
HAL Id: hal-04771638
https://hal.science/hal-04771638v1

Submitted on 7 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

What’s New in the Faust Ecosystem in 2024?
Stéphane Letz, Romain Michon, Yann Orlarey

To cite this version:
Stéphane Letz, Romain Michon, Yann Orlarey. What’s New in the Faust Ecosystem in 2024?. Pro-
ceedings of the 4th International Faust Conference, Nov 2024, Turin (Italie), Italy. pp.27-33. �hal-
04771638�

https://hal.science/hal-04771638v1
https://hal.archives-ouvertes.fr

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

WHAT’S NEW IN THE FAUST ECOSYSTEM IN 2024?

Stéphane Letz

Univ Lyon, GRAME-CNCM, INSA Lyon,
Inria, CITI, EA3720, 69621 Villeurbanne,

France
letz@grame.fr

Romain Michon

Univ Lyon, Inria, INSA Lyon, CITI, EA3720,
69621 Villeurbanne, France

romain.michon@inria.fr

Yann Orlarey

Univ Lyon, GRAME-CNCM, INSA Lyon,
Inria, CITI, EA3720, 69621 Villeurbanne,

France
yann.orlarey@inria.fr

ABSTRACT

This paper provides an overview of the developments in the
FAUST programming language and ecosystem since the 2022 In-
ternational FAUST Conference. Over the past two years, the
FAUST community has made significant progress in compiler en-
hancements, backend integrations, web-based tools, a new Widget
Modulation language extension, and FPGA support for audio DSP
compilation.

The Emeraude team, a collaboration between Inria, GRAME-
CNCM, and INSA Lyon, started its work in March 2022 and has
strengthened FAUST’s development and application in academic
and industrial contexts.

Additionally, a reflective process and proposed consortium
aim to empower the user community in guiding FAUST’s future
direction.

The paper also explores several industrial applications, high-
lighting the practical impact and versatility of the FAUST ecosys-
tem.

1. INTRODUCTION

The FAUST programming language and its ecosystem are key tech-
nological components used by the Emeraude team, particularly in
the Syfala project, as discussed in §3.4.1.

Furthermore, a reflective process, presented in §2, has been
initiated to strengthen the FAUST project, with plans to establish a
FAUST consortium, aiming to provide the user community with a
significant role in shaping the future of the project.

FAUST has made significant strides in compiler developments,
backends integration, and community projects. Highlights in §3
include:

• New Backends: integration within JAX, JSFX, Cmajor, and
RNBO, enhancing FAUST’s versatility across various DSP
contexts.

• Widget Modulation: enabling developers to effortlessly im-
plement voltage control type modulation to existing Faust
circuits.

• Web Developments: introduction of the faustwasm and
faust-web-component packages, modernization of
the FAUST IDE, Editor, and Playground for easier web-
based DSP integration and update WAM 2.0 plugin model.

• FPGA Support: the Emeraude team’s work on providing
an audio DSP compilation flow for FPGA platforms, Linux
support for Syfala, and development of multichannel audio
boards.

Finally, several of the main industrial applications of the
FAUST ecosystem are presented in §4.

2. THE FAUST COMMUNITY

2.1. FAUST Consortium

The FAUST project is an open-source initiative hosted on GitHub 1

and freely accessible to the public. While the community has sig-
nificantly enriched the ecosystem with architecture files, libraries,
and more, contributions to the language design and the compiler
itself have been minimal so far.

The aim of the FAUST consortium is to give the FAUST user
community a stake in the future of FAUST, by giving them the op-
portunity to see how the language will evolve, and to take an active
part in the decision-making process, in particular the development
of the roadmap.

Another goal of the FAUST consortium is to gather financial
resources to ensure the maintenance and development of FAUST in
the years to come.

Here’s the current state of our thinking and the resulting pro-
posals, bearing in mind that this is an ongoing endeavour that still
needs some work.

2.1.1. Consortium Members

The FAUST Consortium is made up of several categories of mem-
bers, according to their financial contribution to the Consortium,
which determines their level of Membership, and consequently
their rights in the running of the Consortium. The different cat-
egories are as follows:

• Guest member

• Paying member: platinum, gold, silver

Their rights and obligations will be defined in a “FAUST Con-
sortium Contract” document proposed by InriaSoft 2.

2.1.2. Consortium Organization

The consortium is supported by two governing bodies:

• the Annual General Meeting (AGM)

• the Scientific and Technical Committee (STC).

2.1.3. Annual General Meeting

The General Meeting is the governing body that ensures the
smooth running of the FAUST consortium. At its annual meeting:

1https://github.com/grame-cncm/faust
2https://www.inria.fr/fr/inriasoft-pour-la\

-diffusion-des-logiciels-open-source

http://grame.fr
http://grame.fr
http://grame.fr
mailto:letz@grame.fr
https://www.inria.fr/fr
https://www.inria.fr/fr
mailto:romain.michon@inria.fr
http://grame.fr
http://grame.fr
http://grame.fr
mailto:orlarey@grame.fr
https://github.com/grame-cncm/faust
https://www.inria.fr/fr/inriasoft-pour-la\-diffusion-des-logiciels-open-source
https://www.inria.fr/fr/inriasoft-pour-la\-diffusion-des-logiciels-open-source

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

• It examines the state of the ecosystem and makes recom-
mendations on future directions and work priorities;

• It examines the consortium’s financial situation and ap-
proves the annual budget;

• It sets work priorities for the various elements of the
roadmap drawn up by the Scientific and Technical Com-
mittee;

• It coordinates communication and promotional activities,
such as the International FAUST Conference (IFC).

2.1.4. Scientific and Technical Committee

The Scientific and Technical Committee defines the roadmap for
the evolution of the compiler and the various tools that make up its
ecosystem:

• It is responsible for the official specification of the FAUST
language and its evolution;

• It proposes a reference implementation of the compiler,
compliant with this specification, and regularly publishes
this implementation officially;

• It issues certificates of conformity for any third-party im-
plementations of the compiler to this specification;

• It defines and maintains the standard FAUST libraries, as
well as various development tools that are part of the FAUST
ecosystem;

• It maintains a set of basic architecture files;

• It develops the language’s official documentation and teach-
ing resources;

• It manages the language’s official websites and related Git
repositories.

The STC is made up of a technical manager appointed by Inria,
members of the Emeraude team working on FAUST, and possibly
one or two representatives of the members. Consortium members
are invited to suggest topics for the agenda of STC meetings.

2.1.5. Drawing Up the Roadmap

The roadmap defines short and medium-term developments for the
language, the compiler and the various tools in the FAUST ecosys-
tem. A first, fairly broad version is drawn up by the STC, based on
proposals from the FAUST community and consortium members.
In particular, the STC assesses the feasibility and labor costs of the
various points, and proposes an initial ranking according to their
importance and dependence.

The General Assembly selects and prioritizes the items to be
included in the roadmap from the STC’s proposals. It ensures that
the necessary workload does not exceed 50% of the consortium’s
available human resources. The roadmap is then officially adopted
by the General Assembly in a vote in which each member has a
number of votes corresponding to its level of membership.

2.2. Communication Channels

The now automomous FAUST Discord channel 3 is an active and
dynamic online community space dedicated to users, developers.

3https://faust.grame.fr/community/help/
#faust-on-discord

This platform serves as a hub for real-time communication, col-
laboration, and support, fostering a sense of community among
members with varying levels of expertise (see Figure 1).

Figure 1: The Faust Discord channel.

2.3. The “Powered by FAUST” Page

A page listing all the significant “Powered by FAUST” projects is
maintained: musical pieces or artistic projects, plugins, standalone
applications, integration in audio programming environments, de-
velopment tools, research projects, embedded devices, Web appli-
cations, etc. are listed.

This page is regularly enriched and as of July 2024, more than
250 projects are described (see Figure 2).

Figure 2: Excerpt of the “Powered by Faust” list.

3. DEVELOPMENTS

3.1. New Backends

Four new backends have been developed. They allow us to use
FAUST DSP programs with a larger set of targets in new applica-
tions, or to reach new communities.

https://faust.grame.fr/community/help/#faust-on-discord
https://faust.grame.fr/community/help/#faust-on-discord

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

3.1.1. JAX

The introduction of the JAX backend opens up a new domain of
exploration for FAUST, significantly expanding its capabilities and
potential applications, especially in the field of machine learning.

JAX is a library for high-performance numerical computing,
particularly popular in the machine learning research community
for its flexibility in model development and its capability to handle
complex mathematical operations efficiently. It extends the capa-
bilities of NumPy by enabling automatic differentiation, allowing
us to compute gradients of functions with respect to their inputs.
JAX also supports just-in-time (JIT) compilation to highly opti-
mized machine code, which significantly improves performance
for numerical routines. It supports the creation and training of
neural networks through libraries built on top of it, like Flax and
Haiku.

With the assistance of GRAME, David Braun has contributed
a JAX backend allowing for the direct creation of differentiable
FAUST programs for potential uses in machine learning applica-
tions. It is designed to be used within DawDreamer 4, an audio-
processing Python framework that supports core DAW features
and more, also developed by David Braun.

Several Flax examples with a learnable low-pass filter, a
differentiable subtractive synthesizer, a differentiable polyphonic
wavetable synthesizer whose wavetables are learnable, as well as
a parametric equalizer written in FAUST to a QDax environment,
have been explored 5.

3.1.2. JSFX

Developed by Cockos, the creators of Reaper, JSFX 6 is a scripting
language which allows users to extend the capabilities of the DAW
with custom audio and MIDI processing scripts adapted to their
specific needs.

With the assistance of GRAME, Johann Philippe has con-
tributed a backend enabling the creation of synthesizers and ef-
fects with MIDI control, as well as polyphonic MIDI-controllable
audio plugins. Following the standard JSFX file structure, sev-
eral @init, @block, @slider and @sample blocks are filled
with the appropriate part of the generated FAUST code. The re-
sult is self-contained, with the architecture part directly inserted
by the backend (even the voices allocation and MIDI control in
polyphonic mode), allowing it to be loaded and executed in Reaper
seamlessly. A comprehensive tutorial has been written. 7

3.1.3. Cmajor

Cmajor is a C like procedural high-performance language specifi-
cally designed for audio processing providing a runtime with dy-
namic LLVM JIT based compilation. Cmajor is intended to com-
plete other technologies like C++, JUCE, and CLAP, and also sup-
port Web export. DSP is deployed with Cmajor as a patch, which
includes a description of the plugin, the source code for the DSP,
and an associated GUI implemented in JavaScript. The language
supports a signal flow through a graph structure with nodes con-
taining implementations of specific DSP building blocks.

4https://github.com/DBraun/DawDreamer
5https://github.com/DBraun/DawDreamer/tree/

main/examples
6https://www.reaper.fm/sdk/js/js.php
7https://faustdoc.grame.fr/tutorials/jsfx/

A Cmajor backend has been written to generate a processor
from a FAUST DSP program. Parameters such as sliders, buttons,
and bar graphs correspond to Cmajor’s concept of input and output
events. The actual sample computation code is generated within
the essential run() function.

A faust2cmajor script enables the creation of ready-to-
use Cmajor patches, which can be directly executed with the cmaj
runtime, or possibly exported as C++, or JUCE, CLAP, Web plu-
gins. The script supports both regular DSP programs and poly-
phonic MIDI-controllable programs. A comprehensive tutorial has
been written. 8

3.1.4. RNBO

RNBO is a library and toolchain that can take Max-like patches,
export them as portable code, and directly compile that code to
targets like a VST, a Max External, or a Raspberry Pi.

FAUST programs can be compiled to the internal codebox~
sample level scripting language. In this model, several sections
are generated for parameter definitions, DSP state construction,
initialization, the control function (called once per block), and
finally, the compute function (called at audio rate).

The faust2rnbo tool transforms a FAUST DSP program
into a RNBO patch containing a rnbo~ object and including
the codebox code (generated using the codebox backend) as a
subpatch. Needed audio inputs/outputs and parameters (with the
proper name, default, min and max values) are automatically
added in the patch. Additional options allow us to generate a spe-
cific version of the RNBO patch used in the testing infrastructure.
The code is written in Python and uses the very powerful py2max
9 library to generate the maxpat JSON format.

The script supports both regular DSP programs and poly-
phonic MIDI-controllable programs. A comprehensive tutorial has
been written. 10

3.2. Widget Modulation

An extension to the FAUST programming language, Widget Modu-
lation, has been recently developed. Inspired by Modular Synthe-
sizer, this extension enables developers to effortlessly implement
voltage control type modulation to existing Faust circuits.

Although signal modulation can traditionally be achieved by
writing the necessary code during circuit development, Widget
Modulation expressions enable it a posteriori, after the circuit has
been developed and without modifying its code. This feature al-
lows for direct reuse and customization without prior planning by
the original circuit designer. It offers a new level of expressivity
and flexibility in FAUST circuit design. A separate paper on the
subject has been proposed to IFC 2024 [7].

3.3. Web-Related Developments

The development of the FAUST to Web glue code started in 2014,
initially as a collection of JavaScript files. To streamline mainte-
nance and facilitate future development, the compiler’s C++ export
layer has been modernized using the Embind model, 11 which is

8https://faustdoc.grame.fr/tutorials/cmajor/
9https://github.com/shakfu/py2max

10https://faustdoc.grame.fr/tutorials/rnbo/
11https://emscripten.org/docs/porting/

connecting_cpp_and_javascript/embind.html

https://github.com/DBraun/DawDreamer
https://github.com/DBraun/DawDreamer/tree/main/examples
https://github.com/DBraun/DawDreamer/tree/main/examples
https://www.reaper.fm/sdk/js/js.php
https://faustdoc.grame.fr/tutorials/jsfx/
https://faustdoc.grame.fr/tutorials/cmajor/
https://github.com/shakfu/py2max
https://faustdoc.grame.fr/tutorials/rnbo/
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/embind.html
https://emscripten.org/docs/porting/connecting_cpp_and_javascript/embind.html

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

part of the Emscripten compiler.12 Additionally, the FAUST to We-
bAudio glue code has been completely restructured and rewritten
in TypeScript, developed and distributed as a separated npm pack-
age. Several projects have been developed using this new frame-
work, demonstrating its robust performance and ease of integra-
tion.

3.3.1. The faustwasm Package

The FaustWasm library 13 provides a user-friendly high-level API
that wraps around the FAUST compiler. While the interface is pri-
marily tailored for TypeScript, it also includes API descriptions
and documentation for pure JavaScript users. This WebAssembly
version of the FAUST Compiler, suitable for both Node.js and web
browsers, has been compiled with Emscripten 3.1.31.

The library enables the compilation of FAUST DSP code into
WebAssembly, allowing it to be used as WebAudio nodes within a
standard WebAudio node graph. It also supports offline rendering
scenarios. Additionally, tools are available for generating SVGs
from FAUST DSP programs.

Users can create “mono” synthesizer and effect nodes, as well
as polyphonic nodes. MIDI support is automatically activated
when MIDI metadata is included in the DSP code for mono nodes,
and is always enabled in polyphonic mode.

Sensors (accelerometer and gyroscope) are supported, as well
as the Progressive Web Application model, so playable instru-
ments to be used on smartphones and tablets can be easily de-
ployed.

3.3.2. Modernized Faust IDE, Faust Editor and FaustPlay-
ground

As the main outcomes of Ian Clester’s Google Summer of Code
2023 projects, 14 the three FAUST IDE, FAUST Editor and Faust-
Playground projects have been modernized with updated build
tools, and the use of the faustwasm package.

3.3.3. faust-web-component

Another outcome of Ian Clester’s Google Summer of Code project
is the faust-web-component 15 package which provides two
web components for embedding interactive FAUST snippets in web
pages:

• <faust-editor> displays an editor (using CodeMirror
6) with executable, editable FAUST code, along with some
bells & whistles (controls, block diagram, plots) in a side
pane. This component is ideal for demonstrating some code
in FAUST and allowing the reader to try it out without hav-
ing to leave the page.

• <faust-widget> just shows the controls and does not
allow editing, so it serves simply as a way to embed inter-
active DSP, and can been tested here.

These components are built on top of faustwasm and
faust-ui 16 packages and are released as an npm package.

12https://emscripten.org/index.html
13https://github.com/grame-cncm/faustwasm
14https://ijc8.me/2023/08/27/gsoc-faust/
15https://github.com/grame-cncm/

faust-web-component
16https://github.com/Fr0stbyteR/faust-ui

3.3.4. Web Audio Module (WAM) 2.0

In 2015, Jari Kleimola and Olivier Larkin proposed Web Audio
Modules (WAM), a standard for Web Audio plugins and DAWs.
The 2.0 version [1], released in 2021, was a collaborative effort in-
volving many contributors, resulting in multiple open source and
free software plugins and hosts. WAM 2.0 includes an SDK, an
abstract API, numerous open source repositories with various plu-
gins, tutorials, and several hosts demonstrating WAM capabili-
ties. The design of WAM 2.0 aimed to support diverse devel-
opment workflows, from web developers using plain JavaScript,
React developers, to C/C++ developers cross-compiling code to
WebAssembly.

WAM 2.0 [2] plugins can be developed using FAUST and eas-
ily generated using the FAUST IDE 17, with the adapted targets 18.

3.4. Emeraude Team Projects

The Emeraude team is continuing its work on the FAST ANR
project 19, initiated in 2021. This project aims to facilitate high-
level programming of FPGA-based platforms for multichannel
ultra-low-latency audio processing using FAUST.

3.4.1. Syfala: Compilation of Audio DSP on FPGA

The team has been actively extending the Syfala toolchain, first re-
leased in 2022 [3]. It is meant to be a powerful audio to FPGA
compilation toolchain. All the possible use of the compilation
toolchain have been combined in a single software suite. This
section describes the extensions that have been added to Syfala
in 2023.

When compiling FAUST programs to FPGA, Syfala relies on
the High Level Synthesis (HLS) tool provided by Xilinx, which
takes a C++ program as an input. Hence, FAUST generates C++
code from a FAUST program and Syfala feeds it to HLS. The topol-
ogy of the C++ code provided to HLS has a huge impact on the
performances of the generated Intellectual Property (IP). In 2023,
a study has been conducted aiming at understanding the kind of
optimizations that can be carried out on C++ code in the context
of the high-level synthesis of real-time audio DSP programs.

Thanks to this work, the applications generated by Syfala have
been significantly optimized, allowing for much more complex au-
dio DSP algorithms to be run on the FPGA. While these findings
haven’t been integrated to the FAUST Syfala backend, they can be
used with the new Syfala C++ support. Indeed, a new mode in
Syfala allowing for C++ code to be used as a substitute for FAUST
has been added. This, combined with an exhaustive public docu-
mentation of the aforementioned optimizations will help increas-
ing the attractivity of Syfala.

3.4.2. Linux Support for Syfala

Most modern FPGA boards host a CPU SoC tightly coupled to the
FPGA. Real-time audio DSP applications running on such boards
can leverage the CPU of the board to carry out control computa-
tions or to provide high-level functionalities (i.e., user interface,

17http://www.webaudiomodules.com/docs/usage/
generate-with-faustide

18https://faustdoc.grame.fr/manual/deploying/
#exporting-wam-20-plugins

19https://fast.grame.fr

https://emscripten.org/index.html
https://github.com/grame-cncm/faustwasm
https://ijc8.me/2023/08/27/gsoc-faust/
https://github.com/grame-cncm/faust-web-component
https://github.com/grame-cncm/faust-web-component
https://github.com/Fr0stbyteR/faust-ui
http://www.webaudiomodules.com/docs/usage/generate-with-faustide
http://www.webaudiomodules.com/docs/usage/generate-with-faustide
https://faustdoc.grame.fr/manual/deploying/#exporting-wam-20-plugins
https://faustdoc.grame.fr/manual/deploying/#exporting-wam-20-plugins
https://fast.grame.fr

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

external controllers, etc.) [3]. Up to now, the CPU portion of ap-
plications generated by Syfala was implemented as a bare-metal
kernel. In 2023, the possibility to run Alpine Linux on the CPU
of the Zybo board while carrying out audio DSP operations on the
FPGA has been added, taking a hardware accelerator approach.
This enables the compilation of complete audio applications in-
volving various control protocols and approaches such as OSC
(Open Sound Control) through Ethernet or Wi-Fi, MIDI, web in-
terfaces running on an HTTPD server, etc. It also opens the door
to the integration of hardware accelerators in high-level computer
music programming environments such as Pure Data, SuperCol-
lider, etc.

This work led to a publication at the 2023 Sound and Music
Computing conference (SMC-23)[4].

3.4.3. Syfala PipeWire Support

During the work on applications for Syfala requiring the handling
of a large number of audio channels in parallel for spatial audio, a
way to send and receive audio streams in parallel between a laptop
computer and our FPGA board has been developed. For this, an
open standard named PipeWire, which allows for the transmission
of digital audio streams in real-time over an ethernet connection
has been chosen. PipeWire was implemented in the Linux layer of
Syfala and is now perfectly integrated to the toolchain. It will al-
low us to significantly expand the scope of the various spatial audio
systems that has been working on in the context of the PLASMA
project.

3.4.4. Multichannel Audio Boards for FPGA

Two audio FPGA sister boards aiming various kinds of spatial au-
dio applications have been developed:

• One targets the Digilent Zybo Z7 (10 or 20) board and is
designed to be cost-efficient, accessible, and easily repro-
ducible. It provides 32 amplified (3W) audio outputs to
which small speakers can be directly connected. Its goal is
to provide an affordable way to deal with a large number of
audio outputs in the context of spatial audio.

• The other board that has been developed is meant to be con-
nected to a Digilent Genesys board and targets high-end
spatial audio applications with a strong focus on active con-
trol. It provides 32 ultra-low latency (10us) balanced inputs
and outputs. It is currently used as part of the FAST ANR
project for implementing FxLMS algorithms for active con-
trol.

This work has been published at the 2024 at the Sound and
Music Computing conference (SMC-24) [5].

3.4.5. FAUST to VHDL Backend

Syfala uses HLS for compiling C++ code down to VHDL, the C++
code being itself generated from FAUST . However, FAUST , as a
functional language, exhibits all the parallelism of the audio ap-
plication. The code is sequentialized in the C++ code and then
re-parallelized by the viti_hls tool for the FPGA.

An interesting alternative is to translate directly FAUST down
to VHDL. FAUST programs can be represented as audio circuits
connected together and hence provides a natural equivalence with

VHDL structural representation of such circuits. The VHDL pro-
gram is just a translation of the data-flow graph of the audio appli-
cation.

However, for an efficient implementation on FPGA, this data-
flow graph must be retimed. Retiming is an old classical transfor-
mation that adds registers in a digital circuit without changing its
functional behaviour but allowing for a much faster clock rate.

A first Faust2VHDL translator prototype was issued in 2022
generating a fully combinatorial data path on the FPGA. In 2023
the first real Faust2FPGA compiler which includes retiming and
fixed point computations has been released.

Preliminary results shows that the IP generated by our
Faust2FPGA compiler are twice smaller than the IP generated
by viti_hls. However, the use of HLS is still preferred because
many features are not included in the Faust2FPGA compiler (i.e.,
control from the ARM processor or use of the external RAM).

3.4.6. Fixed-Point Extension for the FAUST Programming
Language

This recent paper [6] addresses the challenge of efficiently utiliz-
ing fixed-point arithmetic in FAUST. Instead of the standard floats
format, fixed-point arithmetic can be more resource-efficient and
faster than floating-point arithmetic, particularly on FPGAs where
the required circuitry can be precisely configured. However, it im-
plies the careful determination of number formats at each step of
the computation tree.

The need to reconsider the representation of real numbers in
this context is highlighted, where fixed-point numbers, represented
as scaled integers, can offer significant efficiency improvements.
The introduced key concept is “pseudo-injectivity” which ensures
that output values of each function in the language retain the nec-
essary precision. The method extends the previously existing in-
terval range analysis to determine the range of values variables can
take and error analysis to manage rounding and ensure precision.

Enhancements to the FAUST compiler to facilitate automatic
fixed-point format determination have been done. The precision
constraints are propagated through the signal graph to maintain
pseudo-injectivity. Additionally, when generating C++ code, a
sfx_t macro is added in the generated code at each step of the
computation, to represent fixed-point formats with the most signif-
icant bit (MSB) and the least significant bit (LSB) values.

Results from testing on FAUST programs, such as sine wave
generation and the Karplus-Strong string synthesis algorithm, in-
dicate that the method can maintain high audio quality, though in-
ferred formats tend to be wider than necessary. Future improve-
ments will include backward propagation of precision constraints
and targeted optimizations to further refine the fixed-point format
determination.

3.5. PLASMA: Pushing the Limits of Audio Spatialization
with eMerging Architectures

Plasma (Pushing the Limits of Audio Spatialization with eMerging
Architectures) is an associate research team gathering the strength
of Emeraude and of the Center for Computer Research in Music
and Acoustics (CCRMA) at Stanford University. 20

The two main objectives of Plasma are:

20https://team.inria.fr/emeraude/plasma/

https://team.inria.fr/emeraude/plasma/

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

• Exploring various approaches based on embedded systems
towards the implementation of modular audio signal pro-
cessing systems involving a large number of output chan-
nels (and hence speakers) in the context of spatial audio.

• Making these systems easily programmable to create an
open and accessible system for spatial audio where the
number of output channels is not an issue anymore.

Two approaches are being considered in parallel:

• Distributed using cheap simple embedded audio systems
(i.e., Teensy, etc.),

• Centralized using an FPGA-based (Field-Programmable
Gate Array) solution based on the multichannel interfaces
presented in §3.4.4.

The focus is on enhancing the hardware and computational ca-
pabilities of current spatial audio systems, rather than on the DSP
algorithms for spatial audio themselves. FAUST plays a central
role in this project by allowing us to deploy spatial audio and vir-
tual acoustics programs from the same source in a generic way.

4. INDUSTRIAL APPLICATIONS

Here is a non-exhaustive list of some recent industrial applications
of FAUST.

4.1. Expressive E

Expressive E 21 is a French company that creates innovative musi-
cal instruments and software designed to enhance expressive per-
formance. Their products include the Osmose, a standalone ex-
pressive synthesizer, and Touché, a device that adds tactile control
to existing synthesizers.

They also offer a range of software instruments and sound li-
braries, such as Noisy and Imagine, which are especially designed
to be used with the Osmose and Touché devices, but are versa-
tile enough be used with other MIDI controllers and digital audio
workstations (DAWs).

Noisy 1 and 2 products were largely created using FAUST, and
benefited from a close collaboration between Expressive E’s de-
velopment team and GRAME, in particular in developing perfor-
mance measurement and optimisation tools.

Figure 3: The Noisy2 plugin interface.

21https://www.expressivee.com

4.2. Punk Labs

Punk Labs LLC is a tiny studio of just two people creating apps,
games, music, and even social networks. They develop for desk-
tops and game consoles, mobile and embedded devices. Four plu-
gins have been developed using the Rust NIH-plug framework and
FAUST for DSP22, which allows us to develop and export VST3
and CLAP format, as well as a standalone module:

• OneTrick KEYS: a physically modeled piano synth with a
lo-fi sound.

• OneTrick URCHIN: an hybrid drum synth that models the
gritty lo-fi sound of beats from vintage records without
sampling.

• OneTrick CRYPTID: whispers of a drum machine with the
cold clanging heart of a DX7 in the fearsome frame of a
TR-808 echo in dusty backrooms of backstreet recording
studios.

• OneTrick SIMIAN: crash into the 80s with an open source
drum synth inspired by hexagonal classics like the Sim-
mons SDS-V.

4.3. Joué Play

The Joué Play 23 is a system that combines an expressive multi-
instrument, an intuitive app and interactive content, with a range of
musical instruments that use touch-sensitive technology to create
a unique playing experience. These instruments are designed to be
highly expressive, allowing musicians to play with greater nuance
and emotion. Part of the audio effects are coded in FAUST.

5. ACKNOWLEDGMENT AND CONCLUSION

This paper reflects the richness and diversity of the contributions
carried out during the past two years. The significant advance-
ments detailed herein are the result of the collaborative efforts of
numerous individuals and teams.

Thanks to all contributors for all the different components and
projects that have been described, and especially this time: Johann
Philippe, David Braun, Shihong Ren, Michel Buffa, Ian Clester,
and the Emeraude team: Tanguy Risset, Romain Michon, Pierre
Cochard, Florent de Dinechin, Anastasia Volkova, Thomas Rush-
ton, Maxime Popov and Agathe Herrou.

6. REFERENCES

[1] Michel Buffa, Shihong Ren, Owell Campbell, Tom Burns,
Steven Yi, Jari Kleimola, and Oliver Larkin, “Web Audio
Modules 2.0: An Open Web Audio Plugin Standard,” in Com-
panion Proceedings of the Web Conference 2022 (WWW 22),
Lyon, France, April 2022.

[2] Shihong Ren, Stéphane Letz, Yann Orlarey, Dominique Fober,
Romain Michon, Michel Buffa, and Laurent Pottier, “Mod-
ernized Toolchains to Create JSPatcher Objects and WebAu-
dioModules from Faust Code,” in Proceedings of the Web
Audio Conference (WAC-22), Cannes, France, July 2022.

22https://github.com/robbert-vdh/nih-plug
23https://jouemusic.com/en

https://www.expressivee.com
https://github.com/robbert-vdh/nih-plug
https://jouemusic.com/en

Proceedings of the International Faust Conference (IFC-24), Soundmit, Turin, Italy, November 21-22, 2024

[3] Maxime Popoff, Romain Michon, Tanguy Risset, Yann Or-
larey, and Stéphane Letz, “Towards an FPGA-Based Compi-
lation Flow for Ultra-Low Latency Audio Signal Processing,”
in Proceedings of the Sound and Music Computing Confer-
ence (SMC-22), Saint Etienne, France, June 2024.

[4] Pierre Cochard, Maxime Popoff, Antoine Fraboulet, Tan-
guy Risset, Stéphane Letz, and Romain Michon, “A Pro-
grammable Linux-Based FPGA Platform for Audio DSP,” in
Proceedings of the Sound and Music Computing Conference,
Stockholm, Sweden, 2023.

[5] Maxime Popoff, Romain Michon, and Tanguy Risset, “En-
abling Affordable and Scalable Audio Spatialization With
Multichannel Audio Expansion Boards for FPGA,” in Pro-
ceedings of the 2024 Sound and Music Computing Confer-
ence, Porto, Portugal, July 2024.

[6] Agathe Herrou, Florent de Dinechin, Stéphane Letz, Yann
Orlarey, and Anastasia Volkova, “Towards Fixed-Point For-
mats Determination for Faust Programs,” in Proceedings of
the Journées d’Informatique Musicale (JIM-24), Marseille,
France, May 2024.

[7] Yann Orlarey, Stéphane Letz, Romain Michon, and the Emer-
aude team, “Widget Modulation in Faust,” in Proceedings
of the International Faust Conference (IFC-24), Turin, Italy,
November 2024.

	1 Introduction
	2 The Faust Community
	2.1 Faust Consortium
	2.1.1 Consortium Members
	2.1.2 Consortium Organization
	2.1.3 Annual General Meeting
	2.1.4 Scientific and Technical Committee
	2.1.5 Drawing Up the Roadmap

	2.2 Communication Channels
	2.3 The ``Powered by Faust'' Page

	3 Developments
	3.1 New Backends
	3.1.1 JAX
	3.1.2 JSFX
	3.1.3 Cmajor
	3.1.4 RNBO

	3.2 Widget Modulation
	3.3 Web-Related Developments
	3.3.1 The faustwasm Package
	3.3.2 Modernized Faust IDE, Faust Editor and FaustPlayground
	3.3.3 faust-web-component
	3.3.4 Web Audio Module (WAM) 2.0

	3.4 Emeraude Team Projects
	3.4.1 Syfala: Compilation of Audio DSP on FPGA
	3.4.2 Linux Support for Syfala
	3.4.3 Syfala PipeWire Support
	3.4.4 Multichannel Audio Boards for FPGA
	3.4.5 Faust to VHDL Backend
	3.4.6 Fixed-Point Extension for the Faust Programming Language

	3.5 PLASMA: Pushing the Limits of Audio Spatialization with eMerging Architectures

	4 Industrial Applications
	4.1 Expressive E
	4.2 Punk Labs
	4.3 Joué Play

	5 Acknowledgment and Conclusion
	6 References

