y
k
∈ RNx×Ns , k = 1, . . . , Np} formed from the

discrete solutions5 y(θk) of a transient non-linear flow problem. i.e,

Y
k

=



y(t1 , x1, θk) y(t2 , x1, θk)

...
. . .

y(t
1
, xNx

, θk) y(t
Ns
, xNx

, θk)


In practice, θ refers to a parameter of the flow problem, Nx the number of spatial degrees

of freedom and Ns the number of time steps, where it is assumed that Nx exceeds Ns by

several orders of magnitude. The aim of the following is to extract a set of reduced matrices

Y
k

that describes the dynamics of the full order matrices Y
k
. To this end, assume that each

matrix Y
k

is approximated in a POD basis 6 of dimension q as follows

Y
k
≈ ΦkΛk

T (5)

where Φi ∈ RNx×q and Λi ∈ RNs×q are respectively the spatial and temporal bases. Now,

consider the POD respectively of orders r and s, r, s ≤ qNp, of the column block matrices

[
Φ1 Φ2 · · · ΦNp

]
= ΦϕT and

[
Λ1 Λ2 · · · ΛNp

]
= ΛαT

5In our case, the solutions y correspond to the turbulent mixed convection temperature distribution Θ

and θ the inlet temperature.
6The POD bases are constructed such that they verify optimality with respect to the Euclidean inner

product. In this case, the POD is nothing but the Singular Value Decomposition (SVD). However, other

inner products such as L2 or H1 can be used. More details about the POD approach can be found in [39].
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where Φ ∈ RNx×r, ϕ ∈ RqNp×r, Λ ∈ RNs×s, α ∈ RqNp×s. Let ϕi ∈ Rq×r and αi ∈ Rq×s,

i = 1, . . . , Np, be the column block matrices of ϕT and αT such as

ϕT =

[
ϕ1 ϕ2 · · · ϕNp

]
and αT =

[
α1 α2 · · · αNp

]

It yields that the full order snapshots matrix associated to the parameter θk can be written

as

Y
k
≈ Φϕkα

T
kΛT (6)

It is important to note that in the above expression is very economic in terms of cost and

memory load. In fact, the global matrices Φ and Λ are calculated and stored for once.

Only the nested matrices Y
k

= ϕkα
T
k that change with respect to parameter variation. In

parametric applications such as parameter identification problems, rather than using the full

order matrices Y
k
, it is more convenient to manipulate the corresponding nested reduced

matrices Y
k

of significantly reduced size r× s in order to achieve low cost calculations. The

interpolation strategy of the matrices Y
k

is detailed in the next subsection.

3.2. Data interpolation

In the following, the interpolation approach is first presented for two data samples. The

generalization to an arbitrary number of data samples is given afterwards. Let Y1 and Y2

be two parametrized compressed matrices associated respectively to θ1 and θ2, such that

Y1 = ϕ1α
T
1 Y2 = ϕ2α

T
2

where ϕk and αk are rank-q parameterized matrices resulted from the data compression

procedure. By using the above representations, the goal is to predict the matrix Ỹ asso-

ciated to a new parameter value θ̃ different from θ1 and θ2. To this end, the barycentric

interpolation proposed in [29] for subspaces interpolation is used. For the sake of simplicity,

we restrict ourselves to univariate Lagrange functions to generate interpolation weights. In

the general, other interpolation functions such as Radial Basis Functions (RBF), Kriging,
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etc, can be used for univariate or multivariate interpolation parameters. The Lagrange

functions constructed by using two points θ1 and θ2 are given by

ω1(θ̃) =
θ̃ − θ2

θ1 − θ2
ω2(θ̃) =

θ̃ − θ1

θ2 − θ1

During the interpolation process, two sorts of subspaces have to be distinguished. The spa-

tial subspaces span(ϕ1) and span(ϕ2), and the temporal subspaces span(α1) and span(α2).

The proposed data interpolation technique suggests to predict the new matrix Ỹ by applying

the barycentric interpolation strategy to the spatial and temporal subspaces separately, i.e,

it consists in solving the fixed point problems

(Px)



Find ϕ̃ such that :

ϕ̃Tϕ1
SVD
= ξ1Σ1η

T
1 and ϕ̃Tϕ2

SVD
= ξ2Σ2η

T
2

ϕ̃ =
θ̃ − θ2

θ1 − θ2
ϕ1Q̃1 +

θ̃ − θ1

θ2 − θ1
ϕ2Q̃2 where Q̃1 = η1ξ

T
1 and Q̃2 = η2ξ

T
2

(Pt)



Find α̃ such that :

α̃Tα1
SVD
= ζ1Υ1τ

T
1 and α̃Tα2

SVD
= ζ2Υ2τ

T
2

α̃ =
θ̃ − θ2

θ1 − θ2
α1K̃1 +

θ̃ − θ1

θ2 − θ1
α2K̃2 where K̃1 = τ1ζ

T
1 and K̃2 = τ2ζ

T
2

where the notation
SVD
= stands for the Singular Value Decomposition of the left hand side.

The iterative process to solve the problem (Px) is described by the following fixed point

sequence

(Px)



ϕ̃(0) given, for n ≥ 0

Perform the SVD of ϕ̃(n)Tϕ1
SVD
= ξ

(n)
1 Σ

(n)
1 η

(n)T

1 then set Q̃
(n)
1 = η

(n)
1 ξ

(n)T

1

Perform the SVD of ϕ̃(n)Tϕ2
SVD
= ξ

(n)
2 Σ

(n)
2 η

(n)T

2 then set Q̃
(n)
2 = η

(n)
2 ξ

(n)T

2

Update the interpolant as ϕ̃(n+1) =
θ̃ − θ2

θ1 − θ2
ϕ1Q̃

(n)
1 +

θ̃ − θ1

θ2 − θ1
ϕ2Q̃

(n)
2

The same strategy applies for the resolution of problem (Pt). Now, once the solutions ϕ̃ and

α̃ respectively, of the fixed points problems (Px) and (Pt) are found, the reduced snapshot
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matrix Ỹ can be formed as

Ỹ = ϕ̃ α̃T =

(
θ̃ − θ2

θ1 − θ2

)2

ϕ1Q̃1K̃
T
1 α

T
1 +

(
θ̃ − θ1

θ2 − θ1

)2

ϕ2Q̃2K̃
T
2 α

T
2

+
(θ̃ − θ1)(θ2 − θ̃)

(θ1 − θ2)2

(
ϕ1Q̃1K̃

T
2 α

T
2 + ϕ2Q̃2K̃

T
1 α

T
1

)
A very interesting property of the above formula is that even though space and time reduced

bases {ϕ1, ϕ2} and {α1, α2} are separately interpolated, the calibration between the columns

of ϕ̃ and α̃ is naturally ensured by the barycentric interpolation, unlike the method in [20]

where the calibration is lost by the Grassmannian interpolation.

Let us now state the general framework of the data interpolation approach. To do so,

consider a set of parametrized data matrices Y
1
, · · · ,Y

Np
associated to the parameter values

θ1, θ2, . . . , θNp , such that

Y
k

= ϕkα
T
k , k = 1 . . . , Np

The approximate matrix Ỹ for a new untrained value θ̃ 6= θk obtained by solving the

following fixed point problems

(Px)



Find ϕ̃ such that :

ϕ̃Tϕk
SVD
= ξkΣkη

T
k , k = 1, . . . , Np

ϕ̃ =

Np∑
k=1

ωk(θ̃)ϕkQ̃k where Q̃k = ηkξ
T
k

(Pt)



Find α̃ such that :

α̃Tαk
SVD
= ζkΥkτ

T
k k = 1, . . . , Np

α̃ =

Np∑
k=1

κk(θ̃)αk K̃k where K̃k = τkζ
T
k

The solution is then constructed as follows

Ỹ =

Np∑
k,h=1

ωk(θ̃)κh(θ̃)ϕkQ̃kK̃
T
h α

T
h

where Q̃k and K̃k are orthogonal matrices and ωk and κk are some interpolation functions

of sum equal to 1, verifying ωk(θi) = κk(θi) = δki, with δki the piecewise Kronecker delta

function which value is 1 if k equals i and 0 otherwise. The interpolation procedure of

nonlinear parametrized data is summarized in algorithm 1.
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Algorithm 1: Non-linear data interpolation strategy

Offline :

Use the POD to compress the trained parametrized data matrices Y
k

such that

Y
k
≈ ΦY

k
ΛT where Y

k
= ϕkα

T
k

Online :

Give a value of θ̃ (chosen by the user) and calculate the weights ωk(θ̃) and κh(θ̃)

Set Ỹ(0) = ϕ̃(0)α̃(0)T arbitrary, for example choose a point Y
k

from the sampling

while Error > ε do

for k ∈ {1, . . . , Np} do

Calculate the matrix Q̃
(n)
k = η

(n)
k ξ

(n)T

k where ϕ̃(n)Tϕk
SVD
= ξ

(n)
k Σ

(n)
k η

(n)T

k

Calculate the matrix K̃
(n)
k = τ

(n)
k ζ

(n)T

k where α̃(n)Tαk
SVD
= ζ

(n)
k Υ

(n)
k τ

(n)T

k

Update : ϕ̃(n+1) =

Np∑
k=1

ωk(θ̃)ϕk Q̃
(n)
k , α̃(n+1) =

Np∑
h=1

κh(θ̃)αh K̃
(n)
h

Evaluate the error a : Error =

Np∑
k=1

Np∑
h=1

||Q̃(n)
k K̃

(n)T

h − Q̃(n−1)
k K̃

(n−1)T

h ||F .

n←− n+ 1

Form the interpolated matrix : Ỹ = ϕ̃(n+1) α̃(n+1)

aThe error is evaluated by the the Frobenius norm denoted || · ||F .

In terms of computational complexity, the operations in Algorithm 1 involve matrix-

matrix products and Singular Value Decompositions of matrices of size Npq × q where Np

(number of training points) and q (POD order of truncation) are in general of order of dozens

or hundreds. Thus, the total computational cost for a single prediction by Algorithm 1 is

proportional to O(Npq
3), which makes it a very computationally efficient procedure. As

a result, and in order to tackle the severe computational effort of Genetic algorithms, a

surrogate optimization procedure based on the barycentric interpolation is proposed in the

next section. In this procedure, Algorithm 1 is used as solution predictor instead of the

Navier-Stokes turbulent high fidelity solver.
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4. Surrogate Genetic Algorithm

Basically, the proposed surrogate GA is an optimization strategy to solve inverse prob-

lems by means of available precomputed parametrized flow data. The major advantage of

this approach is that the relationship between the state variable y and the optimization

variable θ, earlier established through the mapping N , is now replaced by the cheap explicit

formula of the barycentric interpolation

y(tl, xj , θ̃) ≈ Φ(xj)ỸΛT (tl) (7)

where Φ(xj) and Λ(tl) denote respectively the jth and lth rows of the matrices Φ and Λ,

and Ỹ the reduced snapshots matrix to be found by algorithm 1.

In order to make sure that the surrogate GA performs in an optimal manner, the chromo-

somes are enriched by virtual genes. These genes are the order of POD truncation q and

the number of spatial and temporal interpolation neighbors denoted respectively nex and

net. To illustrate this, let Y1 , . . . ,Y4 be four reduced matrices associated to the parameter

values θ1 < θ2 < θ3 < θ4 respectively such that

Y
k

= ϕkα
T
k , k = 1, . . . , 4

where ϕk and αk are rank-q matrices. Suppose that we want to find an approximation of

the reduced matrix Ỹ for an untrained value θ̃ ∈]θ1, θ2[ by using an order of POD truncation

m < q, three neighbors for spatial interpolation (nex = 3) and two neighbors for temporal

interpolation (net = 2). Then the untrained reduced matrix is approximated as

Ỹ =

3∑
k=1

2∑
h=1

ωk(θ̃)κh(θ̃)ϕkQ̃kK̃
T
h β

T
h

where the columns of ϕk and βh are truncated up to the order m. If Lagrange functions are

used, the weights write

ωk(θ̃) =

3∏
i=1
i6=k

θ̃ − θi
θk − θi

and κh(θ̃) =

2∏
i=1
i6=h

θ̃ − θi
θh − θi
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In the proposed genetic algorithm strategy, the jth chromosome is then the candidate θ̄j =

{θj , net, nex, q} where θj , net, nex and q are its genes. Accordingly, the original optimization

problem (3) is modified yielding to

min
θ̄
J (Ỹ, θ̄) such that Ỹ is the output of algorithm 1

In the next section, the potential of this approach is assessed on the inverse parameter

identification problem involving a turbulent mixed convection flow.

5. Numerical experiments

5.1. Validation of the high fidelity computations

In this section, the CFD model used to solve the mixed-convection problem is first vali-

dated.This validation is performed by comparing the numerical results to the experimental

results obtained by Blay et al. [40], where a turbulent mixed convection flow was generated

in a ventilated cavity with dimensions 1.04 × 1.04 × 0.7 m3. In this experiment, a two-

dimensional flow was generated in the enclosure shown in figure 1, which was surrounded

by two guard cavities. The reference temperature Θ0 was the average temperature in the

cavity. The Rayleigh number of this configuration, based on the cavity height and on the

temperature difference between the heated floor (θhot = 35.5oC) and the other walls and

the inlet (θcold = θ = 15oC), was 2.13×109. The Reynolds number based on the air velocity

at inlet U = 0.57m/s and on the inlet height was 654.

To compute this flow, and to generate all input data necessary for the study presented

in this paper, the finite volume code OpenFOAM [41] was used. The computational domain

was discretized into a non uniform grid made of 26680 hexaedral cells, which was very tight

close to the walls, in order to properly discretized the boundary layer. The two-dimensional

turbulent flow was modeled with the RNG k-epsilon model [42]. The non-isothermal flow

described by equations (2) was calculated with the buoyantBoussinesqPimpleFoam solver.

At the inlet, the velocity boundary conditions were u = 0.57 m/s and v = 0 m/s, and the

turbulent boundary conditions were k = 1.25 × 10−3m2/s2 and ε = 5.76 × 10−3m2/s3. In
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what follows, the inlet temperature will be varied between 2oC and 27oC. On the walls,

no-slip boundary conditions were applied for the velocity components, the temperature was

equal to 35.5oC on the floor, and to 15oC on the other walls. At the outlet, zero gradient

boundary conditions were applied for the temperature, the velocity components and the

turbulent variables. The convection terms were discretized with the Gauss linear Upwind

scheme, and the laplacian terms were approximated with the Gauss linear corrected scheme.

At t = 0 s, the temperature in the cavity is equal to θcold, and the velocity to 0. The final

time instant tf was chosen in such a way that the temporal evolution of the temperature in

the center of the cavity did not vary according to time. For all simulations, tf = 1250 s was

a sufficiently a long time interval to achieve the established regime of the flow.

The CFD computations were validated with the experiments carried out by Blay et al.

for an inlet temperature equal to 15oC. With the used non uniform mesh, the average y+

value was equal to 0.55, and the maximum value was 3.09. In figure 3, the temperature

profiles for the inlet temperature θ = 15oC, at x = 0.52 and at y = 0.52 are shown such

that, Θ∗ = Θ−Θ0

θhot−θcold , x∗ = x/H and y∗ = y/H where H is the cavity height. A satisfactory

agreement can be noticed.

(a) Θ∗ at x∗ = 0.5 (b) Θ∗ at x∗ = 0.5

Figure 3: Comparison between the numerical results (CFD) and the experimental results (Exp Blay et al.)

of Θ∗ at x∗ = 0.5 (a) and y∗ = 0.5 (b) at the established regime of the flow.
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5.2. Dynamics of the mixed convection flow for variable inlet temperatures

The isovalues of temperature obtained for three inlet temperatures 2oC, 14oC and 26oC

are represented in Figure 4. It can be seen that these flows represent three different complex

regimes. For the small inlet temperature θ = 2oC, the air in the upper left part of the

cavity, which is too cold, falls along the left wall, warmed by the hot floor, and finally

lifted by natural convection with a counterclockwise motion along the hot floor. For the

higher inlet temperature θ = 14oC, the air in the upper part of the cavity is warm and

the clockwise motion of a large recirculation region induced by the combined effects of the

forced convection phenomenon and the natural convection phenomenon along the hot floor

can be seen. For the highest inlet temperature θ = 26oC, the injected air is hot and remains

in a large region along the ceiling, it falls afterwards along the left and right cold walls, and

lift up along the heated floor, inducing two recirculation regions, a clockwise one in the right

part of the cavity, and a counterclockwise one in the left part of the cavity. In the following,

the surrogate GA will be applied for this complex unsteady flow involving different regimes.

5.3. Surrogate optimization problem

In what follows, the earlier proposed surrogate GA approach is used in order to tackle the

severe computational effort due to high fidelity simulations. Thereby, the time required for

evaluating the fitness of one chromosome passes from several hours7 to real time , and thus,

drastically reducing the time needed for optimization. The goal of the following experiment

is to act on the inlet temperature θ in order to minimize the discrete cost functional

J (Θ) =
1

Ns

Ns∑
n=1

∫
Ωint

(Θn − Θ̂n)2 dx (8)

where the interior subdomain represented in figure 1 is considered such that Ωint = [0.1, 0.9]×

[0.15, 0.7]. The superscript n refers to the time instant, Θn the calculated temperature and

7In our case, the full parallel simulation on 15 processors of the mixed convection flow problem on a mesh

of 26680 cells, needed about 6 hours.
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(a) Temperature distributions associated to the inlet temperature θ = 2oC

(b) Temperature distributions associated to the inlet temperature θ = 14oC

(c) Temperature distributions associated to the inlet temperature θ = 26oC

Figure 4: Illustration of the rich dynamics of the training sampling solutions. The temperature distributions

are represented in at three time instants : t = 8.75s (left), t = 55s (middle) and t = 1250s (right)

Θ̂n the target temperature.

The training parametrized solution data are calculated by OpenFOAM for different values

of inlet temperature θ over the time interval [0, tf ]. The corresponding POD decompositions

are constructed by using 1000 snapshots uniformly spaced in the time interval [0, tf ] and

the maximal POD truncation order is set to 50.

Let Θ̂(θ) be a CFD solution for the inlet temperature θ at the time instant tn and Θ̃n(θ)

its prediction by Algorithm 1. The percentage of error between the CFD and predicted
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temperatures is given by the expression

εmean(θ) = 100

√√√√ 1

Ns

Ns∑
n=1

∫
Ω

(
Θ̃n(θ)− Θ̂n(θ)

)2

dx√√√√ 1

Ns

Ns∑
n=1

∫
Ω

Θ̂n(θ)2dx

(9)

Before applying the new surrogate GA to the turbulent mixed convection flow problem,

a study to assess the accuracy and the sensibility of the barycentric interpolation with

respect to the considered number of samples (i.e distance between parameters ∆θ), number

of interpolation neighbors net and nex for temporal and spatial POD bases respectively,

and the order of the POD truncation q is performed in the next subsection.

5.4. Sensibility of the barycentric interpolation with respect to ∆θ, nex, net and q

A thorough analysis of the barycentric interpolation is performed herein for the mixed-

convection flow problem when the inlet temperature θ varies. To this end, we consider

the ensemble of snapshots data generated by considering the inlet temperature values

2oC, 3oC, 4oC, . . . , 27oC. For a fixed value of ∆θ the training set of parameters is Itr(∆θ) =

{2o+k∆θ}k≥0 such that the last value does not exceed 27oC and the set of test parameters

are I
test

(∆θ) = {2oC, 3oC, . . . , 27oC} \ {2oC + k∆θ}k≥0. For example if ∆θ = 2oC, then

Itr(2
oC) = {2, 4, . . . , 26} and the Itest(2

oC) = {3oC, 5oC, . . . , 27oC}. For all values ∆θ vary-

ing in {2oC, 3oC, . . . , 8oC}, net ≥ 2, nex ≥ 2 and q ∈ {1, 2, . . . , 50}, we run all the possible

predictions by the barycentric interpolation and evaluate the following error

E(∆θ, net, nex, q) = max
k∈Itest (∆θ)

εt(θk) (10)

εt(θk) is the percentage of error (9) where the prediction of the temperature Θ̃(θk), by the

barycentric interpolation, is performed on the training POD data (truncated to the order

q) corresponding to the points I
tr

(∆θ) and by considering net and nex neighbors for spatial

and temporal subspaces respectively. In Figure 5, we plot the lower hull of the errors in the

four directions ∆θ, q, nex and net. We observe that the barycentric interpolation is less

sensible to ∆θ, net and q, but most sensible to nex. Overall, an error E nearly less than
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2% can be noticed within the ranges ∆θ = {2oC, 3oC}, q ≥ 7, nex ≤ 4 and net ≤ 6. In

the next subsection, we chose ∆θ = 3oC for the numerical experiment of the surrogate GA,

while the parameters nex, net and q are allowed to freely vary in the search space.

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2oC 3oC 4oC 5oC 6oC 7oC

P
er

ce
n
ta

ge
of

er
ro

r
E

∆θ

(a) Influence of the step ∆θ

1.8

2

2.2

2.4

2.6

2.8

3

3.2

0 5 10 15 20 25 30 35 40 45 50

P
er

ce
n
ta

ge
of

er
ro

r
E

q

(b) Influence of truncation q

1

10

100

2 4 6 8 10 12 14

P
er

ce
n
ta

ge
of

er
ro

r
E

nex

(c) Influence of the number of neighbors nex

0

2

4

6

8

10

12

14

16

18

20

22

2 4 6 8 10 12 14

P
er

ce
n
ta

ge
of

er
ro

r
E

net

(d) Influence of the number of neighbors net

Figure 5: Lower hull of the errors in the four directions ∆θ, q, nex and net.

5.5. Application of the surrogate GA to the turbulent mixed-convection flow problem

The optimization is performed by acting on the inlet temperature θ. The considered

training injection temperature values belong to the set I
tr

(3oC) = {2oC, 5oC, . . . , 23oC, 26oC}.

Given a temperature distribution Θ̂, the aim is to apply the surrogate GA to approximate

the associated optimal inlet temperature. The space of search by surrogate GA is set to

K =
{

(θ, net, nex,m) ∈ R+ × N3, 2oC ≤ θ ≤ 26oC; 2 ≤ net, nex ≤ 13 and 4 ≤ m ≤ q
}
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Different tests are performed for temperature distributions associated to 16 inlet values

in the set I
test

(3oC) = {3oC, 4oC, 6oC, 7oC, . . . , 24oC, 25oC}. In the following numerical

experiments of surrogate GA, a population of 20 chromosomes formed by 4 genes randomly

generated in K is used as initial guess to run the surrogate GA. The selection probability

is set to 60%, the crossover probability to 75% and the mutation probability to 30%. The

algorithm is allowed to run until a maximum number of iterations predetermined by the

user is reached. The maximum number of iterations here is set to 20.

For each test inlet temperature, the surrogate GA is run until the averaged cost functional

stagnates, meaning by that the populations contain a chromosome of high recurrence. The

results of these tests in terms of parameter approximation and percentage of error defined

by equation (9) are plotted in Figure 6. It can be confirmed that the surrogate GA succeeds

to recover a good approximation θ̃ of the sought inlet temperature θ̂ with a good accuracy

of the reconstructed temperature distribution of less than 3% of error. Moreover for all the

optimization tests, the optimal values of q, nex and net are within the ranges q ≥ 7, nex ≤ 4

and net ≤ 6. This matches the ranges of the previous sensibility study. In the following,

we focus on the surrogate GA predictions for three inlet temperatures 4oC, 13oC and 24oC

that correspond to three different flow regimes. For these cases, the evolution of the cost

functional and percentage of error of the surrogate GA solutions are given in Figure 7. It

can be noticed that the cost functional has a good decay behavior and that the recorded

percentage of error at the end of the surrogate GA is nearly less than 4% almost everywhere

in the time interval, where the percentage of error at time tn between the CFD temperature

Θ̂n and the approximate temperature Θ̃n is given by the expression

ε(tn) = 100

√∫
Ω

(
Θ̃n − Θ̂n

)2

dx√∫
Ω

Θ̂n2dx

This is further inspected from a visual perspective in Figures 8, 9 and 10, where it can be

seen that the surrogate GA succeeded to track the provided target temperature and catch

most of the dynamics features present in the temperature.
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In terms of computational effort, the proposed surrogate GA is very efficient and performs

in near-real time. The overall computational time needed to perform 20 generations in a

single cluster was less than two minutes. This represents a very important gain in CPU

time compared to traditionally used high fidelity approaches in inverse problems of time

dependent turbulent flows.

0oC

5oC

10oC

15oC

20oC

25oC

0oC 5oC 10oC 15oC 20oC 25oC

S
u

rr
og

at
e

ap
p

ro
x
im

at
e
θ̃

Optimal inlet temperature θ

(a) Comparison of inlet temperatures

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0oC 5oC 10oC 15oC 20oC 25oC

P
er

ce
n
ta

ge
of

er
ro

r
ε m

ea
n

Optimal inlet temperature θ

(b) Percentage of error

Figure 6: Comparison of the predicted inlet temperatures obtained by the surrogate GA for the different

tests, and the associated percentage of error with respect to the CFD simulation.
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Figure 7: Evolution of the mean averaged functional by the surrogate GA and percentage of errors over the

time interval of the converged temperature solution.

6. Conclusions

In this paper, we proposed a surrogate optimization approach by combining the Genetic

Algorithm and the barycentric interpolation. The barycentric interpolation is presented here

as an equation-free approach that allows to predict via interpolation the evolution of new

untrained solutions without any knowledge of the physics hidden behind. The numerical
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(a) High fidelity temperature associated to θ̂ = 4oC

(b) Approximate Temperature by the surrogate GA

Figure 8: Comparison of the high fidelity and surrogate GA temperature solutions for θ̂ = 4oC at three

different instants of the flow. The first columns is the temperature at t = 8.75s where the first thermal

plumes appear, the middle is temperature at t = 55s and the last one is the temperature at the established

regime (t = 1250s).
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(a) High fidelity temperature associated to θ̂ = 13oC

(b) Approximate Temperature by the surrogate GA

Figure 9: Comparison of the high fidelity and surrogate GA temperature solutions for θ̂ = 13oC at three

different instants of the flow. The first columns is the temperature at t = 8.75s where the first thermal

plumes appear, the middle is temperature at t = 55s and the last one is the temperature at the established

regime (t = 1250s).
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(a) High fidelity temperature associated to θ̂ = 24oC

(b) Approximate Temperature by the surrogate GA

Figure 10: Comparison of the high fidelity and surrogate GA temperature solutions for θ̂ = 24oC at three

different instants of the flow. The first columns is the temperature at t = 8.75s where the first thermal

plumes appear, the middle is temperature at t = 55s and the last one is the temperature at the established

regime (t = 1250s).
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assessments of the surrogate is performed on the inverse problem involving a turbulent

mixed convection problem, where the variation is carried out on the inlet temperature. This

strategy succeeded to track the optimal solutions and to deliver satisfying approximations

in less than two minutes. This first successful attempt on turbulent dynamics endorses

the potential of this approach and opens the path to the perspective of its application to

multi-parametric turbulent data solutions.
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