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Abstract

In this paper, we present a new edge detection model based on proximal unfolded neural networks.
The architecture relies on unfolding proximal Blake–Zisserman iterations, leading to a composition of two
blocks: a smoothing block and an edge detection block. We show through simulations that the proposed
approach efficiently eliminates irrelevant details while retaining key edges and significantly improves
performance with respect to state-of-the-art strategies. Additionally, our architecture is significantly
lighter than recent learning models designed for edge detection in terms of number of learnable parameters
and inference time.

Keywords. Mumford–Shah functional, Blake–Zisserman functional, edge detection, proximal neural
networks, optimization.

1 Introduction

Image edges represent a specific image feature encoding valuable information playing a critical role in a
variety of downstream tasks. For example, in experimental physics, edges are used to estimate the phases of
contact areas, helping at the identification of hydrodynamic regimes [18].

Traditional edge detection methods rely on hand-crafted features using low-level visual cues such as
gradients, which could precisely localize edges but often struggled with accuracy in noisy scenes, shadows
or texture. This problem highlights the need for image regularization that removes insignificant and minor
details from the scene, while balancing two opposing objectives: smoothing the homogeneous areas of the
image and preserving the boundaries of these regions. Methods based on these principles are known as
variational approaches, which have been a significant area of research, particularly in the context of joint
image denoising and edge detection. This line of work was initiated by the contributions of Mumford and
Shah [14], as well as similar ideas proposed by Geman and Geman [9] or Blake and Zisserman [4].

The main drawbacks of variational approaches include the large number of iterations to ensure its conver-
gence. Hence it necessitates a meticulous tuning of the algorithms and hyperparameters to achieve optimal
performance.

Nowadays, alternative solutions benefiting from the power of deep neural networks, and fully decorrelated
from the Mumford–Shah analysis, have been proposed for edge preserving. Many architectures have been
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developed in this context. Among methods using convolutional neural networks, we can refer to DeepEdge [3]
and DeepContour [19] based on image patches and associated features to identify edges. These methods
demonstrated performance improvement over the state-of-the-art Structured Edges method [6]. Recently, [20]
proposed a method relying on a VGGnet, called HED, which combines edges obtained from different scales
into a final fused edge map. To achieve effective results, methods such as BDCN [10] is designed with less
parameters compared to HED, by computing the loss for each layer associated with a specific scale. These
methods significantly improve accuracy by integrating features from multiple layers. Recently, inspired by
the success of vision transformers [7], a transformer-based edge detector (EDTER) was proposed in [15],
which splits images into two sequences of 16 × 16 and 8 × 8 patches, then passing through a transformer
encoder for detecting global and local features, to finally predict object and local boundaries respectively.
However, the resulting edge map tends to be too thick for downstream tasks and are highly dependent on
post-processing. To address this, [21] introduced a diffusion model for edge detection (DiffEdge) producing
sharp edges without the need for post-processing. Despite these improvements, these learning-based models
have become increasingly complex, with larger architectures and slower inference speeds. They also require
a resource-intensive training phase and substantial support frameworks to improve inference performance.

For many years, there has been a gap between variational approaches and neural network procedures,
as the first one was guided by a combination of the data acquisition physics and prior knowledge about the
object, while the second one was considered as a very efficient prior-free black-box procedure. However, in
the field of inverse problems, model-based neural networks have been designed to help bridging that gap.
They are often referred to as Plug-and-Play or unfolded strategies. This class of approaches offers a trade-off
between theoretical guarantees and performances. While model-based neural networks appear now as the
state-of-the-art in the field of image restoration, their use in the context of edge detection is nonexistant.
Hence this is the core of this contribution.
Contributions and outline. Focusing on the Blake–Zisserman (BZ) variational approach for edge de-
tection, we propose an unfolded scheme relying on iterative procedure mimicking BZ minimization strategy.
The resulting unfolded method is then composed of two blocks: (i) a smoothing Proximal Neural Network
(PNN), and (ii) an edge detection layer. Section 2 recalls the Mumford–Shah functional and its equivalence
with BZ. Section 3 is dedicated to the proposed unfolded BZ-PNN strategy, and establishes a link between
standard activation functions used for edge detection and BZ thresholding steps. Finally, Section 4 presents
the experimental results including comparisons between standard variational procedure, deep neural network
strategies, and the proposed BZ-PNN.

2 Blake–Zisserman

Edge detection aims to identify points of intensity discontinuity e ∈ RN in an image z ∈ RCN composed with
C channels and N pixels. This image may result from noisy measurements, for instance in the presence of
an additive white Gaussian noise. The Mumford–Shah functional [14], originally designed in the continuous
setting, aims to recover both the edges and a smooth image in a context of a degraded image. Its discrete
counterpart, proposed in [8], reads

min
x∈RCN

e∈RCN

1

2
∥x− z∥22 + λ

C∑
c=1

∑
i,j

(1− ec,i,j)
2∥(Dxc)i,j∥2 + βg(e), (1)

where the first term is the data fidelity term, the second term imposes smoothness everywhere except on the
channel-wise edge set ec ∈ RN , with D : RN → R2N denoting the horizontal and vertical derivative operators,
and the last term g : RCN → (−∞,+∞] represents the edge length promoting sparsity, with β > 0. Thus
g can be chosen to be the ℓ0-pseudo norm, the ℓ1-norm or a quadratic ℓ1-norm, also known as the BerHu
function.

It has been established in [16] that this bivariate minimization problem can be formulated as a univariate
minimization problem over x followed by a thresholding step. In particular, it is equivalent to the BZ two-step
procedure [4] when g is the ℓ0-pseudo norm. This problem can then be formulated as finding estimates (x̂, ê)
such that

x̂ ∈ Argmin
x∈RCN

1

2
∥x− z∥22 +

C∑
c=1

∑
i,j

min
(
β, λ∥(Dxc)i,j∥2

)
, (2)

2



and êc = (êc,i,j)(c,i,j) with

êc,i,j =

{
1 if ∥(Dxc)i,j∥2 > β

λ

0 otherwise,
(3)

where β, λ > 0 are hyperparameters controlling respectively the length of the edges and the smoothness of

the estimate. The final estimate is then defined as ê =
(
min

(
1,
∑

c êc,i,j
))

i,j
.

In this two-step procedure, the first step in (2) aims to recover a smooth image with sharp edges. It is
followed by a thresholding step (3) to capture the location of the predominant edges. The penalization term
in (2) is a truncated ℓ2-norm but it is well-know that other type of penalizations allow to capture similar
behaviour, including the log-sum penalization or the weighted-ℓ1 penalization [17].

3 BZ-PNN: Unfolded proximal neural network for edge detection

Inspired by the two-step BZ procedure (2)-(3), we propose a new model-based neural network relying on a
denoising unfolded PNN that we will use as a smoothing estimator, offering a piecewise smooth estimate,
followed by an edge detection layer.

3.1 Unfolded smoothing PNN

In [13], the authors proposed a unified framework for building unfolded denoising PNNs with learned linear
operators. The proposed architectures share a unifying building block that can be either related to the
forward-backward algorithm [2] or Chambolle–Pock algorithm [5], tailored to solve the general variational
(Gaussian denoising) problem

x̂MAP = argmin
x∈RN

1

2
∥x− z∥22 + ν∥Dx∥1, (4)

where ν > 0 is a regularization parameter.
In this work, we focus on the unfolded instance relying on Chambolle-Pock algorithm for strongly convex

functions (ScCP), since it appears to provide a better compromise between robustness and performance. The
associated iterations can be written as

for k = 1, . . .uk = proxτk(ν∥·∥1)∗

(
uk−1+ τkD

(
(1+αk)xk− αkxk−1

))
,

xk = µk

1+µk
(z−D⊤uk) +

1
1+µk

xk−1,

(5)

where (αk, τk, µk)k∈N denote both the step-size and inertial parameters of the algorithm. The resulting
unrolled architecture DScCP-LNO introduced in [13] can then be described as

xK = fK,DScCP
z,ν,Λ (z) (6)

with {
xk = (1 + αk)x̃k − αkxk−1,

(x̃k,uk) = Lz,Λk,P (xk−1,LΛνk,k,D (xk−1,uk−1)

which combines standard neural network layers (activation function, linear step, bias) both on the dual space
(denoted D) and on the primal space (denoted P){

Lz,Λk,P (x,u) = ηk,P (Wk,Px+Vk,Pu+ bk,P) ,

Lνk,Λk,D (x,u) = ηνk,k,D (Wk,Dx+Vk,Du+ bk,D) ,

with 
Wk,P = 1

1+µk
,

Vk,P = − µk

1+µk
Dk,P ,

bk,P = µk

1+µk
z,

ηk,P = Id,

and


Wk,D = τkDk,D,

Vk,D = Id,

bk,D = 0,

ηνk,k,D = proxτk(νk∥·∥1)∗ .
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In the proposed unfolded scheme, the set of learnable parameters is Λ = {ν,Λk,P ,Λk,D}1≤k≤K =
{ν,Wk,•,Vk •,bk,•}1≤k≤K . Since the hyperparameter ν in variational problem (4) controls the smooth-
ness of the estimate, we propose to turn ν = (ν1, . . . , νK) into a learnable hyperparameter, while in the
original DScCP-LNO architecture (6), νk ≡ ν is a fixed (i.e., not learned) parameter. It allows to mimic
a weighted-ℓ1 strategy where the regularization parameter is changing from an iteration to the another one,
and is thus closer to the original BZ minimization problem (2).

3.2 Edge detection layer

Following the BZ strategy (2)-(3), we propose to add to the DScCP-LNO smoother an edge detection layer
composed of an additional activation function, denoted ηχ, and a weight matrix designed from BZ formalism,
i.e.,

e = ηχ

(
DK+1x

[K]
)

(7)

where x[K] is a smooth approximation of z, i.e., the ouput of the smoother fK,DScCP
z,ν,Λ , and DK+1 : RCN → RN

is an additional linear operator mapping an image to an edge map. The non-linear function ηχ should be

chosen as the activation function e 7→ HardTanhχ(e
2), to fit the BZ thresholding (3) when χ = β

λ .

Proposition 3.1. The truncated quadratic function

η β
λ
(e) = min

(
β

λ
, e2

)
is equivalent to HardTanh β

λ
(e2).

Proof. This result is directly obtained by using definition of the HardTanhχ activation function:

HardTanhχ(e) =


−χ if e < −χ,

χ if e > χ,

e otherwise.

(8)

In order to favor the value of the edge map to be between [0, 1], similarly as in the original Mumford-Shah
formulation, we choose χ = β

λ = 1 (see Fig. 1).

Figure 1: Truncated quadratic function.

3.3 BZ-PNN hybrid architecture

Figure 2: Proposed BZ-PNN hybrid architecture.
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The proposed BZ-PNN hybrid architecture then combines the DScCP-LNO smoother (6) with the
BZ-like edge detection layer (7). The resulting full architecture is illustrated in Fig. 2 and is summarized as,
for any input image z, fΘ(z) = (x[K], e[K]) with{

x[K] = fK,DScCP
z,ν,Λ (z)

e[K] = η1
(
DK+1x

[K]
)
.

(9)

and learnable parameters Θ = {Λ,DK+1}.

4 Numerical experiments

Training dataset – Our experiments are performed on the BSD500 dataset [1], which provides multiple
hand-drawn groundtruth contours for each image. We consider two sets of images: the training set (es, zs)s∈I
of size |I| and the test set (es, zs)s∈J of size |J|. For both sets, es are the exact edges obtained by stacking
all the provided groundtruth annotations, and zs consists of an input image (without noise).

Choice of the loss function – Following the literature dedicated to deep learning approaches for edge
detection, the learning stage relies on the minimization of the weighted cross entropy loss [20]:

Θ̂ ∈ Argmin
Θ

∑
s

∑
i,j

−ωs,i,j

(
es,i,j log(fΘ(zs)i,j)+

(1− fΘ(zs)i,j) log(1− es,i,j)
)
, (10)

where ωs ∈ RN denotes the class-balance weights between the edge pixel set Es,+ = {(i, j) : es,i,j = 1} and
non-edge pixel set Es,− = {(i, j) : es,i,j = 0}, that is, ωs,i,j = |E |/|E| when es,i,j = 1 and ωs,i,j = |E+|/|E|
when es,i,j = 0.

The loss (10) is optimized in Pytorch with Adam algorithm [12].

Architecture comparison – We compare the proposed BZ-PNN architecture, for K = 20 layers and
J = 32 filters in the smoothing block, with the state-of-the-art BZ variational model with the implementa-
tion provided by [11], and with two deep learning-based models, BDCN [10] and DiffusionEdge [21]. Table 1
summarizes the comparison in terms of learnable parameters (i.e. Θ) and inference time (in seconds) high-
lighting the much lighter architecture of our model. Regarding the BZ model, the inference time includes the
Golden gridsearch hyperparameter tuning, as described in [13].

Table 1: Architecture comparison. Number of parameters |Θ| and inference time of state-of-the-art
variational approach BZ and DL-based approaches, versus the proposed BZ-PNN architecture for K = 20
layers and J = 32 filters. |Θ| Inference time (sec.)

BZ [4,11] – 800 ± 50 sec.
BDCN [10] 16, 302, 120 1.25 ± 0.06 sec.
DiffusionEdge [21] 137, 142, 150 10 ± 2.25 sec.
BZ-PNN 17,347 0.278 ± 0.004 sec.

Results – As shown in Figures 3 and 4, the results indicate that the BZ-PNN strategy enhances edge
detection performance compared to both the standard variational approach and the deep-learning ones. In
comparison with BDCN, our model highlights local details more accurately without blurring these areas.
When compared to a more advanced and complex model such as DiffusionEdge, in regions where there are
miss-annotated edges, DiffusionEdge generates some faded edges while our method is able to sharply recover
these edges. In terms of cross-entropy (CE), the proposed BZ-PNN almost systematically outperforms both
variational and neural-network state-of-the-art approaches.

5 Conclusion

In this work, we propose a new model-based neural network architecture relying on the Blake–Zisserman
variational model to detect edges. This hybrid model aims to harness the strengths of both traditional
and modern deep learning-based approaches, offering a robust solution for edge detection with a lighter
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Clean image Ground-truth edges BZ [4,11] BDCN [10] DiffusionEdge [21] BZ-PNN

CE = 1.73 2.14 2.13 0.86

CE = 1.23 1.75 1.74 1.09

CE = 1.79 2.30 2.29 0.83

CE = 2.30 3.36 3.34 0.96

CE = 2.29 2.97 2.97 1.21

Figure 3: Edge detection performance comparison. Example of edge detection and Cross-Entropy (CE)
values obtained with the Blake–Zisserman approach [4,11], BDCN [10], DiffusionEdge [21] and the proposed
BZ-PNN.

Figure 4: Comparison of the CE values on 100 test images from the BSSDS500 database. The
x-axis (image number) for each score is sorted in ascending order according to the proposed BZ-PNN (solid
green line).

architecture compared with other recent DL-based models. Through this approach, we strive to achieve
a balance between computational efficiency and edge detection accuracy, pushing the boundaries of what
existed in the class of variational approaches.
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