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Abstract 38 

Sexing bird species with monomorphic plumage is generally challenging, and sexual size 39 

dimorphism (SSD) is often used to develop morphometric-based sexing tools, e.g., using 40 

discriminant functions. Within species, local selection pressures, age-related and season-41 

related growth, may however induce geographical and temporal variations in body size and 42 

SSD. Such variations may complicate the development of reliable morphometric-based sexing 43 

methods at a broad scale. 44 

We first investigated body size variations in a migratory shorebird species with wide breeding 45 

and wintering ranges, the Sanderling Calidris alba, within the two breeding populations 46 

(Greenland and Russia) and three staging/wintering populations (United Kingdom, Iceland 47 

and Mauritania), which belong to the same flyway. Then, for samples from each region, we 48 

tested whether site-specific (i.e., “regional”) functions performed better than functions 49 
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developed for birds from the other sites (i.e., “foreign” functions) or than an overall 50 

(“flyway”) function that combined all sampled individuals.  51 

We found minor variations in SSD between regions, but significant differences in body size 52 

between sexes and regions. Females were larger than males and, for instance, breeders had 53 

longer wings than staging and wintering birds. Regional functions had similar sexing 54 

efficiency as any other functions applied to sample from each region, except for Western 55 

Africa where the regional function performed slightly better than some of the other functions. 56 

Furthermore, the flyway function developed after merging all subsamples had a similar 57 

efficiency than the regional functions, i.e., from 75.4% to 90% of correct sex assignment 58 

depending on the region. 59 

Given the small or lack of benefit in using regional functions, we conclude that the flyway 60 

function can be used reliably to sex Sanderlings measured at different sites, years or seasons 61 

within the East Atlantic flyway. Our results may help to develop global sexing function for 62 

other bird species. 63 

 64 
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 67 

 68 

Introduction  69 

 70 

Sex-related variations are commonly reported in ecological and evolutionary bird studies 71 

(e.g., Remisiewicz and Wennerberg 2006; Saino et al. 2010; Carvalho Provinciato et al. 72 

2018). In species which exhibit phenotypic differences between males and females, 73 
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determining the sex is an easy task. Conversely, in species with no or limited sexual 74 

dimorphism and/or dichromatism, distinguishing between males and females can be 75 

challenging. To solve this problem, molecular sexing is often the best and most accurate 76 

option, but it requires the collection and preservation of biological samples, and comes with 77 

economical and time constraints (Lessells and Mateman 1998; Morinha et al. 2012). 78 

In many species, males and females differ slightly in some morphometric traits (Fairbairn et 79 

al. 2007). In birds, such sexual size dimorphism (SSD) mainly concerns wing, bill, tarsus, and 80 

head lengths (globally referred to as “body size”). Thus, based on morphological 81 

measurements, sexing tools can be developed. Discriminant functions (DF), allowing sex 82 

determination from a selection of measured morphometric data, are the most widely used 83 

statistical tools (Witkowska and Meissner 2020; Almeida et al. 2020). These methods have 84 

become popular among biologists because, after the initial effort in designing DFs, their 85 

further applications are cheap, easy-to-use, minimally invasive and time effective (Dechaume-86 

Moncharmont et al. 2011; Yannic et al. 2016).  87 

The accuracy of a sexing DF depends on the degree of SSD in the studied species (Kocijan et 88 

al. 2011). In species with low to moderate SSD, i.e., with large overlap in morphometrics 89 

between sexes, the risk of sex assignment errors is higher than in species with high SSD 90 

(Baker et al. 1999; Remisiewicz and Wennerberg 2006). In addition, in species with a wide 91 

geographical range, different populations may be exposed to local selection pressures 92 

resulting in regional variations in body size and/or SSD (Badyaev et al. 2000; Helfenstein et 93 

al. 2004; Santiago-Alarcon and Parker 2007; de Abreu 2018). In such cases, morphometric-94 

based sexing methods might be region-specific (Granadeiro 1993; Weidinger and van 95 

Franeker 1998; Ellrich et al. 2010). For example, a sexing DF generated for Black Terns 96 

(Chlidonias niger) in Wisconsin (USA) performed equally well on neighbouring populations, 97 

whereas a sexing DF from the Oregon State performed poorly on the Wisconsin population 98 
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(Shealer and Cleary 2007). Moreover, individual measurements may change over time. Wing 99 

length, like other plumage morphometric, can fluctuate during the year with moult and wear 100 

(Low 2006; Fernández and Lank 2007), reducing the reliability of morphometrics-based 101 

sexing tools developed and used during different seasons. 102 

To assess the potential effects of geographical and temporal variations of body size and SSD 103 

on morphometrics-based sexing, we compared measurements from different populations 104 

using the same flyway and during different seasons in a migratory shorebird species with a 105 

wide geographical range, the Sanderling (Calidris alba). In breeding plumage, males of 106 

Sanderling often (but not always) have brown-spotted cinnamon feathers on the sides of the 107 

neck and upper breast, and tend to be slightly more colourful than females, while winter 108 

plumage is identical in both sexes (Pienkowski and Green 1976). As plumage cannot be 109 

reliably used for sexing, several sexing DF have already been proposed for this species along 110 

the East Atlantic flyway, from one breeding site (Russia; Soloviev and Tomkovich 1995), one 111 

staging-wintering site (United Kingdom; Wood 1987) and one wintering region (Western 112 

Africa; Mauritania and Ghana combined; Lourenço et al. 2016).  113 

In the present study, our aim was to determine whether the efficiency of a morphometric-114 

based sexing tool is region-specific and time-specific, or if the development of a single 115 

global-scale DF could be relevant. First, we compared body size and SSD of birds sampled in 116 

different regions using morphometrics from the three published studies mentioned above as 117 

well as from unpublished data collected in Greenland and Iceland, respectively additional 118 

breeding and staging sites belonging to the same flyway. Second, we developed new sexing 119 

DFs for (1) Greenland and Iceland and for (2) the East Atlantic flyway using all available 120 

data. Finally, we cross-compared the respective efficiency of each of these six sexing DFs to 121 

assess the extent to which geographical and temporal variations in body size and SSD affected 122 

the predictive power of each sexing DF.  123 
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 124 

 125 

Materials and methods 126 

 127 

Study species 128 

The Sanderling is a high Arctic shorebird species split into two subspecies. C. alba alba 129 

breeds in Greenland and Russia and winters along the Atlantic coasts of Europe and Africa 130 

(East Atlantic flyway), the east coast of Africa (East and South African flyway) and Western 131 

Asia (Southwest Asian flyway). C. alba rubidus, slightly larger than C. a. alba, breeds in 132 

Canada and Alaska and winters along the coasts of the Americas (Reneerkens et al. 2009).  133 

Along East Atlantic flyway, most Sanderlings wintering in Western Europe and Western 134 

Africa appear to belong to the Greenland breeding population and to stop in Iceland during 135 

their northbound migration (Gudmundsson and Lindström 1992; Reneerkens et al. 2009, 136 

2020).  137 

To date, no DF has ever been published to sex birds breeding in Greenland and migrating 138 

through Iceland. The reliability of available DFs from other locations to sex these birds is also 139 

unknown. 140 

 141 

Data collection and morphometric measurements 142 

We collected morphometric data and genetic samples from 422 breeding adults (from June to 143 

August during 2007-2021) at two study sites along the North-East coast of Greenland: 144 

Hochstetter Forland (75.16666°N, 19.75000°W; 74 individuals) and Zackenberg 145 

(74.46665°N, 20.56684°W; 348 individuals). Incubating adults were caught using a 40 cm 146 

wide clap net (model BE40 from “Moudry traps”, Czech Republic, www.moudry.cz) placed 147 

over the nest and automatically released by birds returning on nests when sitting on their 148 
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clutch. The same data and samples were also collected in Sandgerði, Iceland (64.04261°N, 149 

22.71404°W; 560 adults and immatures birds trapped with canon nets), between 2007 and 150 

2013, in May and early June (i.e., just before Greenland birds return to their breeding sites; 151 

Reneerkens et al. 2020).  152 

In addition, we made use of the morphometric and sexing data available from the three 153 

previous studies mentioned above, (i) 71 breeding adults trapped from June to August in the 154 

Knipovich Bay, Russia (76.08333°N, 98.53333°E), in 1990-1992 (Soloviev and Tomkovich 155 

1995), (ii) 45 adults birds staging or wintering from September to May around the estuary of 156 

the Tees river, United Kingdom (54.64162°N, 1.15293°W) in 1983-1984 (Wood 1987), and 157 

(iii) 928 birds (all age classes) wintering in Iwik, Mauritania (19.87754°N, 16.30356°W), 158 

trapped in November-December  between 2002 and 2011 (ca. 75% of birds used to develop 159 

Western Africa DF; Lourenço et al. 2016).  160 

For morphometric traits, the multivariate approach recommended by Engelmoer et al. (1987) 161 

was used in all sites and the following variables were measured with a single method : (1) bill 162 

length (B), from the anterior edge of feathering to tip of culmen, (2) total head (TH), from the 163 

back of the head to tip of culmen, (3) tarsus length (T), from the tarsal joint to the distal end 164 

of the tarso-metatarsus (except in United Kingdom and Iceland), and (4) wing length (W), 165 

straightened and flattened as described by Evans (1986). Bill length, total head and tarsus 166 

length were measured to the nearest 0.1 mm with a calliper; wing length was measured with a 167 

stop ruler to the nearest 0.5 mm in all sites but United Kingdom (to the nearest millimetre).  168 

 169 

Molecular and anatomical sexing 170 

In birds from Greenland, Iceland and Mauritania, sexes were determined molecularly with a 171 

similar method.  Three plucked pectoral feathers or one blood sample (with a capillary tube 172 

after puncturing the brachial vein with a 25-gauge needle) were collected from each bird. 173 
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Blood from capillary tubes was transferred and stored in microtubes filled with absolute 174 

ethanol. Cellular DNA was extracted following the protocol of Richardson et al. (2001) or 175 

according to manufacturer’s instructions with 96-Well Plate Genomic DNA Miniprep Kit 176 

(Bio Basic). Sex of each bird was determined by polymerase chain reaction (PCR) analysis of 177 

the extracted DNA using the primers 2602F (5' CAGATGGTGAGGATGCTGGAC 3') and 178 

2669R (5' CCCTTTTATTGATCCATCAAGYCTCTRAAGAG 3') designed by van der 179 

Velde et al. (2017). PCR reactions were carried out on a C1000 Touch
TM

 thermal cycler (Bio-180 

Rad) in 10 μL reaction mixture containing 0.1 U of Taq polymerase (Quantabio or Roche), 181 

1X buffer, 0.2 mM dNTPs, 0.2 μM of each primer and 2 μL of DNA template. The thermal 182 

profile consisted of an initial denaturation for 1.5 min at 94°C, followed by 34 cycles of 30 183 

sec at 94°C, 30 sec at 53°C or 62°C, 30 sec at 65°C, and a final extension at 65°C or 72°C 184 

during 10 min. 4 µL of PCR products were separated on a 2% agarose gel and visualized by 185 

UV-transillumination using GelDoc system (Bio-Rad) after ethidium bromide staining.  186 

Molecular sexing relied on the presence or absence of a sex-dependent DNA fragment, i.e., W 187 

chromosome fragment only found in females birds. The absence of this sex-dependent 188 

fragment is indistinguishable from a failure to amplify this fragment due to technical issues 189 

(Griffiths 2000). As in most comparable studies, we used sexes determined by this molecular 190 

method and assumed that they are correct (Baker et al. 1999), although we are aware that 191 

sexing errors could have happened (Roberston and Gemmell 2006).  192 

Birds measured in England were sexed by gonadal examination after dissection. Birds from 193 

Russia were sexed either by gonadal examination, cloaca measurements, or by mating 194 

behaviour of colour-marked birds. 195 

 196 
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Data analysis  197 

All statistical tests were performed using R software version 4.2 (R Core Team 2022). Unless 198 

otherwise stated, the level of significance was set at P < 0.05.  199 

All the assumptions required to run analysis were met, including normal distributions of the 200 

data, homogeneity of covariances (Box's M test) and homogeneity of variance (Levene's test), 201 

both for males and females.  202 

We first tested variations in morphometrics according to site, sex and their interaction with 203 

multivariate and univariate analysis of variance (MANOVA/ANOVA). Then, we compared 204 

body size between sexes using unpaired Student’s t-test and Cohen’s d with its confidence 205 

interval 95% (effect size calculation; see Nagawaka and Cuthill 2007).  206 

Morphometric means were given with standard deviation (SD) and coefficient of variation 207 

(CV). The degree of sexual size dimorphism (SSD) for a given trait was determined by the 208 

following equation (Almeida et al. 2020, modified from Lovich and Gibbons 1992): 209 

 210 

      
                         

                          
         

  211 

Next, we compared body size and SSD between regions. The overall differences in 212 

morphometric characters by sex between sites were determined with a MANOVA. Then, we 213 

used the same method as the comparison between sexes to compare morphometric 214 

measurements between sites. Tarsus length was not used in both multivariate analyses and in 215 

comparisons between sites, as this measurement is missing in UK and Iceland. 216 

Second, we performed three linear discriminant analysis with the ‘lda’ function from MASS 217 

package (Ripley et al. 2013) to determine functions which could distinguish sexes by the most 218 

relevant morphometric characteristics for Sanderlings breeding in Greenland (Greenland DF), 219 

staging in Iceland (Iceland DF), and using the East Atlantic flyway (flyway DF), including 220 
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datasets from all birds from all locations pooled. We used only data from birds having all 221 

measurements. Tarsus length data was only integrated in the process of discriminant analyses 222 

for Greenland. Potential outliers were initially detected by the Mahalanobis distances, using 223 

the chisq.plot and aq.plot functions from the mvoutlier package (Yannic et al. 2016). Detected 224 

outliers (n=5 from Greenland, n=0 from Iceland, n=14 from the flyway) were removed from 225 

the dataset due to uncorrectable mistakes in measurement or transcription. The final sample 226 

sizes and sex-ratios used to perform the discriminant analyses are indicated in table 1. We 227 

estimated the discriminant rate of all combinations of morphometric variables using the leave-228 

one-out cross-validation (LOOCV) method to determine the best model. This procedure 229 

predicts the sex of an individual after this individual has been removed from the data, instead 230 

of automated stepwise techniques which can capitalize on sampling error and lead to non-231 

replicable results (Dechaume-Moncharmont et al. 2011).  232 

Note that DFs previously developed in the United Kingdom and in Russia followed similar 233 

discriminant analyses as ours, whereas the DF developed for Western Africa opted for a 234 

generalized linear model (GLM) with binomial errors and a logit-link function to examine the 235 

relationship between the molecular sex, each morphometrics and their interactions (with sex 236 

as the binary response variable).  237 

To test the ability of regional DFs (i.e., from Greenland, Iceland, Russia, United Kingdom and 238 

Western Africa) and the flyway DF to correctly assign sexes for birds measured in a given 239 

region, we compared result outputs between DFs using McNemar’s test (Western Africa DF 240 

was not tested on UK, Iceland and all pooled samples because they do not include tarsus 241 

length measurements). To enable comparisons, success rates of DFs with their related samples 242 

were determined by resubstitution, i.e., the sex of each individual was predicted using the 243 

function obtained from the complete dataset and then compared with the sex identified using  244 

molecular or anatomical sexing.  245 
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 246 

 247 

Results 248 

 249 

Size variability between breeding, staging and wintering sites 250 

Multivariate analysis of variance indicated that body size varied significantly between sexes 251 

(F 3,1976 = 397.254, P < 0.0001) and among regions (F 12,5925 = 24.523, P < 0.0001). Sex and 252 

region, but not their interaction, had also significant effects on each morphometrical variable 253 

(Table 2).  254 

Females were larger than males and bill length was the most dimorphic trait across sites (from 255 

5.9% to 8.1%). Sexual size dimorphism of each set of morphometrics was similar between all 256 

sites, although the mean SSD was slightly higher in Russian birds (ca. 4.2% with very large 257 

effect sizes) and lower in Icelandic birds (ca. 4.03% with smaller effect sizes) than in others 258 

(Table 3). 259 

Males differed in size among regions (MANOVA: F 12,2796 = 10.348, P < 0.0001). Adult males 260 

measured in Greenland and in United Kingdom had shorter bills than males measured in 261 

Iceland (GL: t282.47 = -2.424,  P = 0.0159, Cohen’s d = 0.27±0.21; UK: ns), in Russia (GL: 262 

t57.76 = -4.324, P < 0.0001, Cohen’s d = 0.61±0.37; UK: t33.40 = 2.525, P = 0.0164, Cohen’s d = 263 

0.75±0.57), and in Mauritania (GL: t342.71 = -6.010, P < 0.0001, Cohen’s d = 0.51±0.17; UK: 264 

t22.45 = 2.340, P = 0.0285, Cohen’s d = 0.55±0.43). Males from Mauritania had shorter wings 265 

than males from Greenland (t442.21 = 2.620, P = 0.009, Cohen’s d = 0.20±0.16) and from 266 

Russia (t38.88 = -2.694, P = 0.0103, Cohen’s d = 0.38±0.35). 267 

Females also differed in size among regions (MANOVA: F12,3114 = 13.826, P < 0.0001). 268 

Females from Greenland had longer wings than females from Iceland (t434.61 = 4.370, P < 269 

0.0001, Cohen’s d = 0.37±0.16) and from Mauritania (t507.08 = 3.852, P = 0.0001, Cohen’s d = 270 
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0.32±0.17), and shorter bills than females from Russia (t54.11 = -3.677, P = 0.0005, Cohen’s d 271 

= 0.60±0.35) and from Mauritania (t510.65 = -6.959, P < 0.0001, Cohen’s d = 0.57±0.17). 272 

Females measured in Mauritania had shorter wings than females measured in Russia (t51.18 = -273 

4.038, P = 0.0002, Cohen’s d = 0.53±0.34) and in the United Kingdom (t24.63 = -2.583, P = 274 

0.0161, Cohen’s d = 0.57±0.42). 275 

In all morphometrics and for each sex, we observed large intra-regional variability and large 276 

overlap between regions (Table 3, Figure 1). 277 

 278 

Discriminant functions for Greenland, Iceland and the East Atlantic flyway 279 

The selection of variables that best predicted sex led to the combination of wing length [W], 280 

bill length [B] and total head [TH] for the three discriminant functions (Table 4).  281 

For Greenland, the discriminant function correctly assigned 84% of the males and 84.4% of 282 

the females, with overall accuracy of 84.2%, by cross-validation (see Table 1).  283 

The Icelandic discriminant function, correctly classified the sex of 80.6% of the birds, with 284 

92.4% of the females and 48.7% of the males by cross-validation.  285 

The East Atlantic flyway discriminant function yielded correct assignment for 80% of the 286 

males and 81.3% of the females, with 80.7% of overall accuracy, by cross-validation. 287 

Misclassified birds had all D values ranged [-4 to 4.90] for Greenland, [-0.56 to 2.21] for 288 

Russia, [-6.86 to 7.08] for Iceland, [-2.09 to 3.85] for UK, and [-9.36 to 6.57] for birds from 289 

Mauritania (see Figure 2).  290 

 291 

Compared accuracy of the six discriminant functions  292 

When comparing overall (i.e., combining males and females) sex assignment success rates 293 

obtained with each regional DF (using equations from Table 1), we found that regional DFs 294 

showed similar success rates than foreign DFs. The only exception was for the Western Africa 295 
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DF which performed significantly better with Mauritanian birds than some of foreign DFs 296 

did. At the sex level, some discrepancies in success rate appeared for both sexes for birds 297 

from Greenland, Icelandic and Mauritania when using foreign DFs (Table 5).  298 

DFs showed similar performances in sexing each foreign samples as their own sample at an 299 

overall level, except Russia DF which performed better for Russian birds than for birds from 300 

Greenland (χ²1 = 4.05, P = 0.0439), United Kingdom (χ²1 = 5.02, P = 0.0249), Iceland (χ²1 301 

=10.38, P = 0012) and Mauritania (χ²1 = 5.25, P = 0.0219).  302 

Overall, the flyway DF provided similar sex assignment success rates to the regional DFs for 303 

each regional sample. There were exceptions for birds from Iceland for which the flyway DF 304 

performed better than the Iceland DF (McNemar’s test: χ²1 = 4.82, P = 0.0279), and for each 305 

sex when applied to Mauritanian birds (McNemar’s test: males χ²1 = 23.51, P < 0.0001, 306 

females χ²1 = 8.04, P = 0.0045; Table 5, last column). The flyway DF was better to sex 307 

mixed-origins birds than regional DFs (Table 5, last row). 308 

Globally, Icelandic sample got the lowest sexing success rates (≤75%) and Russian sample 309 

got the highest ones (ca. 90%) with any DF, while for other samples the success rates were 310 

similar (ca. 80%). 311 

 312 

 313 

Discussion 314 

 315 

In the Scolopacidae family (sandpipers and related species), most species present some SSD 316 

with females larger than males (Jehl and Murray 1986), which allows the development of DFs 317 

(e.g., Niemc et al. 2018; Meissner et al. 2018; Almeida et al. 2020; Witkowska and Meissner 318 

2020; Pohlen et al. 2021). In this study, we investigated whether variation in SSD and body 319 

size within a flyway could limit the efficiency of DFs to sex Sanderling on a large scale. We 320 
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found that, despite quite similar SSD between the regions, the body size may differ. Still, each 321 

regional DF gave comparable results for any regional sample. The use of a sole flyway-scale 322 

DF appears to be relevant and could facilitate future studies. 323 

 324 

Geographical and temporal size variations 325 

Regional variations occurred in body size. Birds from Russia were larger than any other birds, 326 

and birds on wintering/staging grounds had shorter wing lengths than birds on breeding 327 

grounds.  328 

Sanderlings breeding in Greenland and in Russia belong to the same subspecies C. alba alba 329 

(Engelmoer and Roselaar 1998) and show only a low genetic differentiation (Conklin et al. 330 

2016), while they are separated by approximately 2000 km. Bill size discrepancies between 331 

these two breeding populations could thus suggest a phenotypic or developmental plasticity in 332 

Sanderling, and reflect differences in local environments experienced by adults or young birds 333 

(Lafuente and Beldade 2019). The two regions have relatively similar climatic conditions 334 

(Hijmans et al. 2005) but host different insectivorous avian communities, which might result 335 

in different food competition pressures shaping divergent bill morphology (Kelly et al. 2024). 336 

Interestingly, birds sampled in Mauritania and Iceland had on average longer bills than those 337 

measured in Greenland. This could indicate that populations wintering in Western Africa are 338 

composed not only by birds from North-East Greenland, but also include some birds from 339 

Russia, while populations staging in Iceland also include larger birds from the North 340 

American subspecies breeding in the Eastern Canadian Arctic (Reneerkens et al. 2008). 341 

We also noted that wings were on average shorter in Mauritania and Iceland, where adults and 342 

immatures were measured, compared to breeding sites in Greenland where only adults were 343 

measured. Wing length varies seasonally due to wear and moult, as well as weather and 344 

feeding conditions during the growth of the primaries (Hall and Fransson 2000; Milá et al. 345 
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2008). Also, immature Sanderlings wear their primaries faster than adults (Pienkowski and 346 

Minton 1973), and replace them during their first summer at the earliest (Demongin 2016), 347 

whereas adult Sanderlings moult their primaries on wintering grounds (Loonstra et al. 2016). 348 

Immatures included in datasets could induce shorter wing lengths (for seabirds see e.g., 349 

Bugoni and Furness 2009). In Mauritania, for example, the proportion of immatures among 350 

wintering birds is relatively high (Reneerkens et al. 2020). 351 

However, unlike skeletal elements, for which standard measurements are reliably repeatable 352 

(Rising and Somers 1989), wing length is difficult to calibrate and has limited accuracy 353 

(measured to the nearest 0.5 mm at most). Most changes in wing length between seasons and 354 

with age could be small relative to measurement errors and hence difficult to quantify 355 

(Francis and Wood 1989). Furthermore, body size can “drift” over time (Anderson et al. 2019; 356 

Zimova et al. 2023). Data used in this study were collected between the early 1980s for the 357 

oldest and the early 2020s for the latest. Some morphometric changes may have occurred 358 

among populations sampled 30 or 40 years ago, potentially adding a cohort effect.  359 

 360 

Morphometric-based sexing over large scale, any limits? 361 

Morphometrics are usually effective in sexing birds from the Calidrinae subfamily (e.g., 362 

Meissner and Pilacka 2008; Almeida et al. 2020; Pohlen et al. 2021). Bill length is often the 363 

most discriminant morphometric amongst Calidris species, but appears seldom efficient alone 364 

for sexing because of substantial overlapping ranges between sexes (e.g., Niemc et al. 2018; 365 

Witkowska and Meissner 2020). Sexing requires the use of several other morphometrics in 366 

most of the cases, as for Sanderling. 367 

Despite a moderate sexual dimorphism in Sanderling (ca. 4.6%), the DFs developed for this 368 

species allowed for 67% to 100% of correct sex assignments, depending on the sex and origin 369 

of the birds (Table 5). Such success rates might not be high enough for certain scientific 370 
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applications, e.g., sex-specific behaviour studies, which thus would require molecular 371 

analysis. 372 

All DFs performed better for males than for females. This difference is most likely related to 373 

sex-specific differences in size distribution, with many small females assigned as males and 374 

only a few large males assigned as females. This may weakly affect breeding population 375 

studies if both members of a pair are captured, but should be considered for staging and 376 

wintering population studies (Koloski et al. 2016). 377 

Overall, foreign DFs performed equally well as regional DFs to assign sex for most regions. 378 

In Western Africa only, the regional DF performed slightly better than some of the foreign 379 

DFs. This may be due to the methodological difference (i.e., GLM compared to DFA) used to 380 

develop the Western Africa DF (Hallgrimsson et al. 2016). 381 

To summarize, although we found significant geographical differences in body size (Table 1, 382 

Fig. 1) and specific models were developed for each regional dataset, using regional DFs 383 

provided almost no benefit to sex Sanderlings as compared with the use of foreign DFs.  384 

Correct assignment rates varied between sexes and regions, reflecting small differences in 385 

SSD between regions, but did not vary according to the functions used (all but one DFs being 386 

equally reliable to sex regional or foreign individuals), likely as a result of large variability in 387 

the measured populations (see above). As expected, the flyway DF did not improve sexing 388 

efficiency at a regional scale, except for Icelandic birds, but performed equally well as 389 

regional DFs, and could hence provide a more universal and practical tool than regional DFs. 390 

However, as body size is predicted to change with ongoing climate change (Sheridan and 391 

Bickford 2011; Gardner et al. 2014; Youngflesh et al. 2022), current discriminant functions 392 

may require updates in the future. 393 

Our results have important practical implications for the study of Sanderling populations 394 

using the same flyway, regardless of the location and the season. In particular, they can be 395 
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useful to design or reframe scientific programs in the field, helping to target a sex or to 396 

balance the sex-ratio in sampling for instance, without the need for molecular tools. 397 

Moreover, similar methodological considerations might be valuable in sexing other bird 398 

species with large geographical range. 399 

 400 
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Tables and figures 621 

 622 

Table 1 Discriminant functions developed for birds from Greenland (present study), Russia (Soloviev and Tomkovich 1995), Iceland (present 623 

study), United Kingdom (Wood 1987), Western Africa (Laurenço et al. 2016) and all sites combined (referred as East Atlantic flyway; present 624 

study) 625 

 626 

            

Location Sample size Age class Trapping period Statistical method
a
 Discriminant Function

b
 

Greenland 
411 

(200M/211F) 
Adults Summer DFA D = 110.28 - 0.397W - 0.919B - 0.748TH (male if D>0) 

Russia 
47      

(18M/29F) 
Adults Summer DFA D = -166.059 + 0.932W + 0.645B + 0.625TH (male if D<0) 

Iceland 
557 

(150M/407F) 
Adults + Immatures Spring DFA D = 98.38 - 0.359W - 0.764B - 0.67TH (male if D>0) 

United Kingdom 
42      

(22M/20F) 
Adults 

Autumn + Win-

ter + Spring 
DFA D = 0.375W + 1.13B - 75.5 (male if D<0) 



24 
 

Western Africa 
990 

(549M/441F) 
Adults + Immatures Winter GLM 

D = -0.5 + e
(-6486,316+276,9894B+128,3699TH+50,50511W-0,3635402T-

5,455647BTH-2,148423BW-0,9945474THW+0,04216853BTHW)
/1+e

(-

6486,316+276,9894B+128,3699TH+50,50511W-0,3635402T-5,455647BTH-2,148423BW-

0,9945474THW+0,04216853BTHW) 
(male if D>0) 

East Atlantic flyway 
1967 

(929M/1038F) 
Adults + Immatures All seasons DFA D = 101.25 - 0.352W - 0.825B - 0.727TH (male if D>0) 

            

       627 

a
 DFA: discriminant function analysis; GLM: generalized linear model.  628 

b
 W: wing length; B: bill length; TH: total head; T: tarsus length. 629 

 630 

 631 
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Table 2 Results of the univariate analysis of variance for factors contributing to variation in morphometric measures of Sanderlings in 632 

Greenland, Iceland, Russia, United Kingdom and Mauritania. Values correspond to F-ratios for each factors, with associated probabilities 633 

 634 

            

Factors df Wing length Bill length Total head  

Sex 1 561.27**** 774.77**** 926.45**** 
 

Region 3 12.63**** 11.98**** 10.62****  

Sex * Region 4 1.87 (ns) 1.42 (ns) 1.48 (ns) 
 

       635 

ns = not significant at P > 0.05 636 

**** = P < 0.001 637 

 638 

 639 

 640 

 641 

 642 
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Table 3 Descriptive statistics of morphometric measurements (in mm) of Sanderlings captured in Greenland (present study), Iceland (present 643 

study), Russia (Soloviev and Tomkovich 1995), United Kingdom (Wood 1987) and Mauritania (Laurenço et al. 2016). Standard deviation (SD), 644 

coefficient of variation (CV) and sample size (N) are given for each sex. Student t-test with degree of freedom (df) and P-value, Cohen’s d and 645 

degree of sexual size dimorphism (SSD) between sexes are given for each morphometric 646 

                              

 

Males 

 

Females 
     

  
Mean  SD CV N 

  
Mean  SD CV N t df P 

Cohen's d 

[CI95%] 
SSD 

               

 

Greenland 
     

Wing length 125.5 2.3 1.8 203 

 

128.8 2.8 2.2 216 -13.50 410.8 < 0.0001 1.31 [1.10-1.52] 2.6 

Bill length 23.3 1.2 5.1 205 

 

25 1.1 4.4 217 -14.73 405.8 < 0.0001 1.44 [1.23-1.66] 7.3 

Total head 49.1 2.1 4.3 204 

 

51.3 1.3 2.5 216 -12.39 340.5 < 0.0001 1.22 [1.02-1.43] 4.5 

Tarsus length 24.8 0.9 3.6 205 

 

25.7 1.1 4.3 215 -9.22 409.9 < 0.0001 0.90 [0.69-1.10] 3.6 

               

 

Russia 
     

Wing length 126 2.2 1.7 33 

 

129.6 2.3 1.8 37 -6.55 67.8 < 0.0001 1.56 [1.02-2.11] 2.8 

Bill length 24.1 0.8 3.3 33 

 

25.6 1 3.9 38 -7.39 69 < 0.0001 1.74 [1.18-2.29] 6.2 

Total head 49.3 0.9 1.8 20 

 

51.1 1.2 2.3 30 -6.01 47.2 < 0.0001 1.64 [0.97-2.31] 3.6 

Tarsus length 24.8 0.7 2.8 33 

 

25.8 1 3.9 38 -5.10 66.7 < 0.0001 1.19 [0.67-1.70] 4.0 

               

 

Iceland 
     

Wing length 124.9 2.8 2.2 150 

 

127.8 2.8 2.2 410 -10.91 264.1 < 0.0001 1.04 [0.85-1.24] 2.3 

Bill length 23.7 1.5 6.3 150 

 

25.1 1.2 4.8 410 -10.48 232.3 < 0.0001 1.08 [0.88-1.28] 5.9 

Total head 49.2 1.7 3.4 150 

 

51.1 1.4 2.7 407 -12.00 233.1 < 0.0001 1.23 [1.03-1.44] 3.9 

Tarsus length ― ― ― ― 

 

― ― ― ― ― ― ― ― ― 
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United Kingdom 
     

Wing length 124.7 4.4 3.5 22 

 

129.7 3.4 2.6 23 4.27 39.1 0.0001 1.28 [0.62-1.94] 4.0 

Bill length 23.3 1.2 5.1 22 

 

25.2 1.5 5.9 23 4.61 41.5 < 0.0001 1.37 [0.70-2.04] 8.1 

Total head 48.8 1.5 3.1 22 

 

50.9 1.7 3.3 23 4.50 42.8 < 0.0001 1.34 [0.67-2.00] 4.3 

Tarsus length ― ― ― ― 

 

― ― ― ― ― ― ― ― ― 

               

 

Mauritania 
     

Wing length 124.9 2.9 2.3 545 

 

127.9 3.3 2.6 372 -14.03 724 < 0.0001 0.97 [0.83-1.11] 2.4 

Bill length 23.9 1.1 4.6 552 

 

25.6 1.2 4.7 376 -21.52 748.8 < 0.0001 1.47 [1.32-1.61] 7.1 

Total head 49 1.6 3.3 552 

 

51.3 1.7 3.3 376 -20.42 774.5 < 0.0001 1.38 [1.23-1.53] 4.7 

Tarsus length 24.6 1 4.1 549 

 

25.7 1.1 4.3 376 -14.53 747.8 < 0.0001 0.99 [0.85-1.13] 4.5 

                              

                647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 
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Table 4 Statistical significances from the Sanderling morphometric variables selections in Greenland, Iceland and East Atlantic flyway (all 655 

available samples combined) to determine the best sexing discriminant functions. Values correspond to Wilks’ λ with associated Fisher F and P-656 

value 657 

 658 

          

    Wilks’ λ F P 

Greenland W 0.697 177.4 < 0.001 

 
B 0.632 237.8 < 0.001 

 
TH 0.618 252.4 < 0.001 

Iceland W 0.822 119.9 < 0.001 

 
B 0.813 126.9 < 0.001 

 
TH 0.768 167.2 < 0.001 

East Atlantic flyway W 0.765 602.3 < 0.001 

 
B 0.707 813.4 < 0.001 

  TH 0.631 1145.7 < 0.001 

      659 

W: wing length; B: bill length; TH: total head 660 

 661 

 662 

 663 
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 664 

Table 5 Success rates (percentage of correct sex assignments) of the six discriminant functions developed for Sanderling from Greenland, 665 

Russia, Iceland, United Kingdom, Western Africa and East Atlantic flyway (all samples pooled). Numbers in brackets indicate the difference 666 

(percentage point) to the success rate obtained with regional function by resubstitution (i.e., region were birds were captured, marked in grey). 667 

Values with significant differences (P < 0.05; McNemar’s test) in success rate between the regional function and foreign functions for each 668 

sample are in bold 669 

                    

  

n 
 

Greenland function Russia function Iceland function UK function W Africa function
a
 Flyway function 

Greenland sample M 200 
 

84.5% 88% (+3.5) 91.5% (+7.0) 90.5% (+6.0) 91% (+6.5) 84.5% 

 
F 211 

 
82.5% 75.3% (-7.2) 73.4% (-9.1) 73% (-9.5) 72.5% (-10.0) 82% (-0.5) 

 
All 411 

 
83.4% 81.5% (-1.9) 82.2% (-1.2) 81.5% (-1.9) 81.5% (-1.9) 83.2% (-0.2) 

Russia sample M 20 
 

90% (-10.0) 100% 100% 90% (-10.0) 90% (-10.0) 90% (-10.0) 

 
F 30 

 
93.3% (+3.3) 90% 80% (-10.0) 90%  90%  90% 

 
All 50 

 
92% (-2.0) 94% 88% (-6.0) 90% (-4.0) 90% (-4.0) 90% (-4.0) 

Iceland sample M 150 
 

78% (-7.3) 85.3% 85.3% 82% (-3.3) _ 78% (-7.3) 

 
F 407 

 
74.9% (+6.4) 67.1% (-1.4) 68.5% 67.8% (-0.7) _ 74.4% (+5.9) 

 
All 557 

 
75.7% (+2.6) 72% (-1.1) 73.1% 71.6% (-1.5) _ 75.4% (+2.3) 
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 670 

n denotes sample size for individuals genetically or anatomically sexed with all morphometrics measured 671 

a
 Western Africa function was not tested on UK, Iceland and flyway samples because they do not include tarsus length measurements672 

UK sample M 22 
 

81.8% (+4.5) 77.3%  86.3% (+9.0) 77.3% _ 81.8% (+4.5) 

 
F 23 

 
78.3% (+4.4) 73.9%  69.5% (-4.4) 73.9% _ 78.3% (+4.4) 

 
All 45 

 
80% (+4.5) 75.5% 77.8% (+2.3) 75.5% _ 80% (+4.5) 

Mauritania sample M 542 
 

81.4% (-5.3) 87.6% (+1.1) 88% (+1.3) 83% (-3.7) 86.7% 81.7% (-5.0) 

 
F 372 

 
81.4% (+3.7) 68.3% (-9.4) 75.8% (-1.9) 76.3% (-1.4) 77.7% 81.2% (+3.5) 

 
All 914 

 
81.4% (-1.6) 79.7% (-3.3) 83% 80.3% (-2.7) 83% 81.5% (-1.5) 

Flyway sample M 929 
 

82.2% (-0.2) 87.8% (+5.4) 89% (+6.6) 85.1% (+2.7) _ 82.4% 

 
F 1038 

 
79.7% (+0.5) 70.2% (-9.0) 72.7% (-6.5) 72.8% (-6.4) _ 79.2% 

  
All 1967   80.9% (+0.2) 78.5% (-2.2) 80.4% (-0.3) 78.6% (-2.1) _ 80.7% 

          



31 
 

Fig. 1 Relationships between wing length, bill length and total head in Greenland (GL), Russia (RU), Iceland (IC), United Kingdom (UK) and 673 

Mauritania (MA) Sanderlings males (black symbols) and females (white symbols).  Small dots represent the individuals (symbols slightly larger 674 

for males to show overlapping colours). Mean values + SD are indicated with large symbols.  675 

 676 

 677 

 678 

  679 
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Fig. 2 Frequency distribution (number) of males (light grey) and females (dark grey) 680 

Sanderlings measured for each regional sample and the pooled samples (flyway sample), as 681 

assigned with the flyway discriminant functions. The black parts of the bars present the range 682 

of overlapping scores. Vertical lines present the discrimination value   683 

  684 
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 685 


