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Abstract. Few-shot detection is a major task in pattern recognition
which seeks to localize objects using models trained with few labeled
data. One of the mainstream few-shot methods is transfer learning which
consists in pretraining a detection model in a source domain prior to its
fine-tuning in a target domain. However, it is challenging for the fine-
tuned models to effectively identify new classes in the target domain,
particularly when the underlying labeled training data are scarce. In
this paper, we devise a novel sparse context transformer (SCT) that
effectively leverages object knowledge in the source domain, and auto-
matically learns a sparse context from only few training images in the
target domain. As a result, it combines different relevant clues in order
to enhance the discrimination power of the learned detectors and reduce
class confusion. We evaluated the proposed method on two challenging
few-shot object detection benchmarks, and empirical results show that
the proposed method obtains competitive performance compared to the
related state-of-the-art.

Keywords: Few-shot object detection · Transfer-learning · Transformer
· Sparse context

1 Introduction

Although deep learning (DL) models have achieved remarkable performance,
these outstanding models are usually label-hungry and their training is time
and memory demanding [1,5,10,15,20]. In some scenarios, particularly object
detection, labeled data are scarce, and this makes DL-based detection a major
challenge [2,3]. Among existing solutions that mitigate scarcity of labeled data,
transfer learning is particularly effective and consists in pretraining detection
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models in the source domains — using abundant labeled data — prior to their
fine-tuning in the target domains. However, as labeled data are scarce in the tar-
get domains, few-shot object detection — based on transfer learning [4,6,7,8,9]
— is not yet sufficiently effective in identifying new object classes.

The aforementioned issue is accentuated in few-shot object detection as this
task involves both localization and classification. Localization focuses on spatial
information which is decently obtained from pretrained models in the source
domains. Therefore, bounding box regressors (BBOX) trained in the source do-
main are already reliable for initialization and fine-tuning in the target domain.
Hence, detectors fine-tuned with few training samples may effectively locate new
object classes. In contrast, classification often requires contextual knowledge of
specific categories. In other words, source domain knowledge are insufficient to
learn new category distributions in the target domain. Therefore, the underlying
models should be completely retrained for new categories. However, scarcity and
limited diversity of data in the target domain lowers the accuracy of the new
learned category classifiers, and thereby leads to class confusion.

In order to address these issues, we propose in this paper a novel sparse con-
text transformer (SCT) that leverages source domain knowledge together with
few training images in the target domain. This transformer learns sparse affin-
ity matrices between BBOXs and classification outputs by exploring the most
relevant contexts for new object categories in the target domain. Additionally,
incorporating SCT during the fine-tuning stage allows the model to focus on the
most relevant contextual information and then to refine the decision boundaries
between visually similar objects, leading to a more powerful model ability to ac-
curately distinguish between different classes. Through this approach, SCT not
only improves recognition performance on new classes but also reduces the like-
lihood of misclassification during fine-tuning. The proposed transformer consists
of two simple yet effective sub-modules: sparse relationship discovery, and ag-
gregation. In the first sub-module, contextual fields are initially designed based
on default prior boxes (also called anchor boxes) [11,12] and multi-scale fea-
ture maps extracted from a visual encoder. Relationships between each prior
box and contextual fields are modeled through a novel sparse attention. In the
second sub-module, aggregation further leverages the learned relationships and
integrates contextual fields into the relevant prior boxes. Our proposed trans-
former enhances prior box representations, and mitigates confusion in few-shot
object detection and classification. Hence, our contributions include:

– A novel sparse context transformer that effectively explores useful contextual
fields from a small number of labeled images. This transformer is embedded
into an SSD (plug-and-play style) detector suitable for few-shot object de-
tection.

– A novel attention layer that assists object detection in learning task-relevant
knowledge from images by enhancing the underlying task-related features.

– A comprehensive evaluation of our proposed method on the challenging con-
figurations for few-shot detection that shows high performance.
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2 Related Work

Recent years have witnessed a significant progress in few-shot object detec-
tion, primarily focusing on two core areas: meta-learning and transfer learning.
Within the meta-learning framework, researchers have proposed various inno-
vative strategies to address the challenges imposed by few samples. Xiao et
al. [13] introduced a meta-learning-based approach that addresses misdetection
in the resource-constrained scenarios by integrating query features (ROI gen-
eration) with class-related features. Tian et al. [14] presented a model-agnostic
meta-learning framework that effectively enhances the cross-domain generaliza-
tion capabilities of existing meta-learning methods. Han et al. [16] recognized
that current few-shot detection models tend to be biased towards base classes
while being variance-sensitive to new classes, and proposed a variational feature
aggregation method based on meta-learning.

Unlike these meta-learning approaches, which design complex meta-learning
models for challenging meta-learning tasks, transfer learning-based methods are
often simpler and more efficient. Chen et al. [17] introduced a low shot transfer
detector that focuses on foreground objects in the target domain during fine-
tuning in order to learn more knowledge on the targeted categories. Khandelwal
et al. [18] conjectured that simple fine-tuning may lead to a decrease in the
transferability of the models. Hence, they proposed a unified semi-supervised
framework that combines weighted multi-modal similarity measures between
base and novel classes. With this method, they achieved effective knowledge
transfer and adaptation. Unlike these methods, Yang et al. [19] proposed a
context-transformer that tackles object confusion in few-shot detection. This
transformer relies on a set of contextual fields from different spatial scales and
aspect ratios of prior boxes, in order to explore their relationships through dot
products. Based on these relationships, the contextual fields are integrated into
each prior box and this improves their representation.

Our work is an extension of context transformers that addresses the rela-
tively monotonous contextual fields (constructed in the original version of these
transformers) as well as their relationships with prior boxes, which cannot effec-
tively suppress task-independent contextual fields, and further affect the model’s
ability to recognize novel classes. In this regard, we consider informations from
different sources and we model sparse relationships between contextual fields
and each prior box to help the model selecting the most effective fields. This
also mitigates confusion in few-shot object detection.

3 Proposed Method

In this section, we introduce our novel sparse context transformer. As shown
in Fig. 1, our framework relies on an SSD-style detector [12] used as a flexible
plug-and-play backbone that delivers rich multi-scale contextual information.
The SSD detector consists of K (spatial-scale) heads including bounding boxes
regressor (BBOX) and object+background classifiers (OBJ+BG). To general-
ize few-shot learning in the target domain, we first pretrain the SSD detector
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with a large-scale dataset in the source domain. Then, we combine the proposed
transformer module with the SSD detector for fine-tuning in the target domain
(see again Fig. 1). As shown subsequently, our proposed transformer includes
two submodules: one for sparse relationship discovery, and another one for ag-
gregation. These submodules are respectively used to model context/classifier
relationships and for context fusion.

Visual Encoder
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OBJ（base） car

Context Field
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Fig. 1: Few-Shot Detection with Sparse-Context-Transformer. It consists of
sparse relationship discovery and context aggregation, which can effectively uti-
lize the context fields of few-shot tasks, improve the context awareness ability of
each prior box, and solve the problem of object confusion in few-shot detection.
The attention focus module can effectively help us learn task-related contex-
tual fields. “base” refers to the initial pre-training performed on the base classes
from the source domain, while “novel” refers to the learning of new classes dur-
ing the few-shot fine-tuning procedure, where we introduced our sparse context
transformer module.

3.1 Sparse Relationship Discovery

Given an image I fed into an SSD detector, we extract for each prior box in I
a vector of scores Pk,m,h,w ∈ RCs ; being Cs the number of (source) object cate-
gories, k ∈ J1,KK a spatial scale,m an aspect ratio, and (h,w) the prior box coor-
dinates at the k-th scale. In what follows, we reshape the tensor (Pk,m,h,w)k,m,h,w

as a matrix P ∈ RDp×Cs ; being Dp the total number of prior boxes in I across
all the possible scales, aspect ratios and locations. Scores in P provide us with a
rich semantic representation about object categories [17]; nonetheless, this rep-
resentation is deprived from contextual relationships between prior boxes. Since
SSD usually involves ten thousand prior boxes per image, modeling and training
all the relationships between these boxes is clearly intractable, overparameter-
ized and thereby subject to overfitting, particularly in the few-shot scenario. In
order to prevent these issues, spatial pooling is first achieved so one may obtain
a more compact matrix Q ∈ RDq×Cs instead of P, being Dq (≪ Dp) the reduced
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number of prior boxes after spatial pooling.
Considering that prior boxes capture only object parts (and not their over-

all extents), multi-scale feature maps extracted by the SSD encoder (denoted as
{Fk}k) are also aggregated as M = Concat({Fk}k) ∈ RDq×Df ; being Concat the
concatenation operator and Df the resulting dimension after the application of
this operator. These aggregated features M enable to provision with complemen-
tary visual cues at different scales, and provide us with a more comprehensive
contextual information [18]. In the rest of this paper, the pairs of pooled prior
boxes Q together with the underlying aggregated features M are referred to as
contextual fields.
Attention Focus. In order to learn task-related context from few training data,
we design an attention focus layer that enhances the representation of contex-
tual fields and attenuates category confusion. We first define the attention weight
matrix AM as

AM = ψα(M)⊤ ψβ(M), (1)

being ψα(.) (and ψβ(.)) trained fully-connected (FC) layers that increase the
expressivity of the attention matrix AM ∈ RDf×Cs , and allow obtaining an
enhanced representation M∗ ∈ RDq×Cs as

M∗ = M AM, (2)

which also ensures dimension consistency of the learned representation in Eq. (3).
By combining the pooled prior boxes in Q and the underlying multi-scale fea-
ture maps M∗, we obtain our contextual field representations that capture both
intrinsic (feature) and extrinsic (object-class) information, resulting into

C = λ M∗ + Q, (3)

here λ ≥ 0 controls the impact of attention in M∗. Using Eq. (3), we design
our sparse attention mechanism in order to explore the affinity relationships
between each prior box and contextual fields, and remove spurious ones (i.e.,
those farther away from the prior boxes) according to the sparse relationship.
More precisely, we evaluate the relationship matrix between the contextual fields
in C and prior boxes in P. Here, we adopt a commonly used method for sparse
representation–soft thresholding. By shrinking the relationship weights in the
relationship matrix A that fall below a certain threshold to zero, which enables
the model to focus on learning the most relevant contextual information:

R = SoftShrink(A, ζ) = sign(A)max(|A| − ζ, 0) (4)

with

A = softmax
(
ψγ(P) ψρ(C)⊤√

Cs

)
. (5)

where softmax is applied row-wise, ψγ(.), ψρ(.) are again trainable FC layers and
sign(A) represents the sign of each element in the matrix A, ζ is the threshold,
empirically selected to be 0.8. Each row of R ∈ RDp×Dq measures the importance
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of all contextual fields w.r.t. its underlying prior box. Hence, sparse relationship
discovery allows a prior box to identify its important contextual fields and dis-
card those that are not sufficiently important according to various aspect ratios,
locations and spatial scales.

3.2 Aggregation

We consider the sparse relationship matrix R — between prior boxes and con-
textual fields — as a relational attention in order to derive the representation
of each prior box. We also consider a softmax operator on each row i of R as
a gating mechanism that measures how important is each contextual field w.r.t.
the i-th prior box. By considering the cross correlations between rows of R and
columns of C, we derive our sparse attention-based representation of prior boxes
as

W = softmax(R) ψη(C), (6)

being W ∈ RDp×Cs and ψη corresponds again to trainable FC layers. Now, we
combine W with the original matrix of prior boxes P in order to derive our final
context-aware representation P̂ ∈ RDp×Cs

P̂ = P + ψξ(W). (7)

Here ψξ corresponds to other (last) trainable FC layers. Since P̂ is context-aware,
it enhances the discrimination power of prior boxes by attenuating confusions
between object classes. By plugging the final representation P̂ into a softmax
classifier, we obtain our scoring function, on the Ct target classes, as

Ŷ = softmax(P̂ Θ). (8)

Note that the representations in P̂ and the underlying parameters Θ ∈ RCs×Ct

are shared across different aspect ratios and spatial scales, so there is no re-
quirement to design separate classifiers at different scales. This not only reduces
computational complexity but also prevents overfitting.

4 Experiments

In this section, we evaluate the proposed framework on two standard bench-
marks, namely PASCAL VOC and MS COCO.

4.1 Datasets and Settings

Following [17], we describe the few-shot detection datasets for comparison against
the related works. All the quantitative performances correspond to the mean Av-
erage Precision (mAP) evaluation metric.
PASCAL VOC 2007/2012 & MS COCO. The train and test sets of PAS-
CAL VOC 2007 and 2012 are split into source (seen) and target (unseen) object
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categories. Three different splits are considered for the unseen categories, namely
[“bird”, “bus”, “cow”, “motorbike”, “sofa”], [“aeroplane”, “bottle”, “cow”, “horse”,
“sofa”], and [“boat”, “cat”, “motorbike”, “sheep”, “sofa”]. As for MS COCO [28], it
includes 80 object categories where 20 of them — that overlap with PASCAL
VOC — are used as unseen categories. The process of constructing the few shot
dataset, and seen/unseen categories in MS COCO is similar to PASCAL VOC.
Implementation Details. We choose a recent SSD detector [12] as a basic
architecture built upon 6 heads corresponding to different spatial rescaling fac-
tors (taken in {1, 3, 5, 10, 19, 38}). The contextual fields we designed consist of
two parts: in the first one, prior boxes — corresponding to multiple scales and
aspect ratios — are max-pooled with different instances of kernel sizes+strides
taken in {2, 3}. For the second one, contextual fields composed of multi-scale
features are fused through four spatial scales. In these experiments, we set the
hyperparameter λ in Eq. (3) to 0.6, and the embedding functions in the sparse
context transformer correspond to the residual FC layer whose input and output
have the same number of channels.
We implement our experiments using PyTorch on two Nvidia 3090 GPUs. We
pretrain the SSD detectors on the source domain following exactly the original
SSD settings in [29], and we fine-tune these SSDs on the target domain using
stochastic gradient descent with the following settings: a batch size of 64, a
momentum of 0.9, an initial learning rate equal to 4 × 10−3 (decreased by 10
after 3k and 3.5k iterations), a weight decay of 5× 10−4, and a total number of
training iterations equal to 4k.

4.2 Results on PASCAL VOC

In this section, we show the impact of our models on PASCAL VOC. We first
compare our method with the related state-of-the-art, then we carry out abla-
tion study in order to understand the behavior of different components of our
proposed sparse context transformer. We also show some qualitative results that
highlight the impact of our models. In all these experiments, we take the average
performance across 10 random runs.

Comparison. Table 1 shows a comparison of our method against the related
state-of-the-art works which mostly report results with multiple random runs.
Our proposed sparse context transformer obtains high accuracy on almost all
the splits with different shots. Specifically, at extremely low-shot settings (i.e. 1-
shot), our method achieves state-of-the-art performance on all the splits. These
results demonstrate the ability of our proposed sparse context transformer to ef-
fectively combine contextual information of the target domain in order to over-
come object class confusion in the few-shot detection scenarios. Furthermore,
we also observed that the proposed method — while not totally outperforming
DCNet [26], prominently on the Novel set3 — obtains very competitive perfor-
mances in most shots.
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Table 1: Few-Shot detection performance (mAP) on PASCAL VOC dataset. We
evaluate 1, 2, 3, 5, 10 shot performance over multiple runs. red and blue indicate
the best and second best results, respectively, and ’-’ indicates no reported results
(i.e., not available).

Method/shot Novel Set 1 Novel Set 2 Novel Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Shemelkov et al.2017[23] 23.9 - - 38.8 - 19.2 - - 32.5 - 21.4 - - 31.8 -
Meta YOLO[24] 14.8 - - 33.9 - 15.7 - - 30.1 - 19.2 - - 40.6 -

Meta R-CNN [25] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 39.7 14.3 18.2 27.5 41.2 48.1
DCNet [26] 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7

Cos R-CNN [27] 27.9 33.0 32.1 36.2 33.6 19.4 12.6 14.4 19.1 21.9 16.9 21.6 21.6 27.5 25.5
Baseline 34.2 - - 44.2 - 26.0 - - 36.3 - 29.3 - - 40.8 -

SCT(ours) 37.9 40.8 41.2 45.0 46.8 32.8 33.1 33.8 36.8 37.9 33.7 33.4 35.4 40.8 44.5

Table 2: Ablation studies on the effectiveness of various components in our pro-
posed sparse context transformer. The mAP with IoU threshold 0.5 (AP50) is
reported. T stand for target domain categories.

Method context (w/ multi-scale feature) Sparse relations T

Baseline % % 26.0

Ours

! % 29.4

% ! 30.8

! ! 32.8

Ablation. In this ablation study, all the models are trained on the most difficult
1-shot scene set (in the novel set 2 of PASCAL VOC), and then evaluated on
the PASCAL VOC 2007 test set. In these results, we again take the average
performance across 10 random runs.

Impact of Context & Sparsity. Table 2 (row 2 vs 1) shows the effectiveness
of our proposed fusion approach of contextual fields from different sources. These
results show that at extremely low-shot settings, the fusion of contextual fields
from different sources improves the recognition performance of new categories in
the target domain. Table 2 (row 3 vs 1) also demonstrates the positive impact
of sparsity, i.e., constructing sparse relationships between contextual fields and
prior boxes. Indeed, at extremely low-shot settings, sparsity improves the accu-
racy of new object categories in the target domain.
Impact of Attention Focus. Table 3 shows the effectiveness of our designed
attention focus layer. Similarly, the comparison results (second row vs third row)
indicate that applying an attention focus layer to the contextual fields formed
by multi-scale feature maps before performing the GAP layer can effectively en-
hance the representation of contextual fields and attenuates category confusion.
From these results, we observe a clear positive impact of our proposed attention
focus layer on target domain (new) classes compared to when no attention is
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Table 3: The impact of our proposed attention focus layer. The experiments are
conducted on the VOC 2007 test set of the PASCAL VOC dataset with novel
split2 and AP50 on 1-shot task. Here T stands for target and GAP for global
average pooling layer.

GAP Attention Focus T

Multi-scale Feature Maps

% % 30.3

! % 29.5

! ! 30.1

% ! 32.8

considered. Based on these results, we only adopted the attention focus layer in
the final learned model, as shown in Fig. 1.

Table 4: Few-Shot detection performance on COCO minival of MS COCO
dataset. We report the mean Averaged Precision on the 20 novel classes of COCO.
red and blue indicate the best and second best results.

Method/shot 10-shot 30-shot
AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

LSTD[17] 3.2 8.1 2.1 0.9 2.0 6.5 7.8 10.4 10.4 1.1 5.6 19.6
Meta YOLO [24] 5.6 12.3 4.6 0.9 3.5 10.5 10.1 14.3 14.4 1.5 8.4 28.2

Baseline[19] 7.7 13.5 7.5 2.3 5.4 12.2 11.0 19.5 10.8 2.1 8.3 18.6
SparseCT(ours) 7.9 14.3 7.7 1.9 4.5 12.4 11.2 20.2 11.3 2.2 8.5 19.3

Qualitative Performance. In order to further understand the impact of our
sparse context transformer module, we visualize the results with (w/) and with-
out (w/o) SCT. As shown in Fig. 2, the activation maps in the second and third
columns show that SCT improves attention to objects in images which even-
tually leads to better detection performance as shown in the fourth and fifth
columns. Furthermore, by comparing visualizations in the third row, we observe
that SCT mitigates object confusion in few-shot detection.

4.3 Results on MS COCO

Finally, we provide extra performance on the 10/30-shot setups using the MS
COCO benchmark, and we report the average performance using the standard
COCO metrics over 10 runs with random shows. Performance on novel classes
are shown in Table 4. Compared to the baseline, our proposed method improves
performance in the 10/30 shot tasks, and is also competitive compared to the re-
lated works. Qualitative results are also shown in Fig. 3; compared to the baseline
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(a) Input (b) W/o SCT (c) W/ SCT (d) W/o SCT (e) W/ SCT

Fig. 2: Visualization of the results with (w/) and without (w/o) Sparse Context
Transformer (SCT) on the PASCAL VOC dataset. Different colored bounding
boxes represent different categories.

in the related work [19], our proposed method shows a noticeable improvement
when handling confusion between detected object categories.

5 Conclusion

In this paper, we propose a novel sparse context transformer that effectively ex-
plores useful contextual information for few shot object detection. The strength
of the proposed model resides in its ability to learn sparse relevant relationships
while discarding irrelevant ones. Extensive experiments conducted on two chal-
lenging standard benchmarks (namely PASCAL VOC and MS COCO) show
the effectiveness of each component of our sparse context transformer and its
outperformance with respect to the related work. As a future work, we will
investigate how to further improve the model’s generalization ability in limited-
sample scenarios and also investigate the extension of this model using other
neural architectures, evaluation benchmarks and applications.
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(a) Input (b) W/o SCT (c) W/ SCT

Fig. 3: This figure shows comparison results on the MS COCO dataset. Baseline
represents the work of Yang et al [19]. Different colored bounding boxes represent
different categories.
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