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A B S T R A C T

Additive manufacturing is revolutionizing structural design, with lattice structures becoming increasingly
prominent due to their superior mechanical properties. However, simulating these structures quickly and
accurately using the finite element method (FEM) remains challenging. Recent research has highlighted beam
element simulation within FEM as a more efficient alternative to traditional solid FE simulations, achieving
similar accuracy with reduced computational resources. However, a significant challenge is managing the lack
of rigidity at nodes and the prevalence of low aspect ratio beams. While various methodologies have been
proposed to address these issues, there is still a gap in the comprehensive evaluation of their limitations. An
optimal node penalization methodology is required to expand the limited range of accurately represented lattice
behavior. A preliminary study investigates lattice geometries through comparative analysis of solid and beam
FE simulations. Built on this, we developed a methodology suitable to linear, dynamics and nonlinear beam
FE simulations, contributing to enhanced computational speed and accuracy. Several lattice structures were
printed using material jetting and quasi-static compressive tests were conducted to validate the methodology’s
accuracy. The numerical results reveal a good accuracy between the proposed beam FE methodology and
the experimental data, offering a better alternative to conventional FEM for energy absorption in terms of
computing time.
1. Introduction

In recent years, additive manufacturing (AM) has opened doors to
innovative structures with unique mechanical properties (Wu et al.,
2023; Helou and Kara, 2018; Dadashi and Rahimi, 2024). Of particular
interest are lattice structures, which offer various functionalities, such
as energy absorption (Yin et al., 2023; Zhang et al., 2024; Hajjari
et al., 2021) and vibration damping (Zheng et al., 2023; Lumpe and
Stankovic, 2021), making them applicable across various industries
including automotive, aerospace, and sports equipment to name a
few. However, exploring the design space of lattice structures poses
significant computational challenges (Zheng et al., 2023; Lumpe and
Stankovic, 2021). Therefore, developing accurate and efficient simu-
lation methods is crucial. Standard solid or volumetric finite element
(FE) models require high computational costs due to the intricate three-
dimensional mesh of lattice structures. To mitigate this, two main
strategies have emerged.

On the one hand, multiscale homogenization methods have been
developed to simulate the mechanical behavior of heterogeneous struc-
tures across multiple scales (Somnic and Jo, 2022b; Glaesener et al.,
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2019). These approaches compute an equivalent macroscale behavior
from analyses occurring in the underlying heterogeneous microstruc-
ture (often denoted as the Representative Volume Element or the Unit
Cell in the context of periodic metamaterials). For instance, multilevel
FEM (FE2 Glaesener et al., 2021; Raju et al., 2021; Monaldo and Marfia,
2021), computes homogenized fields from the unit-cell FE model and
assigns them at each integration point of the macroscale FE model;
the Multiscale FEM (MsFEM Wang et al., 2023; Henyš et al., 2019;
Zhang et al., 2010) where numerically computed basis functions that
encode the microscale heterogeneity; or direct (eventually high-order)
numerical homogenization (Somnic and Jo, 2022a; Glaesener et al.,
2020; Arabnejad and Pasini, 2013; Hassani and Hinton, 1998) where
macroscale material parameters are identified from several analyses
performed over the microscale model. Nowadays, in this context of
multiscale homogenization, it is a common practice to use the mi-
croscale models to train surrogate models which are then used later on
during the macroscale simulations to reduce the overall computational
time (polynomial function Costa et al., 2022, kriging Liu et al., 2022,
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Fig. 1. (a) Comparison of node dimensions according to the beam model and the 3D model for the Body Centered Cubic unit cell (BCC) (b) Methodology applied to the BCC unit
cell.
neural network Ross and Hambleton, 2021; Gao et al., 2023; Dos Reis
and Karathanasopoulos, 2022). However, their effectiveness relies on
a clear separation of scales, which may not always hold true for
lattice structures due to minimal available length scales imposed by
AM techniques.

On the other hand, full-scale modeling approaches leverage ad-
vanced models and numerical methods to solve fine-scale problems effi-
ciently (Hirschler et al., 2022, 2024). For truss-based lattice structures,
employing beam formulations can significantly reduce computational
costs (Weeger et al., 2023; Musenich et al., 2023). However, stan-
dard beam models may overlook material concentration at junctions
within lattice structures (see Fig. 1(a)), which leads to underestimate
the stiffness of the overall structure (Luxner et al., 2005; Gümrük
and Mines, 2013; Smith et al., 2013; Labeas and Sunaric, 2010; Guo
et al., 2020; Tahmasebimoradi et al., 2021). To address this limitation,
several strategies have been proposed to modify the stiffness at the
junctions (Luxner et al., 2005; Gümrük and Mines, 2013; Smith et al.,
2013; Labeas and Sunaric, 2010; Guo et al., 2020; Tahmasebimoradi
et al., 2021; Terriault and Brailovski, 2018; McDonnell et al., 2024).
These modifications are commonly done through two main penalty
parameters: the length of the nodal zone denoted in this work 𝑙zone , and
a second parameter that increases the stiffness within this nodal zone
(see Fig. 1(b)). This stiffness increase can either be done by enlarging
the cross-sections via a penalty coefficient denoted here 𝛼r (e.g. in case
of circular cross-section defining 𝑅𝑧𝑜𝑛𝑒 = 𝛼r𝑅), or by increasing the
Young’s modulus via a penalty parameter denoted here 𝛼𝐸 (i.e., defining
𝐸𝑧𝑜𝑛𝑒 = 𝛼𝐸𝐸).

However, it seems that there is no consensus on the most appro-
priate penalty parameters for beam models of lattice structures. For
example, Luxner et al. (2005) found appropriate results using 𝛼𝐸 = 1000
to joints with at least four connecting beams, while Gümrük and Mines
(2013) recommended 𝛼𝐸 = 1.5 and 𝑙zone = 𝑅 for body-centered cubic
(BCC) microstructures. Alaimo et al. (2023) optimized the length pa-
rameter 𝑙zone using a multi-objective genetic algorithm for a BCC lattice
structure. Schwahofer et al. (2023) proposed a method to evaluate 𝛼𝐸
based on geometric arrangements. Regarding the studies that penalize
cross-section dimensions, it appears that setting the penalty coefficient
as 𝛼r = 1.4 is frequently adopted, see for instance (Smith et al., 2013;
Labeas and Sunaric, 2010; Guo et al., 2020; Tahmasebimoradi et al.,
2021; Lozanovski et al., 2020b; McDonnell et al., 2024). However,
the penalty region 𝑙zone varies across these studies. For instance, Smith
et al. (2013) and Labeas and Sunaric (2010) select one-tenth of the
length of the trusses for lattice geometries such as BCC, BCCZ or
F2FCCZ (Face Centered Cubic with beam on Z axis). Guo et al. (2020)
employ a more general approach allowing the use of denser lattice
structures. They defined 𝑙zone by trimming a 3D geometric model at the
node. Additionally, let us mention Meng et al. (2020) that employed
tapered beams to consider both material accumulation at the truss
junctions and other geometric defects coming from AM. Weeger et al.
(2019) utilized a more sophisticated method: defining the radius by
a quadratic B-Spline curve which leads to smooth and regular cross-
section variations. Finally, Tahmasebimoradi et al. (2021) introduced
2 
a hybrid method using solid elements over the joint regions and beam
elements elsewhere.

While these methods focus on specific lattice geometries within
narrow relative density (i.e., the ratio between the amount of mate-
rial and the volume enclosing the unit cell) ranges, several studies
introduce advanced models which incorporate material or geometric
non-linearities (Guo et al., 2020; Weeger et al., 2023; Tahmasebimoradi
et al., 2021; Meng et al., 2020; Lozanovski et al., 2020b; Gärtner et al.,
2021; Lozanovski et al., 2020a; Smith et al., 2013). This diversity
complicates reproducibility and comparability of results, hindering the
identification of a generic strategy for a wide range of lattice structures
achievable through AM. The dynamic modeling of lattice structures,
including damping properties (Liu et al., 2021a; Scalzo et al., 2021)
and responses to high-speed impacts (Xiao et al., 2020; Dwyer et al.,
2023; Ling et al., 2019; Yang et al., 2023), are also of interest, yet few
studies employ beam modeling in such numerical simulations. Scalzo
et al. (2021) implemented a beam model with 𝑙zone = 𝑅 and 𝛼r = 1.4,
aiming to evaluate the damping properties of BCCZ structures with
various levels of relative density. Finally, Liu et al. (2021b) presented
a method for analyzing the non-linear frequency response, considering
the joint as a spatial nonlinear spring–damper system with bilinear
hysteresis. Using beam models for dynamic simulation can also be a
suitable alternative to solid models. However, it seems that there is no
consensus on the penalty parameters necessary to mitigate for the lack
of rigidity at the nodes in the context of dynamic analyses too.

Therefore, the objectives of this study are twofold. The first one is to
formulate simple static and dynamic problems, along with simple met-
rics, that enable us to evaluate the accuracy of beam models of lattice
structures. Then, using these metrics, the second objective is to identify
the optimal penalty parameters of the joint stiffening. Those parameters
are investigated by simulating various lattice structures across different
relative densities. Finally, once those penalty parameters are in hand,
we investigate whether the improvements observed in linear elastic
simulations are also observed in more advanced cases, such as elasto-
plastic material behavior, geometric non-linearity, or when comparing
with experimental data.

This work is organized according to these objectives. Section 2
presents the followed methodology in order to identify the penalty pa-
rameters of the joint stiffening. Section 3 presents numerical examples
that highlight the performance of the suggested formulation. Finally, in
Section 4 we investigate the applicability of the penalty method in more
general cases, and Section 5 provides conclusions on the relevance of
our methodology for simulating lattice structures with beam models.

2. Beam element penalization methodology

2.1. Beam model accuracy for lattice structures

2.1.1. Beam formulation
In this work, we consider shear-deformable, Timoshenko-like 3D

beam models. Let us recall the basics of such a beam formulation in
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Fig. 2. von Mises stress related to the six loading cases for the BCCZ cell: (a) beam element model, and (b) 3D solid element model.
the context of linear elasticity. The initial configuration of the beam
is represented by an arc-length parameterized centerline curve 𝒙c ∶
[0, 𝑙] → R3 and an orthonormal frame field 𝑹 ∶ [0, 𝑙] → SO(3) describing
the cross-section orientation. The map from the initial configuration
to the deformed configuration is described by the displacement field
of the centerline 𝒖c ∶ [0, 𝑙] → R3 and the cross-section rotational
field 𝜽 ∶ [0, 𝑙] → R3. More specifically, the strain measures, according
to the Timoshenko beam theory, can be expressed as follows:

𝝐 =
⎛

⎜

⎜

⎝

𝑒𝑡
𝛾1
𝛾2

⎞

⎟

⎟

⎠

= 𝑹⊤𝒖′c + 𝒆1 × 𝜽, 𝜿 =
⎛

⎜

⎜

⎝

𝜅𝑡
𝜅1
𝜅2

⎞

⎟

⎟

⎠

= 𝜽′, (1)

where (⋅)′ denotes the arc-length derivative, 𝒆1 the first Cartesian
vector, 𝝐 the tensile and shear strain vector, and 𝜿 the torsional and
bending strain vector.

For an isotropic elastic material, the constitutive relation can be
characterized by a Young’s modulus 𝐸 and a shear modulus 𝐺. The
internal forces 𝒏 and moments 𝒎 are then given by:

𝒏 = 𝑨𝝐, 𝑨 = diag (𝐸 𝐴 𝐺 𝐴1 𝐺 𝐴2
)

, (2)

𝒎 = 𝑩 𝜿, 𝑩 = diag (𝐺 𝐽 𝐸 𝐼1 𝐸 𝐼2
)

, (3)

where 𝐴, 𝐴1, and 𝐴2 defines the cross-section area and shear areas,
respectively, and 𝐽 , 𝐼1, and 𝐼2 defines the torsional constant and second
moments of area, respectively. Shear and torsion are often scaled with
correction factors, i.e., in general 𝐴𝑖 ≠ 𝐴 and 𝐽 ≠ 𝐼1 + 𝐼2. Readers may
refer to Pilkey (2002) for more details regarding Timoshenko-like beam
models.

Finally, we recall the variational formulations associated with such
a beam model. The static equilibrium of a structure modeled with
Timoshenko beams may involve weak problems of the following form:

∫[0,𝑙]
𝒏 ⋅ 𝛿𝝐 +𝒎 ⋅ 𝛿𝜿 dl = ∫[0,𝑙]

𝒃c ⋅ 𝛿𝒖 dl + BCs, (4)

where 𝒃𝑐 denotes line loads applied along the beam centerline, and
BCs denotes additional terms associated with the imposed boundary
conditions (e.g., an imposed displacement, an imposed rotation, an
applied force, or an applied moment).

2.1.2. Assessment of the beam models accuracy via linear static analyses
over representative unit cells

We seek a straightforward method to assess beam models accuracy
in the context of lattice structures. The developed approach uses com-
mon practices in the context of multi-scale homogenization. The idea is
to formulate problems within representative unit cells and subsequently
computing several quantities of interests in order to evaluate the accu-
racy of the model later on. The results obtained with the beam models
are compared with those obtained with a solid model.

More specifically, let us define a macro-displacement field 𝒖0 over
an elementary volume 𝛺0 by:
𝒖0(𝒙) = ∇�̂�0 ⋅ 𝒙, f or 𝒙 ∈ 𝛺0, (5)

3 
where the macro-displacement gradient ∇�̂�0 is taken constant over the
macro-domain. We are then looking for the fluctuation vector fields,
solutions of:

∫𝛺
𝝈 ∶ 𝛿𝜺 dv = −∫𝛺

(𝑪 ∶ 𝜺(𝒖0)) ∶ 𝛿𝜺 dv + PBCs, (solid formulation)

(6a)

∫[0,𝑙]
𝒏 ⋅ 𝛿𝝐 +𝒎 ⋅ 𝛿𝜿 dl = −∫[0,𝑙]

(𝑨𝝐(𝒖0, 𝟎)) ⋅ 𝛿𝝐 dl + PBCs, (beam formulation)

(6b)

where, in Eq. (6a), 𝝈 denotes the linearized Cauchy stress tensor, 𝜺
the linearized Green–Lagrange strain tensor, and 𝑪 the Hooke material
tensor. The problems defined in Eq. (6) are solved under periodic
boundary conditions (PBCs) which is known, in the context of homog-
enization, to make the micro-macro-transition fulfill the Hill–Mandel
condition. These PBCs can be enforced via multiple point constraints
in the case of matching meshes at the periodic interfaces (Omairey
et al., 2019). Other more advanced approaches, as for instance the
Nitche method, might be used to enforce those PBC for general non-
conforming meshes (Henyš et al., 2019). Once the solution of Eq. (6)
in hand, one can compute effective (or average) stresses for the solid
model �̂�solid or for the beam model �̂�beam as:

�̂�solid = 1
|𝛺0| ∫𝛺

𝝈 dv, �̂�beam = 1
|𝛺0|

∑

𝑖∈
𝒏𝑖 ⊗ 𝒙𝑖c, (7)

where  denotes the set of boundary nodes.
Finally, the comparison between the beam models and the solid

model involves comparing the effective stresses. Here, this done over
six loading cases to account for the unit cell’s behavior under nor-
mal and shear strains, as depicted in Fig. 2. In other words, we
choose in Eq. (5), the macro-displacement gradient, and thus, the input
displacement fields as:

∇�̂�0 =
1
2
(

𝒆𝑘 ⊗ 𝒆𝑙 + 𝒆𝑙 ⊗ 𝒆𝑘
)

⇒ 𝒖𝑘𝑙0 (𝒙) = 1
2
(

𝑥𝑙𝒆𝑘 + 𝑥𝑘𝒆𝑙
)

, f or 𝒙 ∈ 𝛺0,

(8)

where (𝑘, 𝑙) take successively the following pairs of values: {11, 22, 33,
12, 13, 23}. By collecting the effective stresses for all six load cases,
the accuracy of a beam model relative to a reference solid model is
evaluated as:

𝜀st at ic =
‖𝐒solid − 𝐒beam‖𝐹

‖𝐒solid‖𝐹
, (9)

where ‖ ⋅ ‖𝐹 denotes the Frobenius norm, and 𝐒 ∈ R6×6 stacks the
vectorized effective stresses (using Voigt notation for instance) for the
six load cases:

𝐒 =

⎡

⎢

⎢

⎢

�̂�1111 �̂�2211 … �̂�2311
�̂�1122 �̂�2222 … �̂�2322
⋮ ⋮ ⋱ ⋮

⎤

⎥

⎥

⎥

, (10)

⎢

⎣

�̂�1123 �̂�2223 … �̂�2323
⎥

⎦
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Fig. 3. The first nine vibrational modes of a modal analysis of BCC unit cell, each
mode is tripled due to the geometry symmetry.

with �̂�𝑘𝑙𝑖𝑗 being the 𝑖𝑗-component of the effective stresses for the 𝑘𝑙-
load case. Operator 𝑺 is the effective elasticity tensor in the context
of first-order homogenization. In this study, the computation of the er-
ror 𝜀st at ic involves evaluating the differences between elasticity tensors
obtained from a solid model and a beam model. However, the focus
is not directly on effective elasticity tensors. Instead, the error 𝜀st at ic is
calculated to assess the accuracy of a beam model for a lattice unit
cell, offering a relatively quick and general context for evaluation.
The Frobenius norm was chosen as the accuracy evaluator due to its
simplicity and effectiveness in providing a single, coherent indicator
for comparing different models.

2.1.3. Assessment of the beam models accuracy via modal analyses over
unit cells

In addition to the static analyses described in Section 2.1.2, it is
valuable to compare the dynamic response of lattice structures obtained
with beam models to the one obtained with a solid model. To achieve
this, natural vibration analyses are performed over representative unit
cells, i.e., the solution involves:

− 𝜔2
∫𝛺

𝜌𝒖 ⋅ 𝛿𝒖 dv +∫𝛺
𝝈 ∶ 𝛿𝜺 dv = 0 + PBCs, (solid formulation)

(11a)

− 𝜔2
∫[0,𝑙]

𝜇𝒖c ⋅ 𝛿𝒖c dl +∫[0,𝑙]
𝒏 ⋅ 𝛿𝝐 +𝒎 ⋅ 𝛿𝜿 dl = 0 + PBCs, (beam formulation)

(11b)

where 𝜌 and 𝜇 = 𝜌𝐴 denote the density and the linear density of the
material, respectively. In this work, these natural vibration problems
are performed under periodic boundary conditions (as for the static
analyses, see Eq. (6)). This choice is motivated by the fact that these
boundary conditions are often set in the context of (quasi)-periodic
media as is the case for lattice structures. Those natural modes could
be observed within lattice structures. An example of results is given in
Fig. 3.

When performing natural vibration analysis, a fixed number of
modes 𝑛modes is computed, specifically those associated with the small-
est eigenvalues. This is done in this work, and the solid and beam
models are compared by computing the following quantity:

𝜀dy na =
‖ 𝒕solid − 𝒕beam ‖2

‖ 𝒕solid ‖2
, (12)

where vector 𝒕 collects the time periods:

𝒕 =
(

𝑇4 𝑇5 … 𝑇𝑛modes

)

, 𝑇𝑖 =
2𝜋
𝜔𝑖

. (13)

The first three modes are associated with translational rigid body
motions (rotational rigid body are removed due to the PBCs), and thus
4 
𝜔1 = 𝜔2 = 𝜔3 = 0. We omit those modes that have infinity time periods.
We also do not compare the frequencies (or pulsations) directly as it
leads to give more importance to the largest computed frequencies. On
the contrary, employing the time periods in the expression of 𝜀dy na leads
to prioritize the smallest computed frequencies.

2.2. Defining the length of the stiffening region

The parameter denoted 𝑙zone (the length of the junctions) plays an
important role in the numerical simulation, representing the size of
the node, and consequently, its rigidity. Four strategies with different
definitions of 𝑙zone , drawn from the literature and investigated in this
work, are detailed below and in Fig. 4:

• Strategy 1: 𝑙zone = 𝐿∕10, with 𝐿 being the length of the beam as
done in Labeas and Sunaric (2010),

• Strategy 2: 𝑙zone = 𝑅, with 𝑅 being the radius of the beam
according to Gümrük and Mines (2013),

• Strategy 3: 𝑙zone = 𝑅
√

3, according to Guo et al. (2020),
• Strategy 4: 𝑙zone (𝑅, 𝛾) accounting for joint geometry hereafter.

Among strategies found in the literature, none seems to take into
account the arrangement of the beams in the 3D space. However,
the angle between the beams influences the overlap at the node, as
highlighted in Fig. 5. Indeed, a small angle implies a high nodal
overlap. The length 𝑙zone can be expressed with respect to the radius
𝑅 of the beams and the angle 𝛾 through the following trigonometric
relation:

𝑙zone (𝑅, 𝛾) = 𝑅
t an( 𝛾2 )

. (14)

The angle 𝛾 is formed by the directional vectors of the neutral fibers of
two adjacent beams (see Fig. 5 again). In scenarios where more than
two beams join at the same node, the smallest angle formed with other
beams is considered for each beam. This relationship allows for defining
potentially different 𝑙zone for each beam along the structure. To simplify
the description of the results, each strategy will be referred to by its
previously associated number (see Fig. 4).

2.3. Defining the penalty coefficient

Unlike the length of the junctions 𝑙zone , it is less straightforward
to determine an appropriate value for the parameter that penalizes the
structural behavior in these regions. The penalty strategy favored in this
work relies on increasing the radius instead of increasing the Young’s
modulus. This choice was motivated by its widespread use in recent
literature (Gümrük and Mines, 2013; Smith et al., 2013; Labeas and
Sunaric, 2010; Guo et al., 2020), but the same methodology can be
applied if one chooses to penalize the elastic modulus.

The idea is to compute the error 𝜀st at ic on various lattice unit cells
to identify an appropriate value. More specifically, we consider solving
the following optimization problem:

𝛼∗r = ar gmin
𝛼r∈[1,5]

𝜀st at ic(𝛼r ), (15)

for different unit cells. This optimization problem can be solved with
the standard Brent optimization algorithm (Brent and Watson, 1973;
Atkinson, 1989). This algorithm was employed in this work due to its
straightforward usability and its gradient-free nature.

2.4. Balance the mass distribution

The increase of the cross-sections near the joints compensates for
the lack of rigidity at nodes, but it alters the mass distribution within
the structure. At every node, the mass is increased due to the penalty
coefficient 𝛼r that augments the radius of the beam. Even if one chooses
to penalize the Young’s modulus, the density 𝜌 in the nodal zones
𝑧𝑜𝑛𝑒
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Fig. 4. Comparative schematic of three strategies found in literature (Labeas and Sunaric, 2010; Gümrük and Mines, 2013; Guo et al., 2020) and a novel approach for 𝑙zone .
Fig. 5. (a) BCC unit cell half-cut by a center plane (b) Graph illustrating the relationship between 𝑙zone and the angle 𝛾 with 𝑅 = 0.5 mm (Strategy 4) (c) Cross-sectional view of
BCC unit cell (𝑙𝑥 = 𝑙𝑦 = 𝑙𝑧 = 5 mm, 𝑅 = 0.5 mm which implies 𝛾 = 70.5◦) (d) Cross-sectional view of BCC (𝑙𝑥 = 𝑙𝑦 = 8 mm 𝑙𝑧 = 5 mm, 𝑅 = 0.5 mm which implies 𝛾 = 47.7◦).
Fig. 6. Set of 3D solid lattice unit cells that are studied in this work.
can also be adapted to compensates for the overlaps near the junctions:
beam models usually overestimate the mass of the structures. More
precisely, the objective is to define 𝜌𝑧𝑜𝑛𝑒 so that the mass of the beam
model equal an objective mass 𝑚𝑜𝑏𝑗 (which is either the exact mass
of the structure obtained with a CAD model or a solid model, or an
estimated mass), i.e., we are looking for 𝜌𝑧𝑜𝑛𝑒 solution of:

∫𝛾𝑖𝑛𝑡
𝜌𝐴 dl +∫𝛾𝑧𝑜𝑛𝑒

𝜌𝑧𝑜𝑛𝑒𝐴𝑧𝑜𝑛𝑒 dl = 𝑚𝑜𝑏𝑗 , (16)

where 𝛾𝑧𝑜𝑛𝑒 is the penalized domain and 𝛾𝑖𝑛𝑡 is the internal domain (or
the remaining domain), 𝜌 is the material density, and 𝐴𝑧𝑜𝑛𝑒 is the area
of the cross-sections in the penalized zones. In case of homogeneous
material (and thus constant densities), the density 𝜌𝑧𝑜𝑛𝑒 can be defined
as:

𝜌𝑧𝑜𝑛𝑒 =
1

𝑉𝑧𝑜𝑛𝑒
(𝑚𝑜𝑏𝑗 − 𝜌𝑉𝑖𝑛𝑡), (17)

where 𝑉𝑧𝑜𝑛𝑒 and 𝑉𝑖𝑛𝑡 are the volumes of the penalized and internal
regions of the beam model, respectively.
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3. Numerical examples

Several lattice structure geometries have been chosen, as depicted
in Fig. 6, to explore the validity domains of the penalization strategies.
Each unit cell has been selected based on its frequent appearance in
the literature, such as the Body-Centered Cubic (BCC) cell. The group
of unit cells is designed to include structures with a variable number
of beams and angles between these beams, aiming to achieve greater
diversity within the dataset. All structures were studied in the radius
range between 0.025 mm and 0.2 mm, with a step of 0.025 mm. By
acting on the radius, the domain of relative density will depend on
the structure. This variation is influenced by structural features such
as the number of beams and nodes, which determine the material
distribution in the cell (Chen et al., 2018a). Beam theory requires a
high aspect ratio (beam length/beam radius) to accurately represent
mechanical behavior. Thus, the domain is narrowed by calculating the
ratio between the smallest beam length in the structure and its radius.
For Timoshenko beam model, the limitation of the ratio is set to values
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Fig. 7. 𝜀st at ic (relative error) as a function of 𝜌r el (relative density) for multiple modelization strategies for (a) BCC, (b) BCCZ, and (c) Cubic unit cell.
greater than 4 (which already exceeds standard recommendations for
these beam elements Schwahofer et al., 2023).

All simulations were conducted with the software Abaqus (Das-
sault Systèmes, Vélizy-Villacoublay, France, Version 2022) coupled
with a Python script allowing rapid modeling, simulation, and extrac-
tion of results. Subsequently, after performing a mesh convergence
analysis, ten-node tetrahedral elements with an approximate global
size of 0.0375 were selected for the 3D solid model. For the beam
configuration, Timoshenko beam linear elements sized at 0.2 were
adopted.

The material model applied in this section for determining the
penalization coefficient is assumed to be purely linear elastic. The
Young’s modulus, denoted as 𝐸 = 1013MPa, was determined experi-
mentally (further details in Section 4.1). Additional material properties,
including a density of 1.18 g/cm3 and Poisson’s ratio of 𝜈 = 0.3, were
obtained from Stratasys (Ver, 2024).

3.1. Evaluating the effects of 𝑙zone the stiffening region on beam model
accuracy

To effectively address the stiffness issue in the beam models, a
variety of strategies are evaluated in Fig. 7, focusing on three unique
geometric configurations. For each strategy, the relative errors are
computed within the range of relative density. In this section, the
penalty coefficient is set at 𝛼r = 1.5. Fig. 7(a) presents the results for the
BCC unit cell. For the beam strategy without modification, the relative
error rapidly grows as the relative density increases. This highlights the
necessity for an approach that considers the concentration of material
at the nodes when investigating lattice structures with less slender
beams. The results of Strategy 1 are noteworthy as the curve contains
a minimum point situated at 𝜌r el = 0.05. Moreover, at this density, the
outcomes are equivalent to both Strategy 3 and Strategy 4. Thus, it
becomes evident that Strategy 1 is only efficient with relative densities
close to 0.05. While Strategy 2 offers fewer errors than the unmodified
approach, Strategies 3 and 4 are the most optimal for this particular
cell, yielding comparable results. This can be attributed to the fact that
the angle is consistent for all beams in the BCC cell. In this case, Eq. (14)
delivers a result close to 𝑅

√

3, which corresponds to Strategy 3.
As shown in Fig. 7(b), the various strategies lead to similar results

for the BCCZ unit cell than for the BCC cell. It is noteworthy from
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the analysis that, within the context of low-density ranges, Strategy 2
exhibits enhanced efficacy for the BCCZ cell in comparison to the BCC
cell. Strategies 3 and 4 prove once again to be equivalent and highly
effective, for the same reasons as mentioned earlier.

In contrast to the previously discussed cells, the Cubic cell is char-
acterized by having fewer beams and exhibiting larger angles between
these beams. The analysis of the Cubic cell depicted in Fig. 7(c)
shows that Strategy 4 performs the best, whereas Strategy 3 is not
as effective compared to its performance in the previous cells. The
errors generated by Strategy 3 are more significant than the model
without any modification, as it overestimates the length to be modified.
In this case, Eq. (14) yields a modification length less than 𝑅

√

3.
The strategy that consistently delivers stable results across different
cell types and relative densities is Strategy 4, as it accounts for both
the beam’s radius and the angles within the structure. Therefore, our
optimal methodology adopts Strategy 4.

3.2. Optimizing the penalty coefficient 𝛼r

Subsequently, the radius increase coefficient 𝛼r was investigated
for several cells. Strategy 4, which exhibited the highest performance
previously, was selected for the length parameter modification 𝑙zone .
In Fig. 8, the results indicate that optimizing the penalty parameter
(i.e., solving the optimization problem defined in Eq. (15)) diminishes
the errors between the solid and beam models throughout the full
range of relative densities. This trend is consistently observed across
all structural configurations studied.

The optimized coefficients 𝛼∗r of all unit cells and spanning the
entire range of studied relative densities, are presented in Fig. 8. The
optimal penalty coefficients 𝛼∗r are grouped between 1.3 and 1.63 for all
cells. The variations of the parameter across the range of relative den-
sity are different depending on the geometry. For instance, 𝛼∗r changes
little for the Octahedron cell, while it changes quite significantly for the
BCCZ cell. Therefore, it seems not possible to determine a generalized
relationship between the stiffening coefficient 𝛼r and relative density
𝜌r el for all cells. However, as the important thing is to reduce the
highest relative errors 𝜀st at ic, which corresponds to cases of high relative
density, it might be relevant to focus on these highest relative densities.
The computed average of the optimal coefficients at maximum densities
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Fig. 8. Optimization result of 𝛼r (a) Graph of relative error 𝜀st at ic versus relative density 𝜌r el for a BCC unit cell employing both a fixed coefficient of 1.5 and an optimized
coefficient. (b) Aggregated results showing the optimized penalty coefficient 𝛼∗

r across various studied lattice structures.
Fig. 9. Relative errors in frequency mode for (a) BCC, (b) BCCZ, and (c) Cubic cells across three modelization methodologies showing the impact of joint modifications and mass
distribution on accuracy.
for each cell type is 𝛼r = 1.496, not far from 𝛼r = 1.4 as reported
in existing literature (Smith et al., 2013; Labeas and Sunaric, 2010;
Guo et al., 2020). Thus, based on our results, we suggest to set the
penalty parameter as 𝛼r = 1.5. Interestingly, as shown in Fig. 8(a), such
a fixed value leads to very similar results to the ones obtained with the
optimal penalty parameters for the BCC cell. We also observed the same
behavior for the other unit cells. Selecting 𝑙zone as defined in Eq. (14)
and 𝛼r = 1.5 leads to satisfactory results with significant improvements
to the original non-penalized beam models as already highlighted in
Fig. 7. The deviations between beam models with the identified penalty
method and solid 3D models is about 10% at different relative densities
for each unit cell: 0.3 for BCC, 0.25 for BCCZ and 0.1 for Cubic cell.
7 
3.3. Evaluating added mass effects on the structural dynamics

As pointed out in Section 2.4, the material density in the penalized
region might need to be adapted in order to recover appropriate struc-
tural dynamics. In order to investigate this point, we perform modal
analyses over unit cells for which we compute the dynamic error 𝜀dy na
as defined in Eq. (12). The number of computed modes is 𝑁modes = 20.
Those analyzes are done with the following beam models:

• Beam model without any modifications (referred to as Model A),



T. Cadart et al. International Journal of Solids and Structures 306 (2025) 113107 
Fig. 10. Stress–strain response of VeroClear™ material fabricated using material jetting technology.
• Beam model employing Strategy 4 with a radius increase coef-
ficient 𝛼r = 1.5 but no mass balance (referred to as Model B),

• Beam model employing Strategy 4, 𝛼r = 1.5, and mass correction,
detailed below (referred to as Model C).

In Fig. 9 are compiled the results for BCC, BCCZ, and Cubic lattice
geometries. Across all structures, a similar trend is observed for Model
A: the relative error progressively increases with the relative density.
This recurring trend highlights the essential need for modifications
in beam joints to preserve accuracy. Model B reduces the natural
frequency differences with the solid model at low relative density.
However, this model exhibits a rapid escalation of the relative error
as the relative density increases. This effect is attributable to, on one
hand, the improvement of rigidity from the modifications at nodes,
and on the other hand, the worsening of the mass repartition within
the structure. Model C corrects this issue by re-establishing the mass
distribution on the nodes. One can observe the large improvements
obtained with this last model for all three lattice unit cells in Fig. 9. In
conclusion, conducting dynamic simulations of lattice structures using
FE beam models requires careful consideration of joint behavior and
mass dispersion that arises from the application of stiffening correction.

4. Extension to nonlinear analyses and experimental comparison

In this section, we investigate whereas the obtained improvements
with the selected penalty parameters over linear elastic simulations are
also observed in the context of more advanced cases, and especially
against experimental data.

4.1. Experimental framework

Material jetting AM is particularly beneficial for lattice structure
production due to its high precision, essential for maintaining the
intricate geometries and mechanical properties of lattice designs. It
allows for unparalleled design freedom, enabling the creation of com-
plex lattice configurations that are challenging with traditional man-
ufacturing methods. Additionally, its multi-material capabilities and
efficiency align well with sustainable manufacturing practices, making
it a forward-thinking choice in modern engineering (Stankovic et al.,
2015; Kreide et al., 2023). Test specimens were manufactured using a
Stratasys Objet260 Connex3 printer, with VeroClear™ material. Experi-
mental trials were conducted on a Lloyd LR 50K traction/compression
machine. Quasi-static tensile tests were conducted on six specimens in
accordance with the ISO 527-2 standard, and the results are compiled in
Fig. 10. The material model has been established within the simulation
software using an tabular dataset.
8 
4.2. Uniaxial compression of an unit-cell made of elasto-plastic material

To assess the viability of our joint stiffening methodology in more
complex cases, we investigate uniaxial compression tests over unit cells
using the elasto-plastic material model obtained in Section 4.1. Geo-
metric non-linearities are accounted for in the simulations, which al-
lows for accurate modeling of large deformations and rotations (NLGEOM
option in Abaqus). Several simulations are conducted. Indeed, three
models are considered: a solid model considered as the reference model,
a standard beam model without any joint stiffening methodology, and a
beam model with our identified penalty method for the joint stiffening
(a geometrical definition of the penalty region that takes into account
the angles between the trusses, and a penalty coefficient 𝛼r = 1.5
that increases the radius of the cross-sections within these zones). BCC
unit cell is studied with periodic boundary conditions across a relative
density range of 0.05 to 0.46.

Fig. 11 illustrates the macroscopic stress–strain response from com-
pression tests for each simulation methodology. The standard beam
model consistently underpredicts the structural response across all
densities, confirming again the need to formulate a beam modeling
approach suitable for finite element simulations of lattice structures.
The macro-stress is underestimated which indicates that the model is
not stiff enough (as expected). The modified beam model, however,
aligns closely with solid FE results for geometries with a relative density
below 0.3. Beyond this threshold, the modified beam model tends to
underestimate the macroscopic stress. These differences can likely be
attributed to the mechanical behavior of the structures, which are not
fully captured by the Timoshenko beam theory or the current treatment
of plasticity within the beam formulation. It has been observed that
plastic strain initiates earlier in the solid simulation compared to the
beam model. Moreover, the modified beam model shows a relocation
of the maximum stress at the edge of the stiffened region, altering the
beam’s behavior. This effect is more pronounced in lattice structures
with high relative density.

Thus, the beam FE simulation domain is enhanced thanks to our
stiffening modification methodology for elasto-plastic cases too. How-
ever, limitations are observed in the model’s capability to simulate
with low error for high relative densities. The relative error varies
depending on the geometry of the lattice structure (see Section 3.1).
Therefore, the proposed strategy must be used cautiously to avoid
reaching excessively high errors. The stiffening methodology demon-
strates satisfactory accuracy for lattice structures with a relative density
below 0.3. Contrariwise, the methodology imposes no constraints on
the geometries that can be treated, offering broad applicability in lattice
structure simulations.
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Fig. 11. Compression of BCC unit cell for beam, our beam modified and 3D solid model on a range of relative densities.
Fig. 12. As design, as printed and as simulated specimens of BCC lattice structure prepared for compression test (Beam radius: (a) 1 mm (b) 1.5 mm).
4.3. Experimental validation of the beam penalization methodology on
3D-printed BCC structures

Finally, to extend beyond numerical model comparisons (beam ver-
sus solid), we conducted experiments on lattice structures. The lattices
are composed of 6-by-6-by-6 square cells with a side length of 10 mm
(see Fig. 12). Two relative densities were chosen: one in the zone where
9 
the beam simulation method performs correctly (beam radius 𝑅 =
1.0 mm ⇒ 𝜌r el = 0.169) and one with a relative density too high (beam
radius 𝑅 = 1.5 mm ⇒ 𝜌r el = 0.345). Quasi-static compression tests
were conducted experimentally on these lattice structures, and similar
tests were simulated using beam models without and with our joint
stiffening approach, as well as solid FEM simulations.
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Fig. 13. Comparative visualization of 3D-printed specimens and simulation results (Solid FEM on the left of the red line and beam with optimal penalty parameters on the right)
before major damage on experimental specimen (strain of (a) 0.07 and (b) 0.03) for BCC at relative density of (a) 0.17 and (b) 0.34.
Fig. 14. Macroscopic stress–strain results: Experimental, Solid, Timoshenko and our modified beam methodology for BCC at relative densities of (a) 0.17 and (b) 0.34.
Fig. 13 illustrates the global correlation between the 3D-printed
specimens during testing and the simulations, including both our mod-
ified beam methodology and the solid FEM simulation, before major
damage to the experimental structure. In the case of full-scale lattice
structure simulations, the number of elements in the mesh for solid
models increases significantly, leading to a substantial computational
burden. To manage this, we applied symmetry in the X,Y and Z planes
to reduce the number of mesh elements. This constraint was not nec-
essary for the beam models. Additionally, the simulation time for
solid models is considerably longer, requiring over 14 h compared to
just 2 min for the beam models on a standard laptop, excluding the
time needed to generate the geometry. Complementary video 2 shows
compression test of BCC lattice structures. The results exhibit a good
concordance, underscoring the accuracy of the simulation in replicating
experimental findings.

Fig. 14 synthesizes the macroscopic stress–strain data for each
structural characterization method. The first point to note is that the
differences between solid and beam models are consistent with those
observed in unit-cell simulations (Section 4.2). For the BCC lattice
structure with a 1 mm strut radius (Fig. 14(a)), our modified beam
methodology accurately aligns with the experimental curve for small
10 
deformations, whereas the unmodified beam method underestimates
the stiffness of the structure. At higher deformations, localized strut
failures within the structure emerge, which are not accounted for in
the material behavior simulations, leading to discrepancies. A more
sophisticated material model would be required to accurately capture
these phenomena; however, this is beyond the scope of the current
article. In the case of the BCC structure with a 1.5 mm strut radius
(Fig. 14(b)), the unmodified beam model performs very inadequately.
The penalized beam model performs better, but the differences with the
experimental results are not negligible. Interestingly, the solid model
also fails to accurately predict the mechanical behavior of the structure,
even if it performs a bit better. This is likely due to an insufficiently
precise material model, resulting in these discrepancies.

5. Conclusion

In this paper, a novel methodology for simulating lattice structures
using a FE beam model is proposed. By employing Timoshenko beam
elements, this methodology significantly reduces the computational
expenses commonly associated with solid FE simulations. This strategy
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addresses the lake of rigidity at the nodes of the structure using three
critical parameters:

𝑙zone (𝑅, 𝛾) = 𝑅
t an( 𝛾2 )

, 𝛼r = 1.5, 𝜌𝑧𝑜𝑛𝑒 =
1

𝑉𝑧𝑜𝑛𝑒
(𝑚𝑜𝑏𝑗 − 𝜌𝑉𝑖𝑛𝑡). (18)

This methodology enables effective simulation of additively manufac-
tured lattice structures effectively for linear, nonlinear, and dynamic
behavior. It expands the domain of possible relative density for simu-
lation through the rectification of the node rigidity via 𝑙zone and 𝛼r , as

ell as the mass balance via 𝜌𝑧𝑜𝑛𝑒. However, limitations still exist on the
domain of relative densities. The stiffening methodology demonstrates
satisfactory accuracy for lattice structures with a relative density below
0.3. Experimental testing further validates the accuracy of the modified
eam model in predicting the behavior of entire lattice structures.

The proposed simulation strategy is applicable not only to known
lattice structures, but also to geometries with varying cellular dimen-
sions or relative density gradients. The angles between the beams vary
depending on the gradient function used, which is not considered in
trategies using a constant 𝑙zone length parameter. Functionally graded

lattice structures are recognized for their superior performance across
a broad spectrum of applications (Li et al., 2020; Maskery et al., 2018;
Veloso et al., 2022), especially in terms of energy absorption (Chen
et al., 2018b; Yang et al., 2016; Vangelatos et al., 2020). Further-
more, the development of a robust and efficient methodology enables
he characterization of a wide range of lattice geometries exhibiting
omplex behaviors. Subsequently, large datasets can be leveraged to ad-

vance artificial intelligence (AI) models, deepening our understanding
f the intricate behaviors exhibited by lattice structures. AI models can
acilitate inverse design in practical applications, thereby accelerating

advancements across numerous key sectors. This highlights that this
trategy not only enhances the efficiency of lattice structure analysis

but also opens up new possibilities for complex structural design and
ptimization in engineering applications.
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