

$\begin{array}{c} Production \ cross \ section \ measurements \ of \ the \\ natNi(d,x) 61Cu \ reaction \end{array}$

Laurine Puren, Arnaud Guertin, Ferid Haddad, Vincent Métivier, Etienne

Nigron

► To cite this version:

Laurine Puren, Arnaud Guertin, Ferid Haddad, Vincent Métivier, Etienne Nigron. Production cross section measurements of the natNi(d,x)61Cu reaction. 19th International Workshop on Targetry and Target Chemistry (WTCC19), Aug 2024, Heidelberg, Germany. hal-04771648

HAL Id: hal-04771648 https://hal.science/hal-04771648v1

Submitted on 7 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

Physics of Radiation InteractionS with Matter and Applications

Production cross section measurements of the ^{nat}Ni(d,x)⁶¹Cu reaction

. Puren, A. Guertin, F. Haddad, V. Metivier, E. Nigron

Laurine PUREN

PhD Student SUBATECH Laboratory (Nantes, France)

19th International Workshop on Targetry and Target Chemistry

29th August 2024

Context and motivations

- \Box ⁶¹Cu can be used for PET applications:
 - \downarrow Adequate half-life : $t_{1/2} = 3.339$ h
 - β^{+} decay (61 %) : E_{moy} = 524 keV, E_{max} = 1216 keV
- □ Formation of true theranostic pairs : ⁶¹Cu / ⁶⁷Cu and ⁶⁴Cu/⁶⁷Cu.
 - \rightarrow ⁶¹Cu emits more positrons per decay than ⁶⁴Cu (t_{1/2} = 12.701 h, 17.9 % β ⁺).
 - L, Possibility to **reduce** the scanning time or possibility to **lessen** the dose delivered to the patients. [1]
 - \rightarrow Suitable to be linked with small molecules / peptides. [1]

<u>Figure 1:</u> Visual comparison of different PET images of radionuclides using Jaszczak phantom (rods of 0.7 to 1.2 mm) obtained with a small-animal PET scanner within 30 minutes [1]

Context and motivations

D Reassessment of the **relative intensity** of the γ -ray at **656.008 keV** to the one at **282.956 keV** of ⁶¹Cu :

Gamma-ray	NDS (2015) [1]	ENSDF (2020) [2]	Bleuel et al. [3]
(keV)	relative (absolute)	relative (absolute)	relative (<i>absolute</i>)
282.956	100 %	100 %	100 %
	(12.2 ± 2.2 %)	(12.7 ± 2.0 %)	(<i>12.2 ± 2.2 %</i>)
373.050	17.6 ± 0.4 % (2.15 ± 0.05 %)	16.8 ± 0.4 % (2.14 ± 0.33 %)	16.87 ± 0.22 % (2.06 ± 0.03 %)
656.008	88.3 ± 1.5 %	82 ± 14 %	79.4 ± 1.0 %
	(10.77 ± 0.18 %)	(10. 4 ± 1.6 %)	(9.69 ± 0.12 %)
1185.234	30.7 ± 0.6 %	28.6 ± 0.6 %	28.8 ± 0.4 %
	(3.75 ± 0.07 %)	(3.6 ± 0.6 %)	(3.51 ± 0.05 %)

<u>Table 1:</u> Absolute and relative intensities to the γ -ray at 282.956 keV of the main γ -rays of ⁶¹Cu.

□ $^{nat}Ni(d,x)^{61}Cu$ can be used as a monitor reaction [4] for production cross section measurements \Rightarrow impacts the determination of the production cross sections of other radioisotopes.

Evaluate the impact of this reassessment on the production cross section of ^{nat}Ni(d,x)⁶¹Cu

[1] K. Zuber et al., 'Nuclear Data Sheets for A = 61', Nuclear Data Sheets, vol. 125, p. 1–200, Mar. 2015

[2] ENSDF document available from the National Nuclear Data Center 61Cu EC Decay dataset

[3] D. L. Bleuel et al., 'Precision measurement of relative y -ray intensities from the decay of 61Cu', Applied Radiation and Isotopes, vol. 170, 109625, Apr. 2021

[4] A. Hermanne et al., 'Reference Cross Sections for Charged-particle Monitor Reactions', Nuclear Data Sheets, vol. 148, p. 338–382, Feb. 2018

Context and motivations

15 different data sets \Rightarrow significant disparities between the data.

L, for example : the peak value varies between **51 mb** and **96 mb**.

Motivations :

- New measurements at low energy of the ^{nat}Ni(d,x)⁶¹Cu cross sections.
- 2. Comparison of the experimental data with the literature and the recommended cross sections.
- Assess the impact of the re-evaluation of the relative intensities of the γ-rays of ⁶¹Cu on the measurements and the literature.

<u>Figure 2:</u> Experimental production cross sections of the $^{nat}Ni(d,x)^{61}Cu$ reaction.

[1] A. Hermanne et al., 'Reference Cross Sections for Charged-particle Monitor Reactions', Nuclear Data Sheets, vol. 148, p. 338–382, Feb. 2018

Method : Stacked-foils technique

<u>Figure 3:</u> Schematical representation of the stack and setup of the experiment

GIP Arronax: 3 campaigns of measurements accomplished at the **GIP Arronax**:

- Deuteron beam of 16 MeV
- 1 hour irradiation at 100 nA of intensity
- Monitor reactions : ^{nat}Ti(d,x)⁴⁸V, ^{nat}Ti(d,x)⁴⁶Sc (^{nat}Ni(d,x)⁵⁶Co, ^{nat}Ni(d,x)⁵⁸Co).
- \Box γ -rays of ⁶¹Cu used to extract its activity with a HPGe:

Gamma-ray (keV)	ENSDF 2020
282.956	12.7 ± 2 %
373.050	2.14 ± 0.33 %
588.605	1.17 ± 0.18 %
656.008	10.4 ± 1.6 %
908.631	1.09 ± 0.17 %
1185.234	3.6 ± 0.6 %

<u>Table 2:</u> Absolute intensity of the γ -rays of ⁶¹Cu

Results

<u>Figure 4:</u> Experimental production cross sections of the $^{nat}Ni(d,x)^{61}Cu$ reaction.

Observations:

- 9 measurements done in 3 different experiments ⇒ consistency.
- The peak of the recommended cross sections is 20 % greater than the one measured.
- the maximum we measure is slightly shifted to higher energy compared to the recommended curve.

Results

Observations:

- ❑ 9 measurements done in 3 different experiments ⇒ consistency.
- The peak of the recommended cross sections is 20 % greater than the one measured.
- the maximum we measure is slightly shifted to higher energy compared to the recommended curve.
- □ Our data are consistent with the experimental data of Avrigeanu *et al.*
- □ With Carzaniga et al. ⇒ same observations as with the recommended cross sections

<u>Figure 4:</u> Experimental production cross sections of the ^{nat}Ni(d,x)⁶¹Cu reaction.

Results

Observations:

- The low and high energy parts are in agreement with existing data and with the recommended cross sections.
- Large discrepancy around the maximum from the 15 different data sets available.

L, Investigation will be pursued to figure out what is going on.

New measurements to be done with a farraday cup coupled with an electron repeller to lower the uncertainties.

<u>Figure 4:</u> Experimental production cross sections of the $^{nat}Ni(d,x)^{61}Cu$ reaction.

Results – Impact of the reassessment

 \Box 5 different databases have been used to get the ⁶¹Cu γ -ray intensities:

	282.956 keV	656.008 keV	1185.234 keV	Authors
Table of Isotopes (1978)	?	?	?	Zweit (1991)
Table of Radioactive Isotopes (1986)	12.5 %	10.66 %	?	Takacs (2001), Takacs (1997)
LUND LBNL	12.2 ± 0.002 %	10.77 ± 0.009 %	3.75 ± 0.015 %	Avrigeanu (2016), Haddad (2013), Takacs (2007)
NDS (2015)	12.2 ± 2.2 %	10.77 ± 0.18 %	3.75 ± 0.07 %	Usman (2016), Hermanne a,c,e (2013) Hermanne (2007)
ENSDF (2020)	12.7 ± 2 %	10.4 ± 1.6 %	3.6 ± 0.6 %	My work

<u>Table 3 :</u> Intensity of the most intense gamma of ⁶¹Cu depending on the database used.

D The data sets use **different** γ -rays to obtain the ⁶¹Cu activities:

- \rightarrow The γ -ray at 656 keV
- \rightarrow The γ -ray at 283 keV
- \rightarrow The γ -rays at 283 keV, 656 keV and 1185 keV

Results – Impact of the reassessment

<u>Figure 4 :</u> Experimental data of the production cross sections of $^{nat}Ni(d,x)^{61}Cu$ using the 656.008 keV γ -ray

Results – Impact of the reassessment

<u>Figure 5</u>: Experimental data of the production cross sections of $^{nat}Ni(d,x)^{61}Cu$ using the 282.956 keV γ -ray

RESULTS – Impact of the reassessment

<u>Figure 6</u>: Experimental data of the production cross sections of $^{nat}Ni(d,x)^{61}Cu$ using the 3 main γ -rays of ^{61}Cu .

RESULTS – Impact of the reassessment

<u>Figure 7</u>: Experimental production cross sections of the $^{nat}Ni(d,x)^{61}Cu$ reaction with the reassessed values.

Half of the experimental data relies only on the 656 keV γ-ray to extract the ⁶¹Cu activities.

L around **10** % of difference (NDS 2015, LUND LBNL etc.) \Rightarrow within the uncertainties

- 3 data use the 283 keV γ-ray : no database indicated for the intensity chosen.
 - \rightarrow No changes with NDS 2015, LUND LBNL
 - → around 2 % of difference (Table of Radioactive Isotopes)
- 2 data sets use 3 γ-rays (283, 656, 1185) : not possible to evaluate.
- Using multiple γ-rays : around 3.2 % of difference in my case.

All of the corrections are within the uncertainties of each data sets

CONCLUSION

- New production cross section measurements of the reaction ^{nat}Ni(d,x)⁶¹Cu have been performed at the GIP Arronax at low energy :
 - → Good agreement with the data of Avrigeanu *et al.* and at low and high energy with the literature and the recommended cross sections.
 - \rightarrow There's a slight shift in energy at the peak and its value is 20 % lower than the recommended value.
 - \rightarrow Investigation to be pursued to figure out what is going on at the maximum.
- □ With the reassessment of the intensities of the γ-ray of ⁶¹Cu proposed by Bleuel *et al.* ⇒ some significant changes in the experimental data from the literature using the 656 keV γ-ray but they remain within the uncertainties.

Outlook : New measurements with a farraday cup coupled with an electron repeller to have an absolute measure of the flux of the beam.

THANK YOU FOR YOUR ATTENTION

Laurine Puren