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Abstract

In the Multi-Commodity two-echelon Distribution Problem (MC2DP), multiple commodities are distributed in

a two-echelon distribution system involving suppliers, distribution centres and customers. Each supplier may

provide different commodities and each customer may request several commodities as well. In the first echelon,

capacitated vehicles perform direct trips to transport the commodities from the suppliers to the distribution centres

for consolidation purposes. In the second echelon, each distribution centre owns a fleet of capacitated vehicles to

deliver the commodities to the customers through multi-stop routes. Commodities are compatible, i.e., they can be

mixed in the vehicles. Finally, customer requests can be split by commodities, that is, a customer can be visited

by several vehicles, but the total amount of each commodity has to be delivered by a single vehicle. The aim of the

MC2DP is to minimise the total transportation cost to satisfy customer demands.

We propose a set covering formulation for the MC2DP where the exponential number of variables relates to the

routes in the delivery echelon. We develop a Branch-Price-and-Cut algorithm (BPC) to solve the problem. The

pricing problem results in solving an Elementary Shortest Path Problem with Resource Constraints (ESPPRC) per

distribution centre. We tackle the ESPPRC with a label setting dynamic programming algorithm which incorporates

ng-path relaxation and a bidirectional labelling search. Pricing heuristics are invoked to speed up the procedure. In

addition, the formulation is strengthened by integrating capacity cuts and two families of valid inequalities specific

for the multiple commodities aspect of the problem.

Our approach solves to optimality 439 over the 736 benchmark instances from the literature. The optimality

gap of the unsolved instances is 2.1%, on average.
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1. Introduction

In a two-echelon distribution system, goods are transferred from origins (depots, suppliers) to destinations

(customers) via intermediate facilities (satellites, distribution centres) (see Guastaroba et al., 2016). In the collection

echelon, large vehicles bring goods from the origins to the intermediate facilities where consolidation operations

are performed. Whereas, in the delivery echelon, smaller vehicles are in charge of distributing the goods to the5

final customers. Routing decisions are usually required in both echelons. Two-echelon systems take advantage

of consolidating goods at intermediate facilities and using different fleets within each echelon to reduce overall

transportation costs. An example of this delivery strategy can be encountered in city logistics (Cattaruzza et al.,

2017; Crainic et al., 2023) where the aim is also to grant the access in urban areas only to environmental-friendly

vehicles that usually have a small capacity.10

In this article, we consider the two-echelon distribution problem introduced in Gu et al. (2022), namely the

Multi-Commodity two-echelon Distribution Problem (MC2DP). In this context, origins, intermediate facilities and

destinations are referred to as suppliers, distribution centres and customers, respectively. There are few vehicle

routing problems which explicitly deal with multiple commodities within a two-echelon distribution system. To the

best of our knowledge, among these problems, the MC2DP is the only one considering a many-to-many setting. In15

fact, in the MC2DP, the commodity requested by a customer is not pre-assigned to a specific supplier, so it can be

collected at any supplier or subset of suppliers where it is available. The amount of the commodities available at the

suppliers is limited. In contrast with the usual setting in the literature, the MC2DP requires routing decisions only

in the delivery echelon. Indeed, commodities are collected from the suppliers and brought to the distribution centres

via direct round trips. In the delivery echelon, a fleet of vehicles performing routes starting and ending at the same20

distribution centre is used to deliver the commodities to the customers. All vehicles involved in the distribution

system are capacitated and commodities are compatible, i.e., they can be mixed inside all vehicles. Finally, as in the

Commodity constrained Split Delivery Vehicle Routing Problem (C-SDVRP) Archetti et al. (2016), customers can

be visited by multiple vehicles as long as the demand of a single commodity is served by a single vehicle. The aim

of the MC2DP is to determine a distribution plan to satisfy customer demands while respecting the capacity of the25

vehicles and not exceeding the commodity availabilities at the suppliers and such that the total transportation cost

is minimised. The MC2DP finds an application in the short and local fresh food supply chains (Berti and Mulligan,

2016) where farmers supply different agricultural products to canteens, restaurants or supermarkets through indirect

sales. Commonly, a single decision maker, such as an association of farmers, coordinates both the collection and

delivery echelons. In this context, the farmers are less numerous than delivery points since the maximal supply of30

one farmer can cover the demand of several customers. Hence, the collection from the farmers is usually performed

via direct round trips. Then, the distribution centres perform the consolidation operations and the deliveries to the

customers which are done by vehicles performing routes. We refer to Gu et al. (2022) for more details about the

problem application.
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The authors in Gu et al. (2022) proposed a compact Mixed Integer Linear Programming (MILP) formulation35

and a sequential heuristic for the MC2DP. The authors decompose the MC2DP in two subproblems: one for the

collection from suppliers, and the other one for the delivery to customers. The collection subproblem is modeled

as a MILP and solved with a commercial solver while the delivery subproblem is solved by an Adaptive Large

Neighbourhood Search (ALNS) algorithm.

The contribution of this paper is to present an exended model and to propose the first ever exact approach based40

on a Branch-Price-and-Cut (BPC) algorithm to solve the MC2DP. Similar exact approaches have recently been

proposed to deal with two-echelon vehicle routing problems (see e.g. Marques et al., 2020; Li et al., 2022; Mhamedi

et al., 2022; Marques et al., 2022). However, our BPC algorithm is designed to take into account explicitly the

multi-commodity dimension. Specifically, our algorithm relies on a set covering formulation for the MC2DP where

the exponentially-many number of variables correspond to the routes in the delivery echelon starting and ending45

at each distribution centre. We also strengthen the formulation by the insertion of capacity cuts, valid inequalities

arising from the set covering polytope (Balas and Ng, 1989) and a new family of valid inequalities based on the

number partitioning problem polytope. While capacity cuts are classical inequalities derived for the Capacitated

Vehicle Routing Problem (CVRP) (see Laporte et al., 1985), the other two families of inequalities tackle the multi-

commodity aspect of the problem. Finally, several state-of-art speed-up techniques are also incorporated in our50

BPC algorithm

The remainder of the paper is organized as follows. Section 2 provides a literature review. In Section 3, a formal

description of the MC2DP is provided. In Section 4, a set covering formulation is presented along with different

families of valid inequalities. Our Branch-Price-and-Cut algorithm is described in Section 5. Finally, in Section 6

we analyse the results obtained by the proposed algorithm on the benchmark instances introduced in Gu et al.55

(2022) to assess its effectiveness.

2. Literature review

In this section, we review the existing literature on the two-echelon distribution problems, with particular atten-

tion to the ones dealing with multiple commodities. The first two-echelon routing problem introduced by Jacobsen

and Madsen (1980) was motivated by a specific application. Newspapers have to be distributed from a printing office60

to sales points possibly passing through some transfer points whose locations are to be decided. Crainic et al. (2004)

and Crainic et al. (2009) proposed a formal description of a rich class of two-echelon routing problems along with

some economic insights. However, the seminal problem in this class, namely the two-echelon Capacitated Vehicle

Routing Problem (2E-CVRP), was introduced in the literature and studied for the first time in Perboli et al. (2011).

In the 2E-CVRP, a single commodity has to be transferred from a single origin to several destinations through65

some intermediate facilities. Two fleets of capacitated vehicles perform routes in the two echelons to transport the

commodity from the origin to the intermediate facilities and from the intermediate facilities to the destinations.
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The objective of the 2E-CVRP is to minimise the total transportation cost of the distribution system. The authors

proposed two math-heuristics to solve the problem, a diving and a sub-MIP heuristic.

The 2E-CVRP and related problems have received increasing attention in recent years and many variants have70

been addressed, e.g., 2E-CVRP with (i) time windows (Mhamedi et al., 2022); (ii) mobile satellites (Li et al., 2020);

(iii) synchronization (Grangier et al., 2016) and bi-synchronization (Li et al., 2021b); (iv) simultaneous pickup

and delivery (Li et al., 2022); (v) electric vehicles (Breunig et al., 2019) and battery swapping stations (Jie et al.,

2019); (vi) real-time transshipment capacity varying (Li et al., 2018); (vii) covering options (Enthoven et al., 2020);

(viii) delivery options (Zhou et al., 2018); (ix) stochastic demands (Sluijk et al., 2022). The interested reader may75

refer to Cuda et al. (2015); Li et al. (2021a) and Sluijk et al. (2023) for recent surveys on the subject.

According to the existing literature, the vast majority of the two-echelon routing problems deal with the single

commodity case. Apart from the MC2DP, which is addressed in this paper, only a few works integrate multiple

commodities in a two-echelon routing problem (e.g. Dellaert et al., 2021; Jia et al., 2023; Gu et al., 2022). In Dellaert

et al. (2021), the authors extended the 2E-CVRP by introducing multiple origins and multiple commodities. In80

addition, hard time windows are imposed for the delivery at the destinations. In their problem, customers have a

commodity demand from a specific origin, i.e., there is a one-to-one setting. Several mathematical formulations are

proposed and a BPC algorithm is devised to solve the problem. In Jia et al. (2023), the problem setting is similar to

the one of Dellaert et al. (2021). However, the multi-commodity aspect is handled with more restrictions: only two

origins are considered and each destination requires one commodity per origin (one-to-one setting). The authors85

developed an ALNS algorithm to solve large-scale instances of the problem. The MC2DP introduced in Gu et al.

(2022) differs from Dellaert et al. (2021) and Jia et al. (2023) for three reasons:(i) there is a many-to-many setting

for the commodities, i.e. any commodity requested by a customer can be served from any supplier; (ii) suppliers

provide commodities in limited amounts; (iii) routing decisions are not required in the collection echelon.

3. Problem description90

In the Multi-Commodity two-Echelon Distribution Problem (MC2DP), a set of commodities K is distributed in

a system involving a set of suppliers (origins) S, a set of distribution centres (intermediate facilities) D and a set of

customers (destinations) C. The system is split in two echelons: the collection echelon where the commodities are

collected at the suppliers and brought to the distribution centres, and the delivery echelon where the commodities

at the distribution centres are delivered to the customers. More precisely, in the collection echelon, each supplier95

i ∈ S provides a maximal amount Pik ≥ 0 for each commodity k ∈ K. Note that a supplier i ∈ S might not supply

a commodity k ∈ K, and in that case, Pik takes value 0. An unlimited fleet of homogeneous vehicles of capacity QS

performs direct round trips from the distribution centres to collect the commodities from the suppliers. The vehicles

can transport any subset of commodities. Due to the limited capacity of the vehicles, direct round trips between a

distribution centre o ∈ D and a supplier i ∈ S may be performed by several vehicles. The problem associated with100
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the collection operations can be modeled as a Multi-commodity Capacitated fixed-charge Network Design Problem

(MCNDP, Magnanti and Wong, 1984) with a specific cost structure: there is a step-wise cost function defined by

a unitary cost associated with each vehicle used between a distribution centre and a supplier.

Differently, the problem of distributing the commodities from the distribution centres to the customers is a multi-

depot version of the Commodity constrained Split Delivery Vehicle Routing Problem (C-SDVRP). Each customer105

j ∈ C has a demand Djk ≥ 0 for all commodities k ∈ K. The request of customer j is identified by set Kj = {k ∈

K : Djk > 0}. Each distribution centre owns an unlimited fleet of homogeneous and capacitated vehicles of capacity

QD which performs routes to deliver the commodities to the customers. Each vehicle has to end its route at its

starting distribution centre. As in the collection echelon, a vehicle can be loaded with any commodities. Without

loss of generality, we suppose QD ≥ max{
∑

k∈Kj
Djk : j ∈ C}. Furthermore, customer requests can be split, i.e.,110

different vehicles can serve the same customer. However, the demand of a single commodity cannot be split: it has

to be delivered by a single vehicle. Note that direct trips from suppliers to customers and inter-connections between

distribution centres are not allowed.

Finally, the collection and delivery operations taking place in the two echelons are coordinated at the distribution

centres by means of the so-called load synchronization strategy Drexl (2012): the total amount of each commodity115

collected at the suppliers by each distribution centre must be sufficient to serve the customer demands of that

commodity delivered by a vehicle of that distribution centre.

We formulate the MC2DP on a directed weighed graph G = (V,A). Set V = S ∪ D ∪ C contains a vertex

for each supplier, distribution centre and customer. Arc set A = AS ∪ AD is defined as the union of two sets

of arcs which model the possible vehicle travels in the two echelons. Specifically, set AS = (S × D) ∪ (D × S)120

includes the arcs modelling the direct trips from suppliers to distribution centres in the collection echelon, whereas

AD = (D×C)∪(C×D)∪(C×C) contains all arcs between customers and between distribution centres and customers.

Each arc (i, j) ∈ A is assigned with a non-negative cost Cij which represent the transportation cost of a vehicle

traversing (i, j). The arc costs are symmetric and satisfy the triangular inequality. In graph G, a route in the

delivery echelon is a non-empty circuit starting and ending at a distribution centre o ∈ D. A route is feasible if the125

total amount of commodities delivered to the customers visited along the route does not exceed vehicle capacity

QD. The cost of any feasible route r is Cr =
∑

(i,j)∈A(r) Cij , where A(r) is the set of arcs traversed by the route.

Finally, the total transportation cost of the distribution system arising from the MC2DP is the sum of the cost of

the direct round trips in the collection echelon and the routing costs in the delivery echelon.

The aim of the MC2DP is to determine a distribution plan, i.e., the direct round trips in the collection echelon130

and the routes in the delivery echelon, which satisfies the customer requests, does not exceed the commodity

availabilities at the suppliers, satisfies the vehicle capacities in both echelons and respects the load synchronization

constraints while minimising the total transportation cost.
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4. Problem formulation

We model the MC2DP by means of a set covering formulation, where the exponentially-many variables are135

associated with the routes in the delivery echelon.

For each distribution centre o ∈ D, we define Ro as the set of all feasible routes starting and ending at o. The

set of all feasible routes is denoted by R =
⋃

o∈D Ro. We define a binary coefficient arjk with value one if commodity

k ∈ K is delivered to customer j ∈ N by route r ∈ R and zero otherwise.

For each supplier i ∈ S and each distribution centre o ∈ D, we introduce an integer variable xio to represent140

the number of vehicles traversing arc (i, o) ∈ AS . For each i ∈ S, o ∈ D and k ∈ K, we define a non-negative

continuous variable qkio that represents the amount of commodity k collected at supplier i by distribution centre o.

Finally, for each route r ∈ R, we introduce a binary variable λr taking value one if r is selected in the solution and

zero otherwise.

The Set Covering formulation [SC] for the MC2DP reads as follows:

[SC] min
∑

(i,o)∈AS

2Cioxio +
∑
r∈R

Crλr (1)

s.t.
∑
o∈D

qkio ≤ Pik ∀i ∈ S,∀k ∈ K (2)

∑
k∈K

qkio ≤ QSxio ∀i ∈ S,∀o ∈ D (3)

∑
r∈R

arjkλr ≥ 1 ∀j ∈ C,∀k ∈ Kj (4)

∑
i∈S

qkio ≥
∑
r∈Ro

∑
j∈C

arjkDjkλr ∀o ∈ D,∀k ∈ K (5)

xio ∈ Z≥0 ∀i ∈ S,∀o ∈ D (6)

qkio ∈ R≥0 ∀i ∈ S,∀o ∈ D,∀k ∈ K (7)

λr ∈ {0, 1} ∀r ∈ R (8)

Objective function (1) minimises the total transportation cost. Constraints (2) ensure that the commodity145

availabilities at each supplier are respected. Constraints (3) guarantee that a sufficient number of vehicles perform

the collection operations and that the capacity of these vehicles is not exceeded. Covering Constraints (4) impose

that each commodity required by a customer is served by at least one route. In addition, the load synchronization

constraint linking the collection and delivery echelons is expressed in constraints (5): the quantity of each commodity

collected by each distribution centre has to be large enough to satisfy the demand for that commodity delivered by150

a route of that distribution centre. Finally, Constraints (6), (7) and (8) define variable domains.

6



4.1. Valid inequalities

In this section, we introduce four families of valid inequalities considered to strengthen formulation [SC]. Two

of these inequalities are known in the context of vehicle routing problems, while the other two are tailored to deal

with the multi-commodity aspect of the MC2DP. Note that such inequalities are valid for the C-SDVRP, hence for155

the MC2DP.

In what follows, given a subset of customers C′ ⊆ C, we define D(C′) =
∑

j∈C′
∑

k∈Kj
Djk to be the total demand

requested by the customers in C′. In addition, we introduce a binary coefficient brij with value one if route r ∈ R

traverses arc (i, j) ∈ AD and zero otherwise. Finally, we define erjM =
∏

k∈M arjk to be a binary coefficient equal

to one if route r delivers all the commodities of subset M ⊆ Kj to customer j ∈ C and zero otherwise.160

Bounds on the number of vehicles

The following inequalities set bounds on the number of vehicles in the collection and delivery echelons:∑
(i,o)∈AS

xio ≥
⌈
D(C)
QS

⌉
(9)

and ∑
r∈R

λr ≥ ⌈v⌉ (10a)

∑
r∈R

λr ≤ min{|C|, 2v̄}. (10b)

In inequalities (10a) and (10b), values v and v̄ are obtained by solving an instance of the Bin Packing Problem

(BPP), where bins have size equal to the vehicle capacity QD, and each customer demand has a corresponding

item to be packed with size Djk. Precisely, we solve an integer program for the BPP on such an instance with a

commercial solver within a short time limit: v and v̄ are the obtained lower and upper bounds. If the instance is165

solved to optimality within the time limit, v = v̄ holds. The right hand-side of (10b) is the minimum between twice

value v̄ (see Federgruen and Simchi-Levi, 1995) and the number of customers.

Capacity cuts

Laporte et al. (1985) introduced the capacity cuts to deal with the Capacitated Vehicle Routing Problem:

∑
r∈R

 ∑
(i,j)∈δ−(C′)

brij

λr ≥
⌈
D(C′)

QD

⌉
∀C′ ⊆ C, (11)

where δ−(C′) = {(i, j) ∈ AD : i /∈ C′, j ∈ C′} is the set of arcs of graph G reaching a vertex in C′. Given a subset of

customers C′, inequality (11) states that at least ⌈D(C′)/QD⌉ vehicles of the delivery echelon are required to cover170

the requests of the customers in C′.
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Set covering polytope

We present a family of valid inequalities inspired by the facet-defining inequalities proposed in Balas and Ng

(1989) for the set covering polytope. Although these inequalities were proposed several years ago, to the best of

our knowledge, they have not yet been used in BPC algorithms for vehicle routing problems. However, they are175

similar to the strong minimum number of vehicles inequalities introduced by Archetti et al. (2011) in the context

of a BPC algorithm for the split delivery vehicle routing problem with time windows.

Let us first briefly present a formulation for the set covering problem. Let I bet a set of elements to be covered,

and J be a set of subsets of I. We denote by cj the cost associated to subset j ∈ J , and dij a binary parameter that

takes value one if element i ∈ I is in subset j ∈ J , and zero otherwise. Let xj be a binary decision variable taking

value one if subset j ∈ J is selected, zero otherwise. An integer programming formulation for the set covering

problem is

min
∑
j∈J

cjxj

s.t.
∑
j∈J

dijxj ≥ 1 ∀i ∈ I

xj ∈ {0, 1} ∀j ∈ J

Given a subset I ′ ⊆ I, the inequalities introduced in Balas and Ng (1989) reads as follows:

2
∑

j∈J I′

xj +
∑

j∈J̄ I′

xj ≥ 2,

where J I′
= {j ∈ J : dij = 1,∀i ∈ I ′} is the set of the elements of J which cover I ′ and J̄ I′

= {j ∈ J :∑
i∈I′ dij ≥ 1 ∧

∏
i∈I′ dij = 0} is the set of the elements of J which contain some, but not all, the elements in I ′.

The inequalities express how subset I ′ may be covered: either it suffices to select a unique element in J that covers180

I ′, i.e., an element in J I′
, or at least two elements in J that partially cover I ′ have to be selected, i.e., at least

two elements in J̄ I′
. Under specific conditions, these constraints are facet defining for the set covering polytope.

In what follows, we adapt these inequalities to the MC2DP to express how the subsets of commodities required

by a given customer may be covered. For the ease of readability, we introduce the following notation. Let j ∈ C be

a customer and Mj ⊆ Kj be a subset of the commodities requested by j. We denote by RMj

j ⊆ R the subset of185

routes delivering all commodities in Mj to j, i.e., RMj

j = {r ∈ R : erjMj
= 1}.

In addition, we write R̄Mj

j ⊆ R for the subset of routes which deliver some of the commodities in Mj to j, but

not all of them, i.e., R̄Mj

j = {r ∈ R :
∑

k∈Mj
arjk ≥ 1 ∧ erjMj

= 0}.

The set covering polytope inequalities for the MC2DP are defined as follows:

2
∑

r∈R
Mj
j

λr +
∑

r∈R̄
Mj
j

λr ≥ 2 ∀j ∈ C,∀Mj ⊆ Kj . (12)
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Inequalities (12) state that subset of commodities Mj ⊆ Kj of customer j ∈ C can be covered either by a single

route in RMj

j or by at least two routes in R̄Mj

j . Note that these inequalities are meaningful only if |Mj | ≥ 3.190

Indeed, if |Mj | = 2, they can be retrieved as an aggregation of Covering Constraints (4).

Number partitioning polytope

We propose a novel family of valid inequalities which exploits the multi-commodity aspect of the MC2DP. More

precisely, given a customer j ∈ C, these inequalities specify the possible combinations of routes to deliver the set of

commodities Kj required by customer j.195

For each customer j ∈ C, we denote by Rl
j the subset of routes which deliver exactly l = 1, . . . , |Kj | commodities

to j, i.e., Rl
j = {r ∈ R :

∑
k∈Kj

arjk = l}.

Equalities
|Kj |∑
l=1

l
∑
r∈Rl

j

λr = |Kj | ∀j ∈ C (13)

ensure that the selected routes that serve customer j will exactly bring |Kj | commodities to customer j. As an

example, let j̄ ∈ C be a customer having a demand for three commodities, i.e., |Kj̄ | = 3. Equality (13) for customer

j̄ states that the commodities of Kj̄ can be covered by (i) a single route of R3
j̄
or (ii) one route of R2

j̄
and a route200

of R1
j̄
or (iii) three routes of R1

j̄
.

Proposition 1. Equalities (13) are valid for the MC2DP. More precisely, inequalities
∑|Kj |

l=1 l
∑

r∈Rl
j
λr ≥ |Kj |, ∀j ∈

C, are implied by Covering Constraints (4) and inequalities

|Kj |∑
l=1

l
∑
r∈Rl

j

λr ≤ |Kj | ∀j ∈ C (14)

are valid for the MC2DP.

Proof. It is straightforward that equalities (14) are valid for the MC2DP. Hence, we only need to show that∑|Kj |
l=1 l

∑
r∈Rl

j
λr ≥ |Kj |, ∀j ∈ C, are implied by Covering Constraints (4). Let j ∈ C be a customer. By summing

up the Covering Constraints (4) associated with j and swapping the summation order, we obtain∑
r∈R

∑
k∈Kj

arjkλr ≥ |Kj |.

Let Mr
j denote the subset of commodities delivered to customer j by route r. We have

∑
k∈Kj

arjk = |Mr
j |. The

proof follows from partitioning the set of routes as R =
⋃|Kj |

l=0 Rl
j , where we denoted by R0

j the subset of routes

which do not visit j. Indeed, it holds

|Kj | ≤
|Kj |∑
l=0

∑
r∈Rl

j

|Mr
j |λr =

|Kj |∑
l=1

l
∑
r∈Rl

j

λr.

9



Remark that if we model the MC2DP by means of a set partitioning formulation, i.e., we impose the equality in

Constraints (4), Equalities (13) become trivial. Indeed, they can be retrieved as an aggregation of the partitioning205

constraints.

Given a customer j ∈ C and l = 1, . . . , |Kj |, we introduce an auxiliary variable ylj ∈ Z≥0 defined as ylj :=∑
r∈Rl

j
λr. Now, let

Fj := {yj ∈ Z|Kj |
≥0 :

|Kj |∑
l=1

lylj ≤ |Kj |}

be the set of the integer points which satisfy inequality (14), rewritten in terms of ylj variables.

Proposition 2. The inequalities defining the convex hull of Fj, j ∈ C, are valid for the MC2DP.

Determining the external description of a convex set is not an easy task, in particular in large dimensions.

However, given that customers require at most three commodities in the benchmark instances of Gu et al. (2022)210

for the MC2DP, we explicitly derive the external description of the convex hull of sets Fj ⊆ Z3, j ∈ C. If the

number of commodities is greater than three, software for polyhedral transformations such as PORTA (Christof

and Löbel, 2009) or PANDA (Lörwald and Reinelt, 2015) can be used to determine the external description of the

convex hull of sets Fj , j ∈ C.

Note that inequalities (14) are meaningful only for customers j ∈ C who require at least three commodities, i.e.,

|Kj | ≥ 3. The external description of the convex hull of sets Fj , j ∈ C such that |Kj | = 3 reads as follows:

y1j + 2y2j + 3y3j ≤ 3 (15a)

y1j − y2j ≥ 0 (15b)

y2j ≥ 0 (15c)

y3j ≥ 0. (15d)

Inequalities (15c) and (15d) are trivial, indeed, they are implied by the definition of variables ylj . Therefore,

inequalities (15a) and (15b) are the only meaningful ones in the case of a customer j ∈ C requiring three commodities

(|Kj | = 3); in terms of λ variables, they are expressed respectively as

|Kj |∑
l=1

l
∑
r∈Rl

j

λr ≤ |Kj | ∀j ∈ C : |Kj | = 3 (16)

∑
r∈R1

j

λr −
∑
r∈R2

j

λr ≥ 0 ∀j ∈ C : |Kj | = 3. (17)

In conclusion, the number partitioning polytope valid inequalities we consider are (16) and (17).215

5. Branch-Price-and-Cut algorithm

We solve formulation [SC] by means of a Branch-Price-and-Cut (BPC) algorithm (Barnhart et al., 1998), i.e., a

variant of the branch-and-bound algorithm which deals with integer programming model with exponentially-many
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variables. Specifically, at each node of the branch-and-bound tree, the Master Problem (MP), that is the linear

relaxation of formulation [SC], is solved by a column generation procedure (Desrosiers and Lübbecke, 2005). If the220

solution of the MP is fractional, violated valid inequalities of Section 4.1 may be inserted and the column generation

procedure is repeated while some valid inequalities are violated. Finally, branching rules are applied to ensure the

integrality of the solution. We impose a time limit as a termination criterion for our BPC algorithm.

In this section, we describe the main components of our BPC algorithm. Specifically, in Section 5.1 we present

the column generation scheme applied in our BPC algorithm. In Section 5.2, we detail the management of the225

valid inequalities, and their impact on the pricing problem. Branching strategies and accelerating techniques are

presented in Sections 5.3 and 5.4, respectively.

5.1. Column generation

At each node of the branch-and-bound tree, a column generation procedure solves the MP defined on the

exponentially-many variables λr, r ∈ R, which correspond to the routes in the delivery echelon. The starting point230

is the Restricted Master Problem (RMP). The column generation procedure iteratively solves a Restricted Master

Problem (RMP), i.e., the MP restricted to a subset of variables λr. At each iteration of the procedure, after the

RMP is solved, a subproblem, named pricing problem is solved. The aim of the pricing problem is to identify a

variable (column) with the smallest reduced cost. If such a column has a negative reduced cost, it is added to the

RMP in order to decrease (in a minimization problem) the current value of the solution, and the column generation235

procedure iterates. The procedure ends when the solution of the pricing problem is a non negative reduced cost

column, proving the optimality of the MP.

More precisely, the pricing problem is

[PP] min{C̄r : r ∈ R}

where C̄r denotes the reduced cost of λr variable. Note that set of routes R can be partitioned per distribution

centre, i.e., R =
⋃

o∈D Ro where Ro is the set of routes starting and ending at o. Hence, solving [PP] can be done240

by solving sequentially |D| independent problems with the same structure:

[PP(o)] min{C̄r : r ∈ Ro}, o ∈ D.

Specifically, the aim of problem [PP(o)] is to determine the most negative reduced cost λr, r ∈ Ro, or to detect

that none of them exists. The column generation procedure terminates once all problems [PP(o)], o ∈ D do not

yield any negative reduced cost variable.

In the following, we detail how a problem [PP(o)] for o ∈ D is formulated and solved. By denoting ρjk ≥

0, ∀j ∈ C, k ∈ Kj and σok ≥ 0, ∀o ∈ D, k ∈ K as the optimal dual prices associated with Constraints (4) and (5),
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respectively, the reduced cost of a λr, r ∈ Ro variable is defined as follows:

C̄r = Cr −
∑
j∈C

∑
k∈Kj

arjk(ρjk −Djkσok). (18)

As mentioned in Section 3, the delivery echelon is a multi-depot version of the C-SDVRP. Hence, the problem245

[PP(o)] is the pricing problem arising in Branch-Price-and-Cut approaches for the C-SDVRP (see Archetti et al.,

2015; Gschwind et al., 2019) and is formulated as an Elementary Shortest Path Problem with Resource Constraints

(ESPPRC) on a multi-graph G(o) = (V(o),A(o)). Such graph is analogous to the one presented in Gschwind et al.

(2019) to formulate the ESPPRC in the context of the C-SDVRP. Vertex set V(o) contains two copies o′ and o′′ of

distribution centre o and two copies j′ and j′′ of each customer j ∈ C. Each arc of set A(o) is associated with two250

resources: demand D̄ and cost C̄. Arc set A(o) contains:

1. an arc (i′′, j′) for each arc (i, j) ∈ A to model the movement of a vehicle from vertex i to vertex j; the demand

and cost are set to D̄i′′j′ := 0 and C̄i′′j′ := Cij , respectively.

2. an arc (j′, j′′)Mj for each customer j ∈ C and each subset Mj ⊆ Kj to model the delivery of the commodities

of Mj to j; the demand and cost are set to D̄
Mj

j′j′′ :=
∑

k∈Mj
Djk and C̄

Mj

j′j′′ := −
∑

k∈Mj
(ρjk − Djkσok),255

respectively.

Solving problem [PP(o)] results in searching for negative reduced cost elementary paths in G(o) from o′′ to o′ such

that the resource consumption (demand) does not exceed the vehicle capacity QD.

To do so, we adopt a two phase procedure:

Phase 1 computes the Pareto-optimal (demand, cost) pairs (D̄
Mj

j′j′′ , C̄
Mj

j′j′′) for each customer j ∈ C.260

Phase 2 solves the ESPPRC on multi-graph G(o) which includes all arcs of type (i′′, j′), and only the Pareto-

optimal arcs of type (j′, j′′)Mj that have been computed in phase 1. Precisely, the ESPPRC is solved by

means of a label setting dynamic programming technique Feillet et al. (2004) which works with an implicit

version of the bidirectional labelling search (see Righini and Salani, 2006; Bode and Irnich, 2012). The

elementarity constraints are the bottleneck of such procedure, hence, we partially relax it by solving the265

ng-path relaxation (Baldacci et al., 2011) of the ESPPRC. For each customer j ∈ C, we consider a fixed size

ng-neighbourhood which includes the 10 closest customers to j and j itself. Remark that such relaxation

allows a route to serve the same commodity to the same customer multiple times. Hence, the coefficients of

the constraints and valid inequalities need to be updated accordingly: e.g., in the Covering Constraints 4, arjk

becomes an integer coefficient expressing the number of times customer j ∈ C is delivered with commodity270

k ∈ Kj by route r ∈ R.

The reader may refer to Archetti et al. (2015) and Gschwind et al. (2019) for further details. The resolution of the

ESPPRCs is the bottleneck of our algorithm, hence, we heuristically solve the ESPPRC with the objective of quickly
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finding a negative reduced cost column. Precisely, we apply the same heuristic algorithms to solve the ESPPRC

as those used in the column generation approach for the C-SDVRP proposed in (Petris et al., 2023). One of these275

heuristics is a two-phase algorithm which exploits the multi-commodity aspect of the problem, while the others are

based on reducing the pricing multi-graph by restricting the set of neighbours of the customers and by limiting the

total number of splits in a route. When all the heuristics fail to identify a negative reduced cost column, we solve

the ESPPRC exactly.

5.2. Management of the valid inequalities280

In this section, we first describe how the valid inequalities presented in Section 4.1 are considered in the pricing

problem. Then, we present the cutting strategy adopted in our BPC algorithm.

Impact of the valid inequalities on the pricing problem

First, note that inequality (9) imposes a lower bound on the number of vehicles used in the collection echelon.

Therefore, it has no impact on the pricing problem. The other inequalities presented in Section 4.1 are all robust,285

i.e. they do not change the structure of the pricing problem, and their associated dual prices have to be integrated

into the objective function of pricing problems [PP(o)], o ∈ D, i.e. on the cost of arcs in multi-graph G(o).

The arc costs in multi-graph G(o) are modified in the following way:

Inequalities (10a) and (10b). Let τ+ ≥ 0 and τ− ≤ 0 be the optimal dual prices associated with valid inequali-

ties (10a) and (10b) respectively. The value τ+/2 + τ−/2 is subtracted from the cost of arcs of type (i′′, j′),290

if vertices i or j represent distribution centre o.

Inequalities (11). Let ξC′ ≥ 0 be the optimal dual prices associated with the capacity cut (11) defined over the

subset of customers C′ ⊆ C. Let δ−(C′) be the subset of arcs in graph G entering in vertices of C′. The value

ξC′ is subtracted from the cost of arcs (i′′, j′), for all (i, j) ∈ δ−(C′).

Inequalities (12). Let γjMj
≥ 0 be the optimal dual prices associated with the inequality (12) identified by295

customer j ∈ C and commodity subset Mj ⊆ Kj . The value 2γjMj
is subtracted from the cost of arcs

(j′, j′′)M
′
j , for all M′

j ⊆ Kj that contain at least all the commodities of Mj , i.e., Mj ⊆ M′
j . The value γjMj

is subtracted from the cost of arcs (j′, j′′)M
′
j for all M′

j that contain some, but not all, commodities of Mj ,

i.e. M′
j ∩Mj ̸= ∅ and M′

j ∩Mj ̸= Mj .

Inequalities (16) and (17). Let j ∈ C be a customer requiring exactly three commodities (|Kj | = 3) and let ψ ≥ 0300

and χ ≤ 0 be the optimal dual prices associated with inequalities (16) and (17) defined on j. For all Mj ⊆ Kj ,

the cost of arc (j′, j′′)Mj is modified as follows: value |Mj |ψ is subtracted, value χ is added if |Mj | = 2, and

value χ is subtracted if |Mj | = 1.
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Management of the valid inequalities in the RMP

Valid inequalities on vehicle bounds, namely (9), (10a) and (10b), are included in the formulation from the305

beginning of the solution procedure. Differently, a cut generation procedure manages the insertion of violated

inequalities (11), (12), (16) and (17) in the RMP. Such a procedure is called at each node of the branch-and-bound

tree of level at most equal to 5, if the associated solution of the RMP is fractional. Specifically, it separates the

inequalities hierarchically according to the sequence: (11), (12), (16), and (17). When the separation of a given

inequality fails, we separate the next one in the above order. The separation of inequalities (11) is done using310

the heuristic algorithms presented in Ralphs et al. (2003), namely the extended shrinking heuristic and the greedy

shrinking heuristic. Then, although, inequalities (12) are exponentially-many, the size of the problem instances

allows the separation by enumeration. The same separation strategy is applied for inequalities (16) and (17), whose

number is linear in the number of customers |C|. Finally, we limit the number of inequalities (11) to 100 in each

cut generation round. For the other inequalities, we include all the violated inequalities.315

5.3. Branching strategies

Let (x̄, q̄, λ̄) be a fractional optimal solution of the MP at a certain node of the branch-and-bound tree. We

consider seven branching rules that are hierarchically applied. In addition to these rules, the correctness of the

algorithm requires the separation of a family of valid inequalities, namely the strong-degree inequalities. Rules 1

and 3 are specific for the MC2DP, while the other ones and the family of valid inequalities are used to solve the320

C-SDVRP by Branch-and-Price. The interested reader can refer to Gschwind et al. (2019) for more details about

the branching strategy for the C-SDVRP.

Rule 1 is on the number of vehicles traversing an arc in the collection echelon, i.e., on value x̄io, i ∈ S, o ∈ D.

Since λr variables are not concerned by this rule, there is no impact on the pricing problem.

Rule 2 is on the number of vehicles used at each distribution centre o ∈ D in the delivery echelon, i.e., on value325 ∑
r∈Ro

λ̄r.

Rule 3 forces the assignment of a delivery to a distribution centre. Specifically, given a distribution centre o ∈ D,

a customer j ∈ C and a commodity k ∈ Kj , we branch on value pojk :=
∑

r∈Ro
arjkλ̄r. The branching decisions

related to this rule can be expressed as follows: commodity k required by customer j is either delivered

from distribution centre o, i.e.
∑

o′∈D\{o}
∑

r∈Ro′
arjkλr = 0; or not delivered from o, i.e.

∑
r∈Ro

arjkλr = 0.330

Note that both decisions entail modifications in the pricing problem. As an example, if the first decision

is imposed, then we prevent the pricing problem from generating routes starting and ending at distribution

centres o′ ∈ D \ {o} and delivering commodity k to customer j. Arcs of type (j′, j′′)Mj , with Mj ⊆ Kj and

k ∈ Mj , are removed from all multi-graphs G(o′), o′ ∈ D \ {o}.

Rule 4 is on the number of visits to each customer j ∈ C from a distribution centre o ∈ D.335
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Rule 5 considers the flow on the edges in the delivery echelon coming from a specific distribution centre.

Rules 6 and 7 implement the Ryan and Foster branching rules (Ryan and Foster, 1981) which force the two

customer requests to be served by different routes or by the same route. Such rules imply the addition of non-

robust constraints in the RMP . The management of the associated dual variables in the labelling algorithm

used to solve the pricing problem can be found in Gschwind et al. (2019).340

These seven rules are sufficient to ensure the correctness of the algorithm when only elementary routes are

present in formulation [SC]. Indeed, Rule 1 guarantees the integrality of the variables of the collection echelon.

Then, regarding the delivery echelon, Rule 3 assigns the deliveries to a specific distribution centre. Once these

assignments are done, Rules 2 and 4-7 are enough to guarantee the correctness of the algorithm. Indeed, the

delivery echelon is a multi-depot version of the C-SDVRP and such rules ensure the integrality of a solution for the

C-SDVRP (see Gschwind et al., 2019). However, as mentioned in Section 5.1, we relax the elementarity requirement

of the routes in the second echelon via the ng-path relaxation when solving the pricing problem. Consequently,

formulation [SC] may contain routes that serve the same commodity to the same customer more than once. In

such a case, applying only Rules 1-7 might lead to a fractional solution as shown by Gschwind et al. (2019) for the

C-SDVRP. Hence, after applying Rule 7, strong-degree inequalities (Contardo et al., 2014) have to be separated to

ensure providing an integer solution. The strong-degree inequalities read as:∑
r∈R

ξrjkλr ≥ 1 ∀j ∈ C,∀j ∈ Kj ,

where ξrjk is a binary coefficient with value one if route r ∈ R delivers customer j ∈ C with commodity k ∈ Kj . In

our branching strategy, when none of the seven rules are applicable, we separate these inequalities. As for Rules 6

and 7, these inequalities are non-robust. The management of the associated dual variables in the labelling algorithm

invoked to solve the pricing problem is described in Contardo et al. (2014).

The branch-and-bound tree is explored according to a best-bound first strategy to favour the improvement of345

the dual bound. The strategies to select the branching decisions are presented in the following. For rule 2, we

branch on the fractional value closest to 0.5. For rules 6 and 7, we branch on the first fractional value that is

found. For all the other rules, we consider a two-round strong branching procedure (Røpke, 2012) similar to the

one presented in Pessoa et al. (2020). In the first round, we evaluate at most 100 branching candidates according to

the product rule (Achterberg, 2007). More precisely, each candidate gives rise to two branching decisions d1 and d2350

and is evaluated by applying such decisions to the RMP and by solving it without generating columns. Then, each

candidate is assigned with a score sc(d1, d2) = max{ϵ,∆LB1} ×max{ϵ,∆LB2}, where ϵ = 10−6 and ∆LBi is the

increase of the lower bound obtained by applying decision di to the RMP. The three candidates with the highest

scores are sent to the second round, where the same evaluation criterion is used to select the winning candidate.

Differently from the first round, here, LB1 and LB2 are the values of the RMP after a single column generation355

iteration where the pricing problem is solved heuristically.
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The strong branching procedure is employed in nodes of the branch-and-bound tree of level at most 5. In the

other levels, we evaluate the branching candidates based on the fractional value closest to 0.5 for all the rules.

5.4. Accelerating strategies

The BPC algorithm incorporates the following accelerating strategies:360

Initialization of set R. We initialize the set of routes R to avoid very large dual prices at the first iterations of

the column generation procedure which may slow down the pricing solution (Desaulniers, 2010). Specifically,

for each distribution centre o ∈ D, we include round-trips (0-j-0) to each customer j ∈ N , which deliver the

commodities of each subset Mj ⊆ Kj requested by j. In addition, we modified the randomised Clarke-Wright

algorithm (CW) (Clarke and Wright, 1964) proposed in Battarra et al. (2008) to take into account the multi-365

commodity aspect of our problem. The algorithm is run 10 times per distribution centre and the obtained

routes are inserted into R.

Heuristic column generators. Before solving the pricing problem to optimality, we consider heuristic column

generators to speed up the solution of problems [PP(o)], o ∈ D.As mentioned in Section 5.1, each problem

[PP(o)] is the pricing problem arising in a BPC algorithm for the C-SDVRP. Hence, we apply the same heuristic370

scheme used in Petris et al. (2023) which proved to be effective in accelerating such pricing problems. This

scheme considers two reduced graph heuristics and the two-phase heuristic introduced in Petris et al. (2023)

which proved to be effective in dealing with the multi-commodity aspect of the C-SDVRP. The two reduced

graph heuristics reduce the size of multi-graphs G(o), o ∈ D by limiting both the possibilities of travelling

between customers and of deliveries to customers. In the two-phase heuristic, the aim of the first phase is375

to compute a set of promising customer sequences by solving the ESPPRC on a modified version of multi-

graphs G(o) where only one delivery per customer is allowed. Specifically, when visiting a customer, the least

consuming commodity is delivered and all the profitable dual prices are collected. In the second phase, for

each of the customer sequences generated by the first phase, we solve the ESPPRC on the associated acyclic

graphs to obtain all negative reduced cost routes arising from the sequence. We refer to Petris et al. (2023)380

for more details.

Restricted master heuristic. We invoke a restricted master heuristic, which consists in solving the formulation

[SC] restricted to the subset of variables generated so far, to obtain good upper bounds. Such a technique

helps to reduce the integrality gap (see Archetti et al., 2013). Note that variables λr are then binary. We

call the restricted master heuristic every 1000 explored nodes in the branch-and-bound tree as well as when385

the time limit of the algorithm is reached. In this latter case, we apply a local search procedure based on an

adapted version of the mathematical programming operator proposed for the C-SDVRP in Gu et al. (2019).

Specifically, we generalised such an operator to deal with the two-echelon case. When the restricted master
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heuristic is called during the tree exploration a time limit of 3 seconds is imposed, while the time limit is 30

seconds when the algorithm terminates.390

6. Computational experiments

We implemented the BPC algorithm in C++ and compiled it in release mode under a 64-bit version of MS

Visual Studio 2019. IBM CPLEX 12.9.0 (64-bit version) is used as a solver. We performed the experiments on a

64-bit Windows machine equipped with a Intel(R) Xeon(R) Silver 4214 processor with 24 cores hyper-threaded to

48 virtual cores, with a base clock frequency of 2.2 GHz, and 96 GB of RAM. For each run of the algorithm, we395

impose one hour time limit and allow a single thread.

In this section, first, we describe the characteristics of the benchmark instances for the MC2DP introduced

in Gu et al. (2022). Then, we discuss the impact of valid inequalities (12), (16) and (17). Finally, we evaluate

the effectiveness of the BPC algorithm against solving the compact formulation for the MC2DP presented in Gu

et al. (2022) with a commercial solver and we present the results obtained by the BPC algorithm on the benchmark400

instances.

6.1. Benchmark instances

Gu et al. (2022) introduced artificial instances as well as instances arising from a real-world case study in the

context of a short and local fresh food supply chain. In the following computational experiments, we only consider

the artificial instances. Indeed, the sizes of the instances based on the case study are too large to be tackled405

efficiently with the BPC algorithm.

First, Gu et al. (2022) generated a base set of 64 artificial instances S with two distribution centres (|D| = 2),

eight suppliers (|S| = 8) and 30 customers (|C| = 30). The features of the delivery echelon are based on the 64 small

instances proposed in Archetti et al. (2016) for the C-SDVRP. Each C-SDVRP instance gives rise to a MC2DP

instance where the locations of one distribution centre and 15 customers are the ones of the C-SDVRP instance.410

Such distribution centre and 15 customers are duplicated and their locations are modified by applying a translation

of parameter δ = (30, 30) to their coordinates. Customer demands are also as in the C-SDVRP instance. Four

suppliers are randomly located around each distribution centre. The availability of each commodity at the suppliers

is calculated as a fraction of the total demand. The commodity availabilities are the same for all the suppliers.

Then, Gu et al. (2022) produced 12 additional sets of instances by applying modifications to one of the char-415

acteristics of the base set, such as the suppliers/customers locations, the number of suppliers/customers or the

available quantities at the suppliers. In all sets of instances, the number of distribution centres is fixed at two. In

Table 1, we summarise the main characteristics of all sets of instances. Each row of the table represents a set of

instances. The columns of the table report: set : the name of the set of instances; #: the number of instances in the

set; |S|: the number of suppliers; |C|: the number of customers; |K|: the number of commodities; description: a brief420

description of the main characteristic of the set. In such an entry, we write n1 − n2 to express the distribution of
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the suppliers/customers around each distribution centre, meaning that n1 suppliers/customers are located around

one distribution centre and n2 are located around the other one. Parameter δ is a translation parameter used to

determine the locations of the customers/suppliers around the two distribution centres. We refer to Gu et al. (2022)

for further details regarding the generation of the set of instances.425

Table 1: Characteristics of the sets of instances.

Characteristics

set # |S| |C| |K| description

S 64 8 30 2, 3 base set

S S
1 64 8 30 2, 3 unbalanced supplier locations (6-2)

S S
2 64 8 30 2, 3 unbalanced supplier locations (8-0)

S C
1 64 8 30 2, 3 unbalanced customer locations (5-10, with δ = −5, 30)

S C
2 64 8 30 2, 3 unbalanced customer locations (5-10, with δ = 10, 30)

S C
3 64 8 30 2, 3 unbalanced customer locations (10-5, with δ = −5, 30)

S C
4 64 8 30 2, 3 unbalanced customer locations (10-5, with δ = 10, 30)

S O 32 8 30 2 unbalanced available amounts at the suppliers

S Sadd
1 64 10 30 2, 3 increased number of suppliers to 10

S Sadd
2 64 12 30 2, 3 increased number of suppliers to 12

S Cadd
1 64 8 50 2, 3 increased number of customers to 50

S Cadd
2 64 8 70 2, 3 increased number of customers to 70

small 36 4, 6 10, 15, 20, 25 2, 3 small instances

6.2. Impact of valid inequalties

In this section, we assess the impact of valid inequalities. To do so, we consider the 32 instances of base set

S having three commodities. Indeed, as mentioned in Section 4.1, if the number of commodities is equal to two,

inequalities (12), (16) and (17) can be retrieved as an aggregation of Covering Constraints (4).

We examine the following four variants of the BPC algorithm. BPC: valid inequalities on bounds on the number430

of vehicles are inserted, and no valid inequalities is separated in the course of the algorithm; BPC+CC: only capacity

cuts (valid inequalities (11)) are separated; BPC+SC+NP: only the inequalities arising from the set covering polytope

(SC), i.e., inequalities (12), and the ones arising from the number partitioning polytope (NP) are separated, i.e.,

inequalities (16) and (17), are separated; BPC+CC+SC+NP: all valid inequalities are separated.

Each row of Table 2 corresponds to a BPC variant. The first two columns report the average lower bound435

(avg.LB) and time (avg.t[s]) at the root node of the branch-and-bound-tree. The next four columns show the

results at the end of the execution of the corresponding BPC variant: the average number of nodes of the branch-

and-bound tree (avg.#nodes), the average lower bound at termination (avg.LB) the average time (avg.t[s]) and the

number of instances solved to optimality (#opt./#inst.) over the 32 instances.
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Table 2: Comparison of four variants of the BPC algorithm

BPC variant
Root node BPC results

avg.LB avg.t[s] avg.#nodes avg.LB avg.t[s] #opt./#inst.

BPC 983.00 25.30 3235.72 1028.08 3145.03 6/32

BPC+CC 1000.35 54.51 1721.53 1039.61 2484.34 14/32

BPC+SC+NP 985.36 46.19 2970.78 1029.42 2992.08 7/32

BPC+CC+SC+NP 1001.31 76.40 1623.84 1039.61 2454.58 14/32

As expected, BPC yields the worst results solving only six instances out of the 32 considered. Variant BPC+SC+NP440

solves an additional instance w.r.t. BPC, however, the improvement of the lower bound at the root node is mediocre.

The best results are obtained when the well-established capacity cuts are separated, namely with variants BPC+CC

and BPC+CC+SC+NP. Both variants solve the same 14 instances to optimality and yield the best lower bounds at

the root node, being on average equal to 1000.35 and 1001.31 in BPC+CC and BPC+CC+SC+NP, respectively. The

same remark applies to the lower bounds at termination which is on average equal to 1039.61 in BPC+CC and445

BPC+CC+SC+NP. In both cases, lower bounds at the root node and at termination improve significantly with respect

to BPC. We also observe that the addition of inequalities (12), (16) and (17) in BPC+CC+SC+NP slightly improves the

results with respect to BPC+CC in terms of lower bounds at the root node, number of explored branch-and-bound

nodes and solution time. Hence, we choose BPC+CC+SC+NP as the configuration for our BPC algorithm.

6.3. Evaluation of the BPC algorithm450

The aim of this section is to evaluate the effectiveness of the BPC algorithm. To do so, we compare the

results obtained by the BPC algorithm on the instances of set small with the ones obtained by solving a compact

formulation for the MC2DP on the same instances with CPLEX 12.8. The latter results are retrieved from Gu et al.

(2022) and were obtained on a machine with Intel (R) Core(TM) i7-4600U processor with a base clock frequency

of 2.10GHz and with 16 GB of RAM. A time limit of one hour is imposed on both methods.455

Table 3 presents the results of the comparison. Each row of the table corresponds to an instance in set small.

The first five columns report some characteristics of the instance (see Section 6.1).The following five columns report

the results of the BPC algorithm: #nodes: number of nodes of the branch-and-bound tree; LB : lower bound at

termination; UB : value of the best solution found; gap[%] : percentage optimality gap (100((UB−LB)/LB)) if the

instance is not solved to optimality, opt otherwise; t[s] : total computational time in seconds of the BPC algorithm.460

Last, in the last two columns, we report the optimality gap (gap[%]) and computational time (t[s]) obtained by Gu

et al. (2022) when solving the compact formulation. In column gap[%], a ’-’ indicates that CPLEX was not able to

provide a feasible solution.
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Table 3: Results on set small.

Instances BPC CPLEX

|S| |C| |K| p set #nodes LB UB gap[%] t[s] gap[%] t[s]

4 10

2 0.6 S 161 394.655 394.655 opt 5.26 opt 240

2 1 S 17 579.522 579.522 opt 0.98 5.55 3600

3 0.6 S 7787 470.77 470.77 opt 1446.16 opt 378

2 0.6 S S
1 101 406.52 406.52 opt 4.28 opt 108

2 1 S S
1 11 562.34 562.34 opt 1.19 opt 1441

3 0.6 S S
1 227 437.98 437.98 opt 14.10 opt 486

2 0.6 S S
2 23 406.52 406.52 opt 1.11 opt 57

2 1 S S
2 13 663.52 663.52 opt 0.66 opt 2261

3 0.6 S S
2 19 463.58 463.58 opt 0.80 opt 41

4 15

2 0.6 S 181 510.88 510.88 opt 10.75 8.45 3600

2 1 S 15 742.71 742.71 opt 1.37 17.89 3600

3 0.6 S 13785 551.87 551.87 opt 3469.76 6.87 3600

2 0.6 S S
1 195 533.43 533.43 opt 13.98 13.82 3600

2 1 S S
1 3185 784.05 784.05 opt 349.18 15.79 3600

3 0.6 S S
1 3829 553.49 553.49 opt 624.91 20.42 3600

2 0.6 S S
2 33 590.55 590.55 opt 2.32 7.25 3600

2 1 S S
2 17 893.09 893.09 opt 1.67 20.62 3600

3 0.6 S S
2 117 590.71 590.71 opt 11.41 15.26 3600

4 20

2 0.6 S 45 636.71 636.71 opt 7.64 22.09 3600

2 1 S 233 1007.04 1007.04 opt 24.61 31.75 3600

3 0.6 S 63 708.62 708.62 opt 24.26 28.15 3600

2 0.6 S S
1 139 659.37 659.37 opt 35.82 37.59 3600

2 1 S S
1 13848 1069.54 1077.43 0.74 3631.00 30.18 3600

3 0.6 S S
1 1209 768.57 768.57 opt 528.33 37.92 3600

2 0.6 S S
2 43 713.16 713.16 opt 7.29 27.87 3600

2 1 S S
2 5 1177.46 1177.46 opt 0.98 43.37 3600

3 0.6 S S
2 157 835.00 835.00 opt 74.17 37.47 3600

6 25

2 0.6 S 209 815.15 815.15 opt 70.15 - 3600

2 1 S 661 1184.62 1184.62 opt 227.48 31.32 3600

3 0.6 S 555 826.12 826.12 opt 334.55 58.7 3600

2 0.6 S S
1 287 784.11 784.11 opt 70.08 37.76 3600

2 1 S S
1 1111 1258.91 1258.91 opt 310.47 54.77 3600

3 0.6 S S
1 4073 876.72 908.00 3.57 3632.66 87.9 3600

2 0.6 S S
2 35 881.02 881.02 opt 9.95 - 3600

2 1 S S
2 99 1367.61 1367.61 opt 29.11 60.19 3600

3 0.6 S S
2 15 939.52 939.52 opt 18.84 65.95 3600

The results of Table 3 show that the BPC algorithm proved to be effective as it provides 34 optima over 36
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instances. The two unsolved instances are with 20 and 25 customers and are left with an optimality gap of 0.74%465

and 3.57%, respectively. Conversely, the performance of the compact formulation deteriorates as the size of the

instances grows. The formulation provides only eight optima, all obtained for instances with 10 customers, and it

fails to return a feasible solution for two instances with 25 customers. The average optimality gap of the remaining

26 instances is 31.73%. Finally, when both approaches prove the optimality of a solution, the BPC algorithm is

generally faster than the compact formulation by at least one order of magnitude.470

6.4. Results on the whole testbed

In this section, we present a summary of the results obtained by the BPC algorithm in Tables 4 and 6 on

the 12 sets of benchmark instances with one-hour time limit. The instance-by-instance results can be found at

https://hal.inria.fr/hal-03946477v1.

In Table 4, we report results for the instances solved to optimality and Table 6 summarises the results for the475

remaining instances. Each row of both tables corresponds to a subset of instances from the same set and with the

same number of commodities. The first three columns of the tables report some information about the instance

subset (see Section 6.1). The column headings of Table 4 are defined as follows: #opt.: number of instances solved to

optimality; #nodes avg./min./max.: average/minimum/maximum number of nodes of the branch-and-bound tree;

avg.gaproot[%] : average optimality gap at the root node expressed as a percentage, i.e., 100((OPT−LBroot)/LBroot),480

where OPT is the value of the optimal solution found by the BPC algorithm and LBroot is the lower bound at

the root node after the valid inequalities have been inserted; avg.t[s] : average computational time; dev. Gu et al.

(2022) avg./min./max.: average/minimum/maximum deviation from the best solution value UB reported in Gu

et al. (2022), i.e., 100((OPT − UB)/UB).
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Table 4: Aggregated results on the instances solved to optimality by the BPC algorithm

Instances
BPC results

#nodes dev. Gu et al. (2022)

set |K| # #opt. avg. min. max. avg.gaproot[%] avg.t[s] avg. min. max.

S
2 32 31 791.19 11 7037 3.50 241.78 -0.19 -2.21 0.00

3 32 14 751.79 23 2197 4.24 921.14 -0.95 -2.61 0.00

S S
1

2 32 30 2126.47 47 21125 4.90 621.02 -0.19 -1.69 0.00

3 32 15 872.00 29 2674 4.51 837.63 -1.02 -3.08 0.00

S S
2

2 32 26 3350.61 51 18367 4.93 768.70 -1.65 -5.31 0.00

3 32 20 1932.25 47 12259 4.95 1417.92 -2.11 -6.71 0.00

S C
1

2 32 29 667.83 13 2669 3.82 430.16 -0.61 -2.94 0.00

3 32 15 600.13 39 1547 3.48 872.74 -1.13 -4.04 0.00

S C
2

2 32 27 674.85 5 3213 4.08 449.58 -0.66 -3.00 0.00

3 32 15 780.53 81 1855 3.98 1058.08 -1.01 -3.63 0.00

S C
3

2 32 24 2627.50 25 41105 4.58 747.43 -0.65 -3.64 0.00

3 32 15 1040.20 141 4269 4.81 1125.06 -0.91 -3.49 0.00

S C
4

2 32 26 958.85 15 11217 4.21 471.72 -0.88 -3.70 0.00

3 32 13 978.23 219 2109 4.06 909.64 -0.83 -3.09 0.00

S O 2 32 14 5925.57 435 20135 6.44 1360.41 -2.34 -4.24 0.00

S Sadd
1

2 32 30 1339.33 79 12299 5.34 444.41 -0.35 -1.99 0.00

3 32 17 727.18 87 2247 4.57 904.53 -0.16 -2.55 0.00

S Sadd
2

2 32 32 1160.37 1 17735 6.43 284.21 -0.12 -1.77 0.00

3 32 23 622.13 65 2651 7.07 826.92 -0.09 -1.64 0.00

S Cadd
1

2 32 16 1900.87 43 5481 3.08 1292.03 -0.23 -1.12 0.00

3 32 4 404.25 27 728 2.53 875.52 -0.04 -0.16 0.00

S Cadd
2

2 32 3 2884.33 663 5855 1.68 1159.56 -0.71 -0.97 -0.36

3 32 0 - - - - - - - -

Table 4 shows that the BPC algorithm identifies 439 optima over the 736 instances. The number of nodes of the485

branch-and-bound tree varies widely: it ranges from 1 to 41105 and its average is 1458 while its standard deviation

is 3237. Note that we found no correlation between the number of nodes of the branch-and-bound tree and the gap

at the root node. The average time needed to prove the optimality of a solution is 720 seconds. Among the 439

optima provided by the BPC algorithm, 416 are obtained on the 10 sets of instances with 30 customers (first ten
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sets in Table 4).490

We observe that, except for set S O, the BPC algorithm behaves homogeneously on instances with 30 customers,

i.e., on S , S S
1 , S S

2 , S C
1 , S C

2 , S C
3 , S C

4 , S Sadd
1 and S Sadd

2 . Indeed, the BPC algorithm solves to optimality at

least 60.9% of the 64 instances belonging to each set. This percentage increases to 73.4% and 85.9% for the two

sets of instances with a larger number of suppliers (see S Sadd
1 and S Sadd

2 in Table 4). Increasing the number

of suppliers seems to make the instances easier to solve. In addition, in each of the sets with 30 customers, the495

BPC algorithm proves the optimality of almost all the instances with two commodities (at least 24 out of 32) and

of around half of the instances with three commodities (on average 16 out of 32). Hence, we can conclude that

the BPC algorithm seems rather insensitive with respect to the distinctive characteristics of the sets of instances

with 30 customers, i.e., unbalanced customer/supplier locations and an increased number of suppliers. Conversely,

increasing the number of customers has a major impact on the performance of the BPC algorithm. Indeed, when500

the number of customers increases to 50 and 70 (see sets S Cadd
1 and S Cadd

2 in Table 4), the number of optima

decreases to 20 and 3, respectively.

Finally, we note that the sequential heuristic of Gu et al. (2022) was able to identify 220 out of 439 optima. For

the remaining instances, the BPC algorithm improves the solution values found by Gu et al. (2022) by 1.46% on

average (see the last three columns of Table 4).505

To better assess the difficulty of solving these 439 instances to optimality, in Table 5, we report some statistics

about the optimal solutions. Each row corresponds to a subset of the instances. The first three columns respectively

report the name of the set of instances (set), the number of instances in the set (#) and of those solved to

optimality by the BPC algorithm (#opt). The next three columns report statistics regarding the collection echelon:

vehicles avg.LB : average lower bound (right hand-side of Constraint (9)) on the number of vehicles in the collection510

echelon; vehicles avg.#: average number of vehicles used in the collection echelon; avg.#suppl. visits: average

number of visits to suppliers. The last four columns report statistics regarding the delivery echelon: vehicles

avg.LB : average lower bound (right hand-side of Constraint (10a)) on the number of vehicles used in the delivery

echelon; vehicles avg.#: average number of vehicles used in the delivery echelon; avg. customers visits[%] : average

percentage of the customers visited one, two or three times.515
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Table 5: Statistics about the optimal solutions

Instances
Collection Delivery

vehicles vehicles avg.customers visits[%]

set # #opt avg.LB avg.# avg.#suppl. visits avg.LB avg.# 1 2 3

S 64 45 12.87 13.78 1.74 13.27 14.02 89.04 10.96 0.00

S S
1 64 45 12.58 13.62 1.81 12.98 13.67 88.44 11.41 0.15

S S
2 64 46 11.93 12.89 1.74 12.24 12.70 87.90 11.88 0.22

S C
1 64 44 11.75 12.57 1.61 11.95 12.82 89.85 10.15 0.00

S C
2 64 42 11.57 12.43 1.58 11.79 12.62 90.32 9.68 0.00

S C
3 64 39 12.13 13.00 1.68 12.54 13.38 89.49 10.43 0.09

S C
4 64 39 12.82 13.62 1.74 13.26 14.15 88.63 11.03 0.34

S O 32 14 12.71 13.86 1.73 13.64 14.29 76.43 23.57 0.00

S Sadd
1 64 47 12.85 13.98 1.44 13.23 13.94 87.80 12.20 0.00

S Sadd
2 64 55 12.22 13.84 1.28 12.55 13.36 90.12 9.88 0.00

S Cadd
1 64 20 22.40 23.10 3.19 23.40 24.85 89.10 10.80 0.10

S Cadd
2 64 3 43.33 44.00 6.10 49.33 52.00 98.10 1.90 0.00

The number of vehicles used in the collection echelon is rather tight to the lower bound. Suppliers are visited

on average between one and two times, exception made for the instances with additional customers where suppliers

are visited 3.19 and 6.10 times, on average. In the delivery echelon, the number of vehicles is also rather tight to

the lower bound, except for the instances of set S Cadd
2 . In each set of instances, at least 76.43% of the customers in

the instances is served with one visit, i.e., with no splits. Around 10% of the customers is visited twice, except for520

the instances of sets S O and S Cadd
2 where such percentage increases to 23.57 and decreases to 1.90, respectively.

Note that in the latter case the information may not be significant as the average is computed considering only

three instances. The percentage of customers visited three times is negligible.

Table 6 reports the results on the instances not solved to proven optimality by the BPC algorithm. The meaning

of the rows and columns in Table 6 is similar to the ones of Table 4. The differences are: the column #opt. is525

replaced with the column #notOpt. which indicates the number of instances not solved to proven optimality,

and the column avg.t[s] is replaced by the columns gap[%] avg./min./max. reporting the average, minimum, and

maximum optimality gap computed as 100((UB − LB)/LB), where UB is the value of the best solution found by

the BPC algorithm and LB is the lower bound when the time limit is reached. Similarly, the average gap at the

root node avg.gaproot[%] :] and the average deviation from the best solution value reported in Gu et al. (2022) are530

computed by replacing the optimal value OPT with UB.
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Table 6: Aggregated results on the instances not solved to proven optimality by the BPC algorithm

Instances
BPC results

#nodes gap[%] dev. Gu et al. (2022)

set |K| # #notOpt. avg. min. max. avg. min. max. avg.gaproot[%] avg. min. max.

S
2 32 1 653.00 653 653 3.31 3.31 3.31 14.08 2.07 2.07 2.07

3 32 18 2319.17 29 13135 2.44 0.01 6.46 6.80 0.92 -1.95 5.85

S S
1

2 32 2 3880.00 940 6820 3.38 0.41 6.35 11.97 1.01 -0.06 2.09

3 32 17 3057.65 19 16126 3.01 0.20 10.01 8.82 0.91 -2.67 5.10

S S
2

2 32 6 12069.00 941 46006 0.37 0.06 1.03 6.92 -1.15 -3.61 0.07

3 32 12 3212.42 40 13254 1.87 0.01 4.71 6.69 -1.30 -5.89 3.67

S C
1

2 32 3 29380.33 12463 40874 0.98 0.03 1.77 4.09 -0.58 -0.90 -0.29

3 32 17 1913.18 1 10229 2.61 0.34 7.11 6.68 0.16 -1.78 3.36

S C
2

2 32 5 18695.80 7 40567 0.78 0.03 2.82 3.55 -0.43 -1.00 0.02

3 32 17 1856.53 23 9311 2.58 0.21 6.09 7.00 0.08 -1.67 2.86

S C
3

2 32 8 4371.88 380 12552 1.09 0.12 2.25 5.34 0.17 -0.92 1.94

3 32 17 2070.71 29 12984 2.72 0.03 10.89 7.65 0.85 -1.31 10.69

S C
4

2 32 6 4876.50 342 12698 1.09 0.10 1.94 5.78 0.11 -1.13 1.62

3 32 19 1463.68 10 12005 2.47 0.18 5.96 7.23 0.41 -1.68 2.26

S O 2 32 18 9788.83 1033 50109 2.24 0.13 9.17 8.15 0.05 -2.98 4.85

S Sadd
1

2 32 2 774.50 763 786 2.37 1.05 3.69 18.86 1.32 0.69 1.96

3 32 15 2484.00 37 12241 2.60 0.00 8.76 10.65 0.65 -1.77 2.40

S Sadd
2

2 32 0 - - - - - - - - - -

3 32 9 2990.11 16 14444 1.99 0.07 6.03 9.21 0.75 0.00 4.05

S Cadd
1

2 32 16 4300.00 180 32352 1.15 0.00 3.52 6.27 0.25 -0.84 2.11

3 32 28 1344.14 1 6585 2.60 0.08 10.19 6.06 0.65 -1.20 4.63

S Cadd
2

2 32 29 2141.07 337 14413 1.15 0.04 3.78 3.64 -0.18 -1.83 2.98

3 32 32 684.22 1 2820 2.45 0.04 9.31 3.97 0.26 -2.32 2.93

The BPC algorithm cannot prove the optimality for 297 instances. For these instances, the average optimality

gap at the root node is 6.63%. However, the exploration of the branch-and-bound tree allows the optimality gap

to be reduced to 2.1% on average. The final optimality gap is larger than 5% for only 29 instances. The number of

nodes of the branch-and-bound tree follows the trend observed in Table 4: it varies greatly, with an average of 3429535

nodes, while the standard deviation is 6809. The comparison with Gu et al. (2022) (last three columns of Table 6)
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shows mixed results. The BPC algorithm finds larger upper bounds for 161 instances. On these instances, the

average deviation is 1.23%. For 24 instances, the BPC algorithm finds the same value as the one reported by Gu

et al. (2022). Finally, for the remaining 112 instances, the BPC algorithm provides a lower value with an average

improvement of 1.02%.540

7. Conclusions

In this paper, we presented a Branch-Price-and-Cut (BPC) algorithm to solve the Multi-Commodity two-echelon

Distribution Problem (MC2DP), a two-echelon routing problem where multiple commodities are sent from suppliers

to customers via distribution centres. The collection operations are done by capacitated vehicles performing direct

round trips between the distribution centres and the suppliers. The delivery operations are also performed by545

capacitated vehicles. Each delivery vehicle performs a route starting and ending at the same distribution centre.

Customers are allowed to be visited multiple times, provided that the amount of a single commodity is delivered

at once by a single vehicle. Commodities can be mixed inside all vehicles. The objective is to minimise the

transportation costs of the distribution system.

The BPC algorithm incorporates several state-of-the-art accelerating techniques and three families of robust550

valid inequalities: capacity cuts, valid inequalities arising from the set covering polytope, and a new family of valid

inequalities based on the number partitioning polytope. The inequalities improve the lower bound at the root node

and reduce the number of nodes of the branch-and-bound tree and the computational time. The BPC algorithm is

able to solve to optimality nearly 60% of the benchmark instances introduced in Gu et al. (2022) within one-hour

time limit. The final optimality gap is reasonable for the remaining instances, with an average value of 2.1%.555

Finally, we identified 331 new best-known solutions compared to the results of Gu et al. (2022).

The main issue with the instances left unsolved by the BPC algorithm is the large optimality gap at the root node.

To overcome this difficulty, future research should be devoted to the inclusion of new dedicated valid inequalities.

Adding non-robust valid inequalities known for routing problems is also an interesting perspective. However, it

would lead to more difficult pricing problems to solve. In addition, Gu et al. (2022) proposed a sequential heuristic560

for the MC2DP. Therefore, another line of research could be the development of heuristic algorithms that address

the problem from an integrated point of view.
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