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REVIEW

A literature review on the applications of artificial intelligence to
European rail transport safety

Habib Hadj-Mabrouk

Gustave Eiffel University, Vice-Presidency Research, Abstract
In accordance with the current European railway regulations and particularly the two direc-
tives relating to the interoperability (Directive (EU) 2016,/797) and safety (Directive (EU)

2016/798) of the railway system, this literature review proposes to classify artificial intel-
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i o ligence (Al) applications by distinguishing the structural elements (Infrastructure, Energy,
Email: habib hadj-mabrouk@univ-ciffel fr Control-Command-Signalling and Rolling Stock) and the functional elements (Operation
and Traffic Management, Maintenance and Telematics Applications) of the European

Funding information . . . . . . .
railway system. Several “classic” Al techniques are implemented, including machine learn-

Université Gustave Eiffel, Grant/Award Number:
FR18 ing (supervised, semi-supervised, unsupervised), deep learning such as artificial neural
networks (ANN), natural language processing (NLP), case-based reasoning (CBR), etc.
However, the inadequacy of these approaches to capitalize, shate and reuse the knowl-
edge involved has oriented research towards the development of new approaches based
on ontologies and knowledge graphs. This study shows that the stages of data acquisition,
modeling, processing and interpretation pose a crucial problem in rail transport. In addi-
tion, with complex models described as “black boxes”, it is difficult to understand how the
internal reasoning mechanisms of the Al system impact the solution and predictions. The
new explainable Al (XAI) approach can possibly provide an element of response to this
problem.

1 | INTRODUCTION

soning steps they use to make decisions, which may require a
lengthy thought process to help explain the implicit and uncon-

The ambitious goal of artificial intelligence (Al) is to equip
computers with certain faculties of the human mind, namely
learning, recognizing, reasoning, etc. Enthusiasm for Al and
machine learning is now pervasive across all fields. The first
research results concerned expert systems or knowledge-based
systems (KBS), which have established themselves as deci-
sion support tools capable of reproducing certain intellectual
tasks usually carried out by human experts. However, KBS
rarely achieve the performance of human experts, and are often
pootly adapted to the real needs of end users. This is due
to the difficulty of extracting the necessary expertise from
domain experts and representing this knowledge without dis-
tortion to build a cognitive model of the expert. Furthermore,
captuting knowledge to store it in a knowledge base is a com-
plex task that requires large material and human resources.
Experts may have great difficulty explicitly describing the rea-

scious part of the process. Indeed, given the complexity of
the expert’s knowledge and the latter’s difficulty in explain-
ing his or her mental processes, the extracted knowledge can
often be inaccurate, incomplete, or even incoherent. Various
researches in Al has been carried out to address this prob-
lem of transfer of expertise. Knowledge acquisition methods,
techniques and tools are now accessible to the knowledge
engineer and providing a methodological framework for the
development of KBS. In addition to knowledge-based systems
(KBS), knowledge acquisition techniques (KA) and machine
learning (ML) methods, Al implements several other meth-
ods and techniques often referred to as deep learning. such as
neural networks (NN) also called deep learning, genetic algo-
rithms (GA), pattern recognition often associated with image
processing, fuzzy systems based on the theory of fuzzy sets
proposed by Lotfi Zadeh in 1965, big data analytics (BDA),
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TABLE 1

Reviewed journals and conferences related to the field of rail transportation safety.

Journals and conferences in alphabetical order

Accident Analysis & Prevention

Advanced Engineering Informatics

Applied Acoustics

Applied Sciences

Artificial Intelligence

Computer Standards & Interfaces

Computers in Industry

Data & Knowledge Engineering

Engineering Applications of Artificial Intelligence

Engineering Systems, Part A: Civil Engineering

European Transport Research Review

Expert Systems with Applications

Futute Internet, Information Fusion

IEEE Xplore / IEEE Transactions

1GI Global

International Journal of Environmental Research and Public Health
International Journal of Electrical and Computer Engineering (IJECE)
1OS Press

Journal Information

Journal of Artificial Intelligence and Mechatronics

Journal of Computer Information Systems

Journal of Loss, Prevention in the Process Industries
Journal of Risk and Reliability

Journal of Risk and Uncertainty in
JUCS-Journal of Universal Computer Science
Knowledge Acquisition, Media Info

Lecture Notes in Computer Science, Springer
Nova Science Publishers

Procedia CIRP

Procedia Computer Science

Procedia, Informatique

Reliability Engineering & System Safety
Safety Science

Sage journals

Sensors

Transport Research Arena

Transportation Engineering

Transportation Research Part C

Urban Rail Transit

Vehicle System Dynamics

Wiley, Transactions in GIS

case-based reasoning (CBR), Internet of Things (IoT), cyber
security, etc.

The study focused on around a hundred papers spread across
around forty journals and conferences dedicated to rail trans-
port. These journals are presented in Table 1 in alphabetical
order.

The studied Al approaches applied to rail transport will
be classified in accordance with European railway regulations
and in particular the Directives related to system development
(Directive 2012/34/EU [1]), railway interoperability (Directive
2016/797 [2]) and railway safety (Directive 2016/798 [3]) by
distinguishing the structural elements (Infrastructure, Energy,
Control-command and signalling and finally rolling stock) and
the functional elements (operation and traffic management,
maintenance and telematics applications) of the European
railway system.

This document is organized into eleven sections. Section
2 provides an introduction to artificial intelligence (AI) and
recalls the main machine learning (ML) methods and algo-
rithms. Section 3 presents related work on Al applications
in several transport sectors, in particular rail transport, intelli-
gent transport, energy, watet, transport and telecommunications
infrastructure sectors. The contributions and limitations of this
related work are specified in Section 4. In order to clarify and
position Al work in the field of rail transport, it is appropriate
to recall in Section 5 the European railway regulations. Direc-
tive (EU) 2016/797 on railway interoperability allowed us to

propose a decomposition of the rail transport system into struc-
tural elements and functional elements in order to identify the
main railway subsystems, equipment and components. Directive
(EU) 2016/798 on railway safety has led to the identification
of the main concepts involved in safety and consequently to
the identification of regulatory requirements in terms of railway
safety. All of these identified concepts related to interoperability
and railway safety are used in Section 6 devoted to a literature
review on Al applications in rail transport. Within the frame-
work of the “classical” Al approaches applied to rail transport,
we distinguish:

- Al approaches related to structural elements such as rails, bal-
last, pantograph, axle, switch system, wheels, track geometry,
rolling stock, etc.;

- Al approaches related to functional elements in particular
telematics applications, Operation and traffic management,
Maintenance, Safety in railway tunnels;

- Al approaches related to both structural and functional
elements of the railway system;

- Al approaches related to railway safety: (1) Analysis of railway
accidents based on investigation reports and (2) Analysis of
railway accidents based on manufacturers’ files.

In addition to these “classic” Al approaches, this literature
review is supplemented by other approaches based on ontology
and knowledge graphs.
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Section 7 provides a summary of these Al applications in
railway transport and offers a classification in accordance with
the European regulations previously mentioned. Section 8 posi-
tions this study in relation to railway regulations. Of the 65
articles examined 61% of the documents concern subsystems
of a “structural” and “functional” nature, 26% are related to
railway safety and finally 6% concern the harmonization of stan-
dards. The contributions and limitations of the Al approaches
studied are presented in Section 9, which successively addresses
1) the challenges of Al data involved in rail transport and 2)
explainable artificial intelligence (XAI) as a solution to improve
“black box” models. Finally, after the conclusion (Section 10),
the last Section 11 offers some perspectives for understand-
ing the obstacles linked in particular to the problems of data
involved in rail safety and explainability.

2 | INTRODUCTION TO ARTIFICIAL
INTELLIGENCE (AI) AND MACHINE
LEARNING (ML)

2.1 | Machine learning methods

Learning is reasoning: discovering analogies and similarities,
generalizing or particularizing an experience, taking advantage
of past failures and errors for subsequent reasoning, The objec-
tive is to explicitly represent a mass of knowledge or data,
manage it, increase it and modify it with the aim of sup-
porting decision-making. New skills are used to solve new
problems, accomplish a new task or increase performance in
accomplishing an existing task, explain a situation or predict
behaviour.

When it comes to machine learning (ML), we distinguish
between supervised learning, semi-supervised learning and
unsupervised learning. In supervised learning, it involves learn-
ing to classify a new object (individual) among a set of
predefined classes: we know the classes a priori. This involves
learning a prediction function from annotated (or labelled)
examples. On the contrary, in unsupervised learning, the num-
ber and definition of classes are not given a priori and it involves
extracting classes or groups of individuals presenting common
characteristics from unlabelled data. The semi-supervised learn-
ing approach lies between supervised learning which only uses
known labelled data and unsupervised learning which only uses
unlabelled data. This machine learning technique uses both a
labelled and unlabelled dataset. In recent years and in the field of
land transport, researchers and experts in the field have become
increasingly interested in the application of Al techniques and
in particular machine learning to solve certain decision support
problems, such as transport equipment diagnosis, maintenance
operations management, driver behaviour analysis, prediction
of transport infrastructure deterioration, planning and forecast-
ing of traffic demand, traffic light control, air traffic control,
etc. These methods are also used to extract the presence of
informative entities on recurring accidents and incidents with a
view to understanding the causes of accidents and finding causal
relationships from accident investigation reports. Thus, several

Al techniques are implemented: machine learning, deep learn-
ing such as artificial neural networks (ANN), big data, natural
language processing (NLP) and CBR.

Data analysis, also called exploratory data analysis, aims to
search for relationships between different data and to extract, by
grouping, statistical information making it possible to desctibe
in a succinct and clear manner the main information contained
in this data. Statistical analysis methods therefore make it possi-
ble to collect and analyse data with a view to identifying patterns
and trends and therefore making informed decisions. Data anal-
ysis relies on several descriptive and inferential techniques. These
two statistical approaches, whose aim is to extrapolate results
from data using statistical tests, rely primarily on the median, the
statistical mean and the standard deviation to measure the magni-
tude of the data distribution relative to the average. The main
mathematical tool used is watrix algebra based on a probabilistic
model.

In this statistical context, we also speak of regression to study
the link between vatiables, hypothesis testing to persuade whether
a conclusion is correct for data collection, cross-tab analysis, joint
analysis, etc. Principal component analysis (PCA) is a method
that is part of the data analysis family. It is based on regression
and correlation between several variables to describe the data by
petforming a dimension reduction of the training data (or training
examples). The two main methods derived from PCA are corre-
spondence factor analysis (CFA) and multiple correspondence
factor analysis (AFCM or MCA) which is a generalization of
factor analysis. Automatic classification and disctiminant factor
analysis (DFA) are two techniques that aim to identify similar
groups within the training data set. The most recent analytical
approach in data analysis is independent component analysis
(ICA).

Non-negative matrix factorization (NMF) is a group of algo-
rithms in multivariate (statistical) data analysis and linear algebra
(or linear equations).

Some machine learning methods improve the prediction of
elaborate models but at the expense of difficulty in interpreta-
tion and explanation in certain approaches, even the simplest
ones, such as decision trees and linear regression models (least
squares method, maximum likelihood model or even Bayesian
inference) which generally seek to establish a linear relationship
between a variable, called explained, and one or more variables,
called explanatory (or predictive). Thus, in machine learning, the
data is used to first train the algorithm on known (or labelled)
data sets, then the learned model is used to predict unknown
(unlabelled) values. SHAP (SHapley Additive exPlanations) is a
technique for explaining and making understandable to humans
the predictions of machine learning models [4]. It is based on
“Shapley” values, which use game theory whose objective is
to quantify the predictive power of a model based on these
characteristics. It is therefore statistical learning as opposed to
symbolic learning,

In the field of data mining and the retrieval of relevant
information generally from accident investigation reports, there
are several techniques from various fields, such as search for
information (IR), natural language processing (NLP), informa-
tion extraction (IE), machine learning and the BDA (big data
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analytics) approach. BDA is beneficial considering the large
amounts of data generated by the transportation system from
sensors installed on tracks, on wagons or signalling equipment,
monitoring and inspection of equipment, etc. A BDA can
examine all the data collected in order to obtain useful informa-
tion to explain, for example, the potential causes of operational
degradation, failure of certain track components and possibly
safety equipment. The main objective is to explore the raw
text in order to extract relevant information for explanatory or
decision-making purposes.

Natural language processing (NLP) or /Znguistic engineering is
essentially based on stochastic methods such as information
theory, and linear algebra, so-called probabilistic methods such
as models Markov (or Markovian process) or so-called statisti-
cal methods such as machine learning and data mining, In the
context of NLP, we speak of information extraction, text min-
ing or search for significant information in a collection of given
documents by using content indexing and recognition of entities
designated by example the determination of proper nouns in a
text. It is therefore appropriate to carry out similarity searches
in texts, compatison of texts, and classification of texts into cat-
egories. We also talk about sentiment analysis and automatic
document recommendation.

The main objective of NLP is to resolve certain difficul-
ties related to the very long sentences involved in documents
and which are sometimes ambiguous. To address this ambigu-
ity, Markov models ate frequently used. It is a Markov model
if the state of the model at a time 7 depends exclusively on its
state at time 7 — 1. A Markov model corresponds to finite-state
probabilistic automata and the basic Markovian model corre-
sponds to a simple (probabilistic) transition state diagram in
the form of a graphical representation where the transition law
expresses the evolution of the model, in the form of probability
matrices where each describes the evolution of the model. Thus,
we speak of an observable Markov model in the case where
we can observe all the states in which the model is found at
each moment. Otherwise, we speak of a hidden Markov model.
Unlike a classic Markov chain where the states of an execution
are known, a hidden Markov model (MMC) the states of an exe-
cution are unknown to the ’user. Hidden Matkov models (or
Markovian processes) are used specifically in the fields of NLP,
pattern recognition, or generally in AL

In the context of text mining of railway accidents in the
United States, [5] used latent semantic analysis (LSA) and latent
Dirichlet allocation (LDA). LSA (or latent semantic indexing)
which is part of natural language processing relies on the use
of a matrix describing the occurrence of certain terms (words)
in documents. The LSA technique transforms the occurrence
matrix into a “relationship” between terms and “concepts,”
and a relationship between these concepts and the documents
analysed. On the other hand, LDA also from NLP and which
constitutes a probabilistic model based on data similarity mea-
sures makes it possible to explain sets of observations involved
in documents.

Deep learning is essentially based on the artificial neural net-
work (ANN) which is part of statistical A applications allowing
the creation of classifications of objects quickly. This notion of

deep learning is closely linked to deep neural network (DNN),
deep belief network (DBN) and deep convolutional neural net-
works (DCNN). We speak of acyclic multilayer neural networks
or multilayer perceptron’s when the artificial neural network is
organized in several layers. In addition to ANN, DNN, DBN
and DCNN, there are several other types of networks: Con-
volutional neural network (CNN), long-term and short-term
memory neural network (LSTM) and recurrent neural networks
(RNN).For the detection of anomalies in the wheels of a train,
[6] used four unsupervised learning techniques including multi-
layer perceptron autoencoder (MLP-AE). In the literature, we
also speak of convolutional neural network autoencoder (CNN-
AE). An autoencoder, whose objective is to reduce the size
of the data set, is a type of somewhat special artificial neural
network architecture used for unsupervised learning of discrim-
inative characteristics. It is designed to compress (encode) input
data to its essential characteristics, then testore (decode) the
original input from this compressed reproduction.

In the context of rail transportation systems, a digital twin is
a complex computerized model that considers the dynamics of
trains, vehicles and tracks, as well as the interaction of wheel-
rail contacts. A standard (non-augmented) train digital twin can
use measurements from multiple sensors located on board the
train or on the ground (infrastructure) as feedback linked for
example to an automated train control (ATO) system who’s the
objective is the management of train control commands. In con-
trast, an “augmented” digital twin uses the same feedback as
input to a surrogate model which, in turn, uses the sensor data
to estimate the state of the system dynamics, thus enabling feed-
back more complex at the ATO which operates the train control
commands [7].

Case-based reasoning (CBR)is a well-established area of
research based on Al techniques, particularly machine learn-
ing. It is attracting more and more attention from researchers
and experts in the rail transport sector. The studies include the
diagnosis of locomotive breakdowns, the prevention of rail-
way operating incidents, the analysis of safety risks linked to
metro opetration, automatic train driving and finally the diag-
nosis of railway manoeuvring system faults. This mode of
reasoning, which is based on the notion of similarity, focuses
above all on problem solving based on experience. It is a cog-
nitive process of human reasoning that relies largely on how
individuals acquire a new skill based on their past habits and
experiences.

Several other methods, techniques and theories are used in
Al applications dedicated to rail transport such as the Petri
Net, expert systems, fuzzy logic, short-time Fourier transform
(STFT) or again learning by gradient back propagation (or
gradient back propagation technique) which is based on the gra-
dient algorithm also called the gradient descent algorithm or
the differentiable optimization algorithm. Some work refers to
computational intelligence (CI) which is traditionally based on
the following main pillars: artificial neural networks, fuzzy sys-
tems, evolutionary computing (ot evolutionary computing) and
probabilistic methods. The finite element method and the the-
ory of complex networks are also part of the Al applications
studied.
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2.2 | Machine learning algorithms

There are several machine learning approaches and algorithms
that rely largely on regression, discrimination (or classification),
and clustering techniques. The grouping that we call dassifica-
tion in data analysis (or supervised learning in Al) consists,
from a mass of data, of discovering common features between
this data so that we can group them into simpler subgroups
and having meaning, The vast majority of grouping procedures
are digital in nature. Discrimination aims at learning classifica-
tion procedures. From a set of examples of concepts, the aim
is to find a technique that allows each concept to be recog-
nized. The vast majority of existing methods are based on
numerical evaluations. Statistical regression (simple linear, multi-
ple, logistic, or logarithmic) is a supervised learning approach
that uses an algorithm not only to understand the relation-
ship between dependent and independent variables, but also
to predict numerical values. Finally, the problem of generaliza-
tion consists, from concrete examples of a situation, of finding
a fairly general formula to describe this situation and explaining
the descriptive capacity of this formula.

Regression covers several methods of statistical analysis, as
opposed to classification. In machine learning, statistical regres-
sion can be a linear or multilinear regression whose objective
is the prediction of a “quantitative” variable, while “classifica-
tion” aims to predict a “qualitative” variable. A linear classifier
is a particular type of statistical classifier whose objective is to
encrypt a decision by linear combination of samples which have
similar properties, measured on observations. Support vector regres-
sion (SV/R) is a generalization of linear classifiers and is based on
the implementation of statistical classification algorithms used
for regression analysis.

The SVR, whose performance is sometimes identical to a
neural network, is a supervised learning technique allowing the
resolution of problems linked to discrimination and regression. Dis-
crimination is a statistical approach such as discriminant factor
analysis (DFA). Statistical regression covers several methods of
statistical analysis (linear or multilinear) with a view to predict-
ing a quantitative variable as opposed to classification which aims
to predict a gualitative variable.

The nearest neighbonr’s algorithm (KINN) aims to predict the
membership of a new piece of data (or observation) to a fam-
ily or class of objects by calculating the distance of the new
observation from the set of training examples. The objective
is to find the most representative membership class and there-
fore the class closest to the new observation (entry) .X among
the K entries. The & NN algorithm is an approach for classi-
fication and regression and is the simplest supervised machine
learning algorithm. In classification, the result is a membership
class according to the majority result of class statistics: If £=1,
then the object is assigned to the class of its close neighbour. In
regression, the result is the average value of the nearest £ values.

Belonging to the family of linear classifiers, naive Bayesian
classification is a type of simple probabilistic Bayesian classifica-
tion based on Bayes’ theorem which depends strongly (naively)
on hypotheses and is based on maximum likelihood which is

a statistical approach whose goal is to find the most plau-
sible parameters of a probability model to explain observed
data. The naive Bayesian classifier is part of supervised learning
approaches and therefore requires that the classes of the training
dataset are known. However, studies have shown that random
forests, particulatly decision trees, provide better results.

Learning decision trees (or random forests or forests of decision
trees) is one of the machine learning techniques which consti-
tutes a decision support tool whose objective is to represent
different possible decisions in the form of a graphic tree. From
the work of Quinlan in [8], a decision tree is a set of choices
in the graphic form of a tree and the possible decisions are
located at the “leaves” of the tree. From the decision tree, we
can generate classification rules. When we have a large dataset
containing several variables, we seek not only to discover the
most important variables, but also to reduce this dataset in order
to represent it in a simple way. This is the main objective of prin-
cipal component analysis (PCA) which constitutes one of the most
frequently used methods of multivariate data analysis. It is often
considered a data mining method because it makes it easy to
extract information from large data sets.

K-means is one of the unsupervised learning methods whose
objective is the grouping (or clustering) of several observations
into K clusters (groups) by comparing the degree of similar-
ity between the different observations based often over the
Euclidean distance. Thus, unlike supervised learning whose goal
is to learn a correlation relationship between a set of data in
order to predict the class of membership of a new observation,
in unsupervised learning based on K- means, the objective is
rather to discover patterns in the learning database in order to
group objects that look similar.

3 | RELATED WORKS ON THE
APPLICATION OF AI IN RAILWAY
TRANSPORTATION

In the field of transportation, several approaches to classifica-
tion of Al and machine learning techniques have been proposed
in recent years in [9, 10].

In the field of zntelligent transportation, [9, 11] have proposed
several applications of Al In public transport, several applica-
tions of Al have been studied in [12]. An interesting study was
proposed as part of the work of [13] on the applications of
Al techniques, methods and algorithms in the energy, water,
transport and telecommunications zufrastructure sectors. Ref. [14]
studied the applications of Al in different modes of transport: land
(road, rail), maritime and air. The challenges, arguments and
interests of “Big Data” for risk management in raé/ transport have
been presented in [15-17].

After giving an overview of “Big Data” technologies in
the rail transport sector, [18] presented an interesting survey
from 2003 to 2017 on the potential applications of big data
analysis in railway systems rail transport. The authors pro-
posed a classification of Al methods, models and algorithms
involved in the analysis of railway data. The authors also
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proposed a classification of Big Data applications in the field of
rail transport by distinguishing three levels of analysis:

- Analysis by zone which brings together upkeep/maintenance
tasks, tasks linked to operation which concerns route choice,
train positioning, demand forecasting, disruption manage-
ment, etc. and tasks relating to safety, in particular the analysis
of risk, severity and frequency;

- Analysis according to the type of maintenance (corrective,
preventive and conditional);

- Analysis based on the equipment of the railway system
which distinguishes the vehicle, the track and the signalling
equipment.

According to [19], the areas of application of Industry
4.0 technologies in rail transport relate to the following three
branches:

- Surveillance which concerns the detection of irregularities in
the rails, inspection of railway axles, monitoring of freight
trains, etc.;

- Decision and planning to predict train arrival times, perform
maintenance operations, minimize traction energy, minimize
train delays, etc.;

- Communication and safety to monitor overcrowding in sta-
tion areas, use of Al camera and graphics processing units
(GPUs), travel connectivity, etc.

Applications in the field of 7az/ transport relate to moni-
toring, decision-making and planning techniques as well as
communication and safety [19]:

- The monitoring area covers both the monitoring of railway
infrastructure (detection of irregularities in rails, inspection of
railway axles) and assistance systems for the driver of freight
trains;

- The atea of communication and safety covers railway safety to
monitor overcrowding in station areas, safety systems which
include Al cameras and graphics processing units (GPUs)
ultimately travel connectivity;

- The field relating to decision and planning focuses on opti-
mizing rail transport by establishing predictions on the arrival
times of freight trains, providing information on transport
using big analysis Data to improve, for example, the mainte-
nance process, to optimize and minimize train traction energy
as well as train delays.

In the field of railway transport safety, [10] proposed a detailed
study of the causes of railway accidents which distinguishes the
causes linked to accidents at level crossings, to the safety of rail-
way construction, to the asset management, human factors and
technical malfunctions. As part of this study, the authors exam-
ined in particular the roles of humans and organizations in the
train accident process, the train collision accident, the quantifi-
cation of accidents, the prediction of the structural integrity of a
railway bridge and the prediction of geometric defects of railway
tracks. Finally, the authors [20] proposed a conceptual frame-

work called “HazardMap” which is based on the open source
natural language processing thematic model “BERTopic” in
order to analyze textual data from the “Rail Accident Investi-
gation Branch” (RAIB), the Australian Transport Safety Bureau
(ATSB).

Finally, [21-23] have proposed consistent studies on the
applications of Al in the field of rail transport. Ref. [21] pre-
sented a critical review of recent textual research and their
applications in railways which notably concern the analysis
of accidents and incidents, sentiment analysis in particu-
lar passenger complaints and speech synthesis, detection of
technical specifications, fault diagnosis, servicing/maintenance
and inspection, accident risk assessment, extraction of safety
information, identification of accident causes and finally the
identification of maintenance events. An interesting taxonomy
of artificial intelligence methods and algorithms as well as their
applications in rail transport has been proposed in [22]. The
applications identified by the authors relate to autonomous train
driving and control, maintenance and inspection in particular
fault diagnosis, infrastructure condition monitoring, fault detec-
tion and prediction, mobility of passengers which includes the
prevention and prediction of passenger flows and passenger sat-
isfaction, traffic planning and management, finally safety and
security of transport in particular the analysis of incidents, sta-
tion security, detection of defects, rail disruptions and research
into the causes of accidents. Finally, [23] also proposed a lit-
erature review on the applications of Al in railway transport
systems and the applications studied concern autonomous driv-
ing and control, revenue management, inspection, passenger
mobility, traffic planning and management, transport policy and
safety and security.

4 | CONTRIBUTIONS AND
LIMITATIONS OF RELATED WORK AND
OBJECTIVE OF THE STUDY

Despite the certain interest of work on the applications of
Al to the field of rail transport, several important methods
for rail safety such as ontologies, knowledge graphs, case-
based reasoning (CBR) have not been considered by previous
work. Furthermore, there are ambiguities and several con-
fusions in terms and concepts related to rail transportation
safety. This work proposes to complete previous work by
including other work on ontologies and knowledge graphs
essential to better explain and integrate knowledge in the field
of rail safety, and thus clarify certain essential concepts in
rail safety management by using the regulations in force, in
particular the three European directives relating to the devel-
opment, interoperability and safety of the European railway
system:

- Development: Directive 2012/34/EU of the European Par-
liament and of the Council of 21 November 2012 establishing

a single European railway area (recast);
- Interoperability: Directive (EU) 2016/797 [2] of the Euro-
pean Parliament and of the Council of 11 May 2016 relating
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to the interoperability of the rail system within the European
Union (recast), (Consolidated version of 28 May 2020);

- Safety: Directive (EU) 2016/798 of the European Parliament
and of the Council of 11 May 2016 on railway safety

These directives will be used to specify all the structural
and functional subsystems, equipment and components of a
European railway system. The main objective is to clarify and
position the contribution of Al techniques in relation to Euro-
pean rail transport legislation and regulations and therefore
promote the interest in new Al approaches by the European
Commission, national safety authorities and the railway opera-
tors in particular the infrastructure manager (IM), the railway
undertakings (RU), the entities responsible for the maintenance
(ECE) of the railway system.

5 | EUROPEAN RAILWAY
REGULATIONS

5.1 | Decomposition of the rail transport
system in accordance with European
regulations

According to Directive (EU) 2016/797 [2] of the European
Parliament and of the Council of 11 May 2016 on the inter-
operability of the railway system within the European Union,
railway systems, equipment and components present significant
differences due to the fact that they integrate particular tech-
niques specific to the national railway industry and therefore
include particular dimensions and devices, as well as special
characteristics. This situation may prevent trains from travel-
ing without obstacles throughout the European Union. It is
therefore essential to define essential requirements and new
technical specifications relating to railway interoperability, called
TSI (technical specifications for interoperability). A TSI speci-
fies all the conditions that an interoperability constituent must
respect as well as the procedure to follow for conformity assess-
ment. Therefore, the TSIs provide the necessary framework to
decide whether existing railway subsystems require a new autho-
rization for placing in service or placing on the market. Directive
(EU) 2016/797 [2] establishes the conditions that must be met
to achieve interoperability within the Union rail system in com-
pliance with Directive (EU) 2016/798 on safety. The objective is
to define an optimal level of technical harmonization, improve
and develop rail transport services within the European Union.
In this context, and taking into account the complexity of the
Union’s rail system and in order to promote interoperability and
safety, it was necessaty, for practical reasons, to break it down
into several subsystems that are simpler to understand: “inftras-
tructure”, “rolling stock”, “energy”, “control-command and
signalling on the ground”, “control-command and signalling on
board”, “operation and traffic management”, “maintenance”,
“telematics applications for the service of passengers and the
service of freight”” This paragraph provides a summary of
all the elements and constituents of the Union rail system in
accordance with the following two directives:

Traffic
management
system

Navigation Location
system Network system

Technical
installations

FIGURE 1 Main subsystems involved in the railway network.

- Directive 2012/34/EU of the European Patliament and of
the Council of 21 November 21 2022 [24] establishing a single
European railway area (recast);

- Directive (EU) 2016/797 [2] of the European Parliament and
of the Council of 11 May 2016 on the interoperability of the
railway system within the European Union (recast).

Annex I of Directive 2012/34/EU provides a list of elements
of the railway infrastructure: land, body and platform of the
track, structures, superstructure, carriageways of passenger and
goods yards, safety, signalling and telecommunications installa-
tions, lighting installations, electrical current transformation and
transmission installations for the traction of trains and buildings
assigned to the infrastructure service. For example, the super-
structure includes the following elements: rails, grooved rails
and counter rails; sleepers and sills, small assembly equipment,
ballast, including gravel and sand, track switches, turntables and
transporter trolleys. Annex I to Directive (EU) 2016/797 [2]
breaks down the elements of the Union rail system into fixed
and mobile elements including:

- The network, made up of lines, stations, terminals and any
type of fixed equipment necessary to ensute its operation,

- Vehicles circulating on this network. Each vehicle is made up
of a “rolling stock” subsystem, other subsystems, particularly
the “control-command and on-board signaling” subsystem.

This network includes traffic management, location and
navigation systems, technical data processing and telecommuni-
cations facilities provided for long-distance passenger transport
and freight transport on this network in order to guarantee
safe operation and harmonious network and efficient traffic
management (Figure 1).
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Infrastructure

Energy

— Structural elements —

Ground

— Control-command and signaling

Edge

Rolling equipment

List of subsystems

Operation and traffic

management

— Functional elements

Care/Maintenance

Serving travelers

Telematics applications

FIGURE 2

In accordance with Annex I to Directive (EU) 2016/797 [2],
Union vehicles include all vehicles capable of circulating on all
or part of the Union network:

- Locomotives and rolling stock intended for the transport of
passengers, including traction units with thermal or electric
motors, multiple units with thermal or electric motors, as well
as cars,

- Freight wagons, including low-loaders designed for the entire
network and vehicles designed for the transport of trucks,

- Special vehicles, such as track machinery.

Annex II of the same Directive (EU) 2016/797 [2] also pro-
vides a functional and structural description of the elements of
the Union rail subsystems summarized in Figure 2.

The main subsystems, equipment and interoperability
constituents from the two FEuropean directives (Directive
2012/34/EU and Directive (EU) 2016/797 [2]) ate summarized
in Figure 3.

52 |
safety

Regulatory requirements for railway

Directive (EU) 2016/798 of the European Parliament and of
the Council of 11 May 2016 on railway safety, which is one of
the legislative acts covering the technical aspect of the 4th rail-
way package, established several measures intended to develop
and improve the rail safety in the EU. We are only interested
here in the safety requirements imposed by this directive both
on the Furopean rail system and on all rail stakeholders and

Freight department

Structural and functional decomposition of European railway subsystems.

in particular: Article 5: Common Safety Indicators (CSI); Arti-
cle 6: Common Safety Methods (CSM); Article 7: Common
Safety Objectives (CSO); Article 9: Safety Management Sys-
tems (SMS); Article 10: Safety Certificate; Article 12: Safety
Approval; Article 14: Vehicle Maintenance and Article 17: Safety
Monitoring,

All of these requitements are summarized in Figure 4. Rail
safety management involves two main phases: Safety construc-
tion and safety management. To build safety, it is appropriate
to first define a safety objective (or safety target levels)) which
is often quantitative and expresses risk acceptance criteria with
regard to the individual risks to which passengers and passen-
gers are exposed personal and with regard to collective risks
(risks for society). To achieve these safety objectives, it is nec-
essary to define essential safety requirements (qualitative or
quantitative) which are imposed on the system during its oper-
ation and maintenance. The essential requitements from Annex
III of Directive (EU) 2016/797 [2] concern not only safety,
but also reliability, availability, health, etc. There are two types
of essential requirements: “general” requirements and “partic-
ular” requirements imposed on each subsystem. The essential
requitements of “general scope” linked to “safety” relate to
the development, maintenance and monitoring of critical (or
essential) components for safety and mainly the equipment
and functions involved in the movement of trains including
the objective is to guarantee safety. The “particular” essential
requirements linked to “safety” concerns all subsystems: infras-
tructure, rolling stock (RS), control-command and signalling,
etc. For example, the “particular” essential requirements linked
to the “safety” of the RS subsystem relate to: (1) the structures
of the RS and the connections between the vehicles which must
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FIGURE 3

be designed in such a way as to protect passengers in particular
in the event of a collision or accident or derailment of the train,
and (2) on the safety of passengers when boarding and disem-
barking from trains, in particular access doors must be equipped
with a closing and opening system which guarantees the safety
of passengers.

To build safety, each railway operator (infrastructure manager
(IM), railway company (RC) and entity in charge of maintenance
(ECM)) must develop its safety management system (SMS). An

- Emergency situation

’ﬂ ERTMS/ETCS || | lels 0,1,2,NTC

operating rules

GSM/R operating
_1 rules

Anomalies, Ground
= signals, Walk by sight,
Failure, etc.

Common operating
rules

Main subsystems, equipment and constituents of railway interoperability.

SMS establishes by the RC for obtaining a safety certificate, an
SMS developed by the IM for obtaining a safety approval and
a maintenance system implemented by the ECT Directive (EU)
2016,/798 imposed several MSCs: (1) MSC for the assessment of
the achievement of CSO, (2) CSM for the assessment of com-
pliance with safety requirements for the issuance of RC safety
certificates and IM safety approvals, (3) CSM for the evaluation
and assessment of risks in accordance with Implementing Reg-
ulation (EU) No 402/2013 [25] and in particular in the event
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o CSM to Control SMS by IM
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Collection of significant accidents CSM to evaluate the achievement of
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Analysis of accident causes

— Safety Monitoring
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Critical Accident Investigation

Safety improvement measures

l—  National Reference Value (NRV)

FIGURE 4  Main safety requirements according to the railway safety directive.

of a significant change, (4) CSM for control by the RUs after
obtaining a single safety certificate and control by the IMs after
obtaining a safety approval and finally the control by the ECMs
after obtaining a vehicle maintenance certificate, (5) CSM for the
surveillance carried out by the national safety authorities (NSA).

Thus, after having built safety, it is appropriate to manage and
manage safety (Figure 4) by considering in particular the man-
agement of changes (modifications), the control of safety by
the railway operators, the monitoring of safety by the NSA and
finally the management of feedback which requires two main
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stages: (1) the collection of significant accidents in accordance
with common safety indicators (CSI) and (2) investigations into
¢ritical accidents by independent organizations with a view to
analysing the causes railway accidents and to propose measures
to improve safety. ISCs make it possible to assess the con-
formity of systems with respect to common safety objectives
(CSO) and thus facilitate the monitoring of the evolution of
railway safety performance. Member States collect information
on SAls using annual safety reports prepared by NSAs. The
European Commission, through the European Union Agency
for Railways, examines rail transport statistics with a view to
assessing national reference values (NRVs) which are reference
measures indicating, for a Member State, the maximum accept-
able level for a railway risk category. The VNRs are defined
by the European Commission (2nd series of CSO: Decision
No02012/226/EU [24] and Implementing Decision (EU) No
2013/753 [26]) in order to quantify the expected performance
in terms of railway safety. The achievement of these objectives is
evaluated annually for year A-2 for different categories of risks
linked to passengers, employees, users of level crossings (LC),
unauthorized persons (intruders), “other” persons and to the
whole of society.

The main subsystems, equipment and constituents of rail-
way interoperability (Figure 3) as well as the main railway safety
requirements (Figure 4) are summarized in Table 2.

6 | LITERATURE REVIEW ON AI
APPLICATIONS IN RAIL TRANSPORT

6.1 | Applications of “classic” Al in rail
transport

After quickly presenting the main safety requirements imposed
by European legislative acts and in particular Directive (EU)
2016/798 relating to railway safety, after having presented the
main subsystems, equipment and functions imposed by direc-
tive (EU) 2016/797 [2] relating to the interoperability of the
railway system, the objective of the following bibliographical
study on the applications of Al methods in the field of railway
safety seeks to position these methods in relation to the regula-
tions in force: Directive (EU) 2016,/797 [2] and Directive (EU)
2016,/798.

6.1.1 | Al approaches related to structural
elements of the railway system

Railway tracks (Rails): In the context of structural elements
and precisely railway tracks [27], established a solution for the
automatic detection of rail surface defects based on deep con-
volutional neural networks (DCNN). Image data for rail surface
defect detection is obtained from automated video recordings
(camera with high frame rate). 22,408 objects (collected image
data) were manually labelled according to six classes: normal,
weld, mild squat, moderate squat, severe squat and joint. Ulti-
mately the set of training examples contains 985 welds, 938

mild squats and smaller insignificant defects, 562 moderate and
severe squats and 755 rail joints. The DCNN are used to rec-
ognize the characteristics of the collected images and therefore
automatically detect rail defects. The study showed that 61.95%
of defects related to weld defects are correctly classified, while
30.97% of actual welds are classified in the normal class.

Also based on convolutional neural networks (CNN), [28]
proposed an approach for inspecting rail surface defects using
deep learning and 3D laser cameras. Several types of rail sur-
face cracks are considered in this study such as cracks caused
by manufacturing defects, welding defects, haitline cracks which
appear on the surface of the rails, defects linked to corruga-
tion in particular defects in railway tie connections, excessive or
unbalanced loads and the presence of rail depressions.

Railway tracks (Ballast): Still in the context of railway tracks
but this time concerning Ballast (crushed stones that are packed
under the sleepers of a railway track), [29] have developed an
expert decision support system for the maintenance of railway
ballast which is based on the joint use of expert systems, Petri
Networks and deep learning, Based on the track maintenance
history (track data), the objective of this study is to identify the
appropriate ballast maintenance action to remedy the problem
of jamming and stone blowing, renewal or absence of interven-
tion. This condition-based maintenance approach was applied
to a railway with ten sections, 2830 states and four actions per
state.

Traction equipment (Pantograph): In order to improve the
operation and maintenance of the Pantograph which is part of
the traction equipment of rolling stock, [30] applied machine
learning to data from the pantograph of an operator’s rolling
stock South African railway. This learning approach based
on automatic classification was used to identify, from a pan-
tograph dataset, potential hazardous events related to train
traction equipment and therefore, understand whether “panto-
graph bounce” occurs due to faulty sensors, faulty pantographs
or faulty infrastructure.

Running gear (Axle): Generally, two types of axle are con-
sidered in rail transport: the classic axle (also called bare axle)
which is composed of two railway wheels and an “axle” and
the bent axle which is also composed of two wheels but with
two independent axes connected by another element, often the
frame of a “bogie” (carriage located under a vehicle on which
the axles and therefore the wheels are fixed) or a locomotive
“chassis”. A railway axle, which rides on the rails allowing the
movement and guidance of the vehicle, plays an important role
in the safety of the train by preventing derailment. Therefore,
predicting “wheelset” degradation is essential for effective and
sustainable maintenance planning, Due to contact forces and
friction with the rails, wheels can become damaged and worn,
changing their profile shape. Thus, the condition of the wheels
generally determines the lifespan of the wheelset and monitor-
ing the level of wheel degradation therefore requires permanent
monitoring of the evolution of the geometric variables involved
in the wheel profile.

In this context, [31] proposed a data-based decision support
system to improve the condition-based maintenance of a rail-
way axle. Maintenance and inspection data carried out on the
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running gear have been collected and represent the Axle degra-
dation records. Several characteristics of the degradation data
were analysed, such as wheelset type, material, position, vehicle,
distance travelled, wheel profile parameters and weather con-
ditions. Statistical analysis methods were used to process this
degradation data. According to the authors, “#he results show that
kilometres since last turn/renewal (race distance) is the variable with the
most influence on axle wear trajectories among all variables analysed and is
statistically significant in each model”.

Connections (Switch system): Track devices installed in a rail-
way infrastructure mainly concern connections (or switches),
crossings (or crossing of tracks), “derailleur” or “stop” cleats,
etc. Ref. [32] proposed an approach for diagnosing faults in the
railway switching system based on case-based reasoning (CBR)
whose objective is to solve a new case (problem without solu-
tion) by recovering similar cases stored in a case database and
adapting them to the new case to be solved. The main steps in
a CBR process are: (a) searching and retrieving the most similar
cases, (b) reusing existing source case knowledge (historical case
base) to solve the new problem, (c) revising the proposed solu-
tion if necessary, and (d) retaining the new solution for solving a
future problem. The implementation of learning based on CBR
requires similarity measures to search for the case most simi-
lar to the problem to be treated. The similarity measure based
on the Fuclidean distance metric is one of the most popular
measures used to measure the similarity of digital data.

Rolling elements (Wheels): Railway wheels are part of the
rolling elements of rolling stock (passenger locomotive or
freight wagon). Two works studied the diagnosis and detec-
tion of faults and anomalies in railway wheels. Ref. [33] used
a fuzzy logic method for the diagnosis of railway wheel defects.
Ref. [0] used algorithms based on the short-term Fourier trans-
form (STFT) and unsupervised learning for the detection of
anomalies in the wheels of a train. STFT was used to extract
the “time-frequency” characteristics of the collected vibra-
tion signal. Long-term and short-term memory neural network
(LSTM)is applied to learn dynamic changes in track geom-
etry data. Four unsupervised learning algorithms were used
and compared to derive five health indices for monitoring the
condition of train wheels: Non-negative matrix factorization
(NMF), one-class support vector machine (OC-SVM), mul-
tilayer perceptron autoencoder (MLP-AE) and convolutional
neural network autoencoder (CNN-AE). The training data con-
sidered in this work is historical data provided by a railway
consulting company and was collected using a fibre Bragg grat-
ing (FBG) sensor system installed on a straight track of a
commuter rail line in Southeast Asia. Finally, the comparison
of the four learning algorithms implemented indicates, accord-
ing to the authors, that the two approaches NMF and MLP-AE
outperformed the other approaches: OC-SVM and CNN-AE.
Indeed, the MLP-AE approach offers better performance in
detecting anomalies in the wheels of a train while the NMF
approach is less expensive in terms of calculation.

Railway tracks and track geometry: In the context of “Struc-
tural equipment/Infrastructure/Railways /Track geometry” and
based on track inspection data from American Class I freight
railway lines, [34] have proposed a railway track geometry

change prediction approach based on a hybrid machine learn-
ing model combining a convolutional neural network (CNN)
and a long-term and short-term memory (LSTM) neural net-
work. The CNN was used to capture the spatial features with the
historical geometric data of different track segments as inputs.
LSTM was applied to learn dynamic changes in track geometry
data. To demonstrate the feasibility of the proposed approach,
the case study was carried out based on inspection data from
approximately 80 miles of American Class I railway tracks. Sev-
eral types of data were used: historical data track geometry,
infrastructure data and operational data such as traffic, speed,
slope and curvature.

Still regarding railway tracks, [35] developed a deep learning
approach for the inspection of railway tracks based on neu-
ral networks and [36] proposed a method of machine learning
for predicting breakdowns on railway tracks for two high-speed
lines in Spain. In [30], it is a learning by back propagation which
brings together: (1) the multilayer perceptron trained with the
BFGS algorithm, (2) the recurrent neural networks of ELMAN
and (3) the support vector regression (SVR). In this context of
multiple learning, we often speak of computational intelligence
(CI) which is traditionally based on the following main pillars:
artificial neural networks, fuzzy systems, evolutionary comput-
ing (or evolutionary computing) and probabilistic methods. In
the context of this application for predicting breakdowns on
high-speed lines in Spain, the authors highlight that ELMAN’s
recurrent neural networks and support vector regression (SVR)
outperform other learning methods and in particular statistical
models. Furthermore, the two high-speed lines have slightly dif-
ferent error rates, which the authors say requires further detailed
study of the data characteristics of the two lines in order to min-
imize the error. Data preprocessing techniques also need to be
further explored to improve the results. Finally, the authors con-
sider that expert knowledge in the railway field may be essential
to complete the data considered in this study.

Rolling stock (locomotive or vehicle): Based on the artifi-
cial neural network (ANN) and particularly the deep belief
network (DBN) and from historical data on the breakdowns
of the Wuhan-Guangzhou TGV (China) from 2011 to 2013,
[37] developed an approach to fault diagnosis of on-board
equipment in high-speed rail vehicles. The equipment included
in this study is: train speed control unit (ATPCU); compact
antenna unit (CAU): beacon transmission module (BTM); radio
transmission module (RTM); speed-position unit (SPU), etc.

Rolling stock (Wagons): If the previous diagnostic
approaches concern locomotives (or vehicles) intended for
passenger transport, [7, 38] have proposed approaches this
time concerning wagons which are intended for the goods (or
freight). Ref. [7] proposed a “digital twin” based on machine
learning to predict the risk of derailment of a freight wagon. As
for [38], they developed a predictive maintenance framework
based on machine learning to assign a health score to railcar
fleets in the United States.

In the context of rail systems, a digital twin is a complex
computerized model that considers the dynamics of trains,
vehicles and tracks, as well as the interaction of wheel-rail
contacts. A standard (non-augmented) train digital twin can
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use measurements from multiple sensors located on board the
train or on the ground (infrastructure) as feedback linked for
example to an automated train control (ATO) system whose
objective is the management of train control commands. In
contrast, an “augmented” digital twin uses the same feedback
as input to a surrogate model which, in turn, uses the sensor
data to estimate the state of the system dynamics, thus enabling
feedback more complex at the ATO which operates the train
control commands. As part of the work of [7], this is an aug-
mented digital twin for railway applications (ADTR), envisaged
to work with an ATO. To predict the derailment of a wagon,
several input data were considered such as the composition
of the train, the speed of the vehicle, the curve radius and the
lateral coupling forces in real time. The derailment index was
calculated from the results of the multi-body wagon simulation
(MBS) using wheel unloading (WU) and the ratio between
vertical and lateral forces for each wheel set (L/V).

Ref. [38] proposed a machine learning-based predictive main-
tenance framework to assign a health score to railcar fleets in the
United States for decision making, Three Al approaches were
used: (1) classification learning (Random Forest and decision
trees), (2) principal component analysis (PCA) and (3) expert
system. The random forest model is used to predict whether or
not a railcar component will need to be replaced.

PCA (principal component analysis) algorithm is applied
to improve the accuracy of fault diagnosis and finally the
expert system to improve railcar maintenance planning deci-
sions. Historical repair and inspection data was collected for
four components of a specific railcar type from 1986 to 2020.
The fleet selected for the study contains approximately 11,000
active railcars. The data from this maintenance support sys-
tem considers the age of the wagons, the geographic loading
history, the kilometres travelled, the replacement history of
the components and the condition of the components (new
or refurbished). Based on the identification of critical compo-
nents of the system and their failure probabilities, the supervised
learning model provides a measure of the state of health (rate)
associated with each wagon.

Railway crossing: Based on feedback, [20] proposed a con-
ceptual framework called “Hazard Map” to understand the
dangers linked to railway accidents at level crossings. For this
purpose, the authors used the open source natural language
processing model “BERTopic” for the automated analysis
of textual data from the Rail Accident Investigation Branch
(RAIB), the Australian Transport Safety Bureau (ATSB), the
National Transportation Safety Board (NTSB Rail Accident
Reports) and the Transportation Safety Board of Canada (TSB).

6.1.2 | Al approaches related to functional
elements of the rail system

Telematics applications (14)

Two studies related to the functional elements of the railway
system and mote precisely telematics applications (AT) will be
presented later in the context of ontology-based Al approaches.
The first, which falls within the framework of AT_Traveler, con-

cerns the personalization of the content of user interfaces [39]
and the second, which falls within the framework of AT_Freight
(goods) carries on personalized route search based on CBR [40].

Operation and traffic management

Remember that “traffic operation and management” is one of
the functional elements of the European rail system. Five types
of Al applications are distinguished in this paragraph:

- Operation and management of traffic concerning “Passenger
locomotives;”

- Operation and management of traffic concerning “freight
wagons;”

- Operation and management of traffic concerning the
“Metro;”

- Operation and traffic management concerning the European
rail traffic management system: “ERTMS/ETCS;”

- Operation and traffic management regarding “train driving.”

Two studies were selected which are closely linked to the
functional subsystem “Traffic Operation and Management™: (1)
an expert system based on fuzzy logic for rail traffic control
[41] and (2) the evaluation derailment accident risks based on
the ensemble classification method [42]. The article by [41]
describes an assistance system intended for use in railway opera-
tion control systems. It also contains expert knowledge of fuzzy
rules of the “IF-THEN” type. Hundred rules were collected
such as: “when the train delay is significant...” or “when the
connection is important for many travellers...”, So...

The study by [42] on the assessment of train derailment acci-
dent risks is largely based on the use of artificial neural networks
(ANN) and the ensemble classification method. Even if the
work of [43] fits well into the framework of traffic operation and
management, it will be developed with ontology-based methods
later. This study aims at the ontological harmonization of infor-
mation systems for rail freight transport (wagon) in Ukraine as
opposed to the two previous studies which concern passenger
locomotives [41, 42].

Based on historical rail accident reports reported by the
National Transportation Safety Board, [44] proposed a case-
based reasoning (CBR) approach for the analysis of risks related
to the operation of the Metro. In this research, three main
concepts relating to safety were considered by the authors: “pre-

2 <

cursors of accidents,” “safety risk” and “safety measures.” The
basic idea is that subway systems with similar precursors tend
to generate similar accidents. The dangerous events and safety
measures produced by each historical case are recorded in a case
database called “source cases” in CBR. Based on similarity mea-
sures between precursors and historical accident cases (source
cases), the objective is to recover and possibly adapt similar acci-
dent cases to a new case (called target case in CBR) of which we
seek the solution to the problem.

Still in the context of traffic operation and management, [45]
also presented an approach to analysing the causes of metro
operating accidents in China based on the a priori algorithm
which is based on the search for association rules as well as
on the theory of complex networks which is based on the
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theory of graphs which are composed of nodes (or vertices)
representing objects, interconnected by links (or edges). Recall
that to define the properties of complex networks, we gener-
ally use three important concepts: the distribution of degrees
(or probabilistic distribution), the average length of the paths,
and the clustering coefficient (or coefficient of agglomeration
or grouping or of aggregation) so the objective is to measute
the grouping of nodes in a network. The clustering coefficient
is the probability that two nodes are connected knowing that
they have a neighbour in common.

In the work of [45], a database of G608 cases of metro
operating accidents was developed. The proposed model was
built based on 13 types of operational accidents, 29 causes
and 84 relationships. The 13 types of metro accidents include
collisions, derailments, fires, explosions, poisoning and suf-
focation, passengers falling on the rails, train doors closing,
people being struck, stampede, flooding, operating delay, etc.
To explore the safety risks of metro operation and provide
suggestions for improving safety, five main steps were consid-
ered by the authors: (1) classification of metro accidents into 13
types, (2) search for causal factors based on historical accident
cases and the experience of experts, (3) searches for poten-
tial association rules between the causal factors of accidents by
applying the Apriori algorithm, (4) construction of the causal
network of operating accidents of the metro based on the the-
ory of complex networks (graph theory), (5) analyse topological
characteristics and vulnerability linked to operational safety.

Two studies were selected which focus on the European rail
traffic management system: “ERTMS/ETCS:” The develop-
ment of an ontology to model ERTMS/ETCS [46] and the
development of an ontology that considers the temporal aspect
for ERTMS/ETCS [47].

A machine knowledge learning approach using CBR for auto-
matic train driving was proposed in [48]. The initial case base
(or source cases) contains 3624 cases collected from scenatios
related to real train driving, To characterize a case, the follow-
ing attributes were considered: applied/executed action (EAC),
rail geometry (RG), initial kilometre (IKM), number of locomo-
tives (NL), number of wagons (NC), initial speed in km/h (IS),
final speed (FS), maximum speed in km/h (MS), ramp percent-
age (%R) and total displacement (TD) in kilometres. Thus, each
source case is described by the set of these attributes describing
a driving problem with its own solution such as the acceleration
point that the train driver must apply to the locomotive and the
distance to maintain this defined point.

The objective of this research aims to reuse and/or adapt
past experiences by helping the train driver to perform more
efficient driving. To this end, two major steps are necessary. The
first consists of recovering the cases most similar to the problem
studied by using similarity measures; here the Euclidean distance
was used. The second step focuses on adapting the most similar
cases to the new situation. The authors use the 50 most simi-
lar cases as input to the adaptation process which is based on
a genetic algorithm (GA) using certain driving rules, for exam-
ple: the speed of the train after applying the new action must be
less than the maximum authorized speed. Thus, the adaptation
process provides an optimized solution to the new problem.

Care/ Maintenance

Several works based on Al and ontologies have been developed
to improve the upkeep or maintenance of railway rolling stock
[38, 49-55]

Li et al, [49] developed a machine learning approach for
predictive maintenance and precisely to predict failures and
alarms of critical railcar components. This study is based on
the use of principal component analysis (PCA), support vector
machine (SVM), linear classifier, decision tree and classification
rules. Remember that support vector machines (SVM) are based
on the use of machine learning algorithms to analyse data for
classification and regression analysis. A linear classifier is a pat-
ticular type of statistical classifier whose objective is to encrypt
a decision by linear combination of samples which have sim-
ilar properties, measured on observations. From the work of
Quinlan in 1993, a decision tree is a decision support tool rep-
resenting a set of choices in the graphic form of a tree and the
possible decisions ate located at the “leaves” of the tree. From
the decision tree, we can generate classification rules. When
we have a large dataset containing several variables, we seek
not only to discover the most important variables, but also to
reduce this dataset in order to represent it in a simple way. This
is the main objective of principal component analysis (PCA)
which constitutes one of the most frequently used methods of
multivariate data analysis. It is often considered a data mining
method because it makes it easy to extract information from
large data sets. The data used as part of the work of [49] relat-
ing to predictive maintenance of wagons comes from historical
data from detectors, failures, maintenance actions, inspection
schedule, train type and weather data. The development of the
decision support model includes five steps: feature extraction,
dimension reduction, model training, confidence prediction and
estimation, and finally rule simplification. Rules learned auto-
matically from historical data can predict which railcars are
most likely to have problems. Ref. [38] uses an expert system,
machine learning (random forests and decision trees) and prin-
cipal component analysis (PCA) to improve North American
railcar maintenance planning decisions. Repair and inspection
data were collected for four components of a specific railcar
type from 1986 to 2020 from North American Railcar Owner
(NARO) and the fleet selected for this study contains approx-
imately 11,000 active railcars Ref. [50] proposed a data-driven
prioritization framework to mitigate the impact of maintenance
on passengers during the operation of metro lines in Italy. Sev-
eral Al approaches have been applied: the Markov chain Monte
Carlo technique and machine learning, in particular the one-
class support vector machine. Indeed, the proposed approach
includes three steps:

- The Markov chain Monte Catlo approach to assess the crit-
icality of assets based on the impact of their failure on
passengers;

- A machine learning algorithm (one-class support vector
machine) to group assets (i.e. functional, low degraded,
medium degraded, highly degraded) based on their condition,
based on data collected;

- A ranking algorithm is used to prioritize interventions.
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A real case study was used regarding the M5 metro line
in the Italian city of Milan (fully automated line). Passenger
transportation demand data is collected by different systems,
such as automated passenger counting (APC) systems and auto-
mated fare collection (AFC). Maintenance data includes both
preventive and corrective maintenance interventions that are
scheduled either immediately after the occurrence of a fault or
during normal train operation. During this study, several cat-
egories of data and information were considered concerning
track circuits, switches, platform doors, signalling equipment
rooms and track antennas. The assessment of the condition of
the assets (functional, slightly degraded, moderately degraded,
severely degraded) was carried out using logs including several
records.

The work of [51-54] is based in particular on the devel-
opment of ontologies: Ref. [52] use the ontology to integrate
railway condition monitoring data; ref. [53] proposed an
ontology-based modelling approach for the predictive mainte-
nance of railway subsystems. The ontology developed by [54] is
based on the explicit and tacit knowledge of experts in the rail-
way domain. Finally, [51] proposed an approach to support the
management of rolling stock maintenance with a virtual depot
based on ontology

Finally, a literature review on the applications of machine
learning to railway maintenance is presented in [55].

Safety in railway tunnels

Recalling that certain learning methods improve the predic-
tion of elaborate models but at the expense of a difficulty
of interpretation and explanation in certain approaches, even
the simplest ones, such as decision trees and linear regression
models (least squares method), maximum likelihood model or
even Bayesian inference) which generally seek to establish a lin-
ear relationship between a variable, called explained, and one
or more variables, called explanatory (or predictive). Thus, in
machine learning, the data is used to first train the algorithm
on known (or labelled) data sets, then the learned model is
used to predict unknown (unlabelled) values. SHAP (SHapley
Additive exPlanations) is a technique for explaining and making
understandable to humans the predictions of machine learning
models. It is based on “Shapley” values, which use game the-
ory whose objective is to quantify the predictive power of a
model based on these characteristics. It is therefore statistical
learning as opposed to symbolic learning. Thus interpretability,
the objective of which is to improve a human’s understanding
of a decision, today constitutes an important area of research in
artificial intelligence.

In the field of railway tunnel safety, [4] proposed an interac-
tive and explainable AT approach for railway tunnel construction
which includes three Al techniques: machine learning, finite ele-
ments (FEM) and the Shapley Additive ExPlanations (SHAP)
technique.

The explainable machine learning approach is based on build-
ing information modelling (BIM) with the aim of improving
safety dutring tunnel construction and in particular mitigat-
ing the damage caused by the tunnelling of the Urban Metro.
According to the authors, “this approach allows designers to matke

Judgments abont the most unfavourable ground conditions with the least
accessible information about uncertainties when digging a tunnel”. The
proposed optimization approach was tested and simulated using
pipeline (work) models based on simulation data from the finite
element method and the SHAP technique.

However, the finite element method, which is generally based
on partial differential equations as well as several calculation
hypotheses, requires a good understanding of the different
mathematical steps used during the approximation in order to
estimate the error of the numerical model. in relation to the
exact solution of the mathematical problem. Furthermore, the
established numerical model only provides results relating to
the information contained in the mathematical model that arises
from the modelling assumptions.

6.1.3 | Al approaches related to both structural
and functional elements of the rail system

In accordance with the regulations in particular Directive (EU)
2016/797 [2] of 11 May 2016 relating to the interoperability of
the railway system within the European Union, the preceding
paragraphs have classified Al approaches in the railway sector
by distinguishing between functional and structural elements.
However, certain Al applications, for example the manage-
ment of route compatibility between rolling stock (vehicle) and
infrastructure, fall within the framework of both structural and
functionalities of the rail system. The approaches studied are
based on the use of ontologies and knowledge graphs. Five
ontology-based Al approaches whose objective is the man-
agement of route compatibility: [56—60]. Involving both the
structural and functional elements of the railway system, these
approaches will be presented in the paragraph dedicated to
methods based on ontology and knowledge graph.

6.1.4 | Al approaches related to rail safety

Remember that the list of safety requitements from Directive
(EU) 2016,/798 concerns essential requirements, safety-related
requirements, national reference values (NRV), common safety
objectives (CSO), common safety indicators (CSI), the safety
certificate, the safety approval, the safety management system
(SMS), the common safety methods (CSM) for risk assessment,
the realization of the CSOs, the SMS control, monitoring, safety
integration, safety-critical (or essential) tasks, change manage-
ment (modifications) and accident and incident investigation.
Unfortunately, the Al applications analysed do not actually
and explicitly address these safety requirements necessaty for
subsystem design, development, SMS risk management, safety
control and monitoring the safety of the European rail sys-
tem. However, several applications can be classified as part of
the feedback process and therefore after the operation of the
system. We have classified these Al applications into two cat-
egories: 1) analysis of railway accidents based on znvestigation
reports and 2) analysis of railway accidents based on manufacturer

Sfiles.
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Apnalysis of railway accidents based on investigation reports
This paragraph presents the following works: [5, 49, 61-606] and
Awad et al. [67].

Ref. [61] used case-based reasoning (CBR) and rule-based
reasoning (RBR) for railway incident prevention. Ref. [62]
applied data mining techniques and precisely association rules
(Clementine 12. software) to analyse data related to Iranian
Railway Accidents (RAI). This research was carried out using
6500 accident records from an accident database from 1996 to
2005. The relationships discovered between the most common
accident factors such as human errors help prevent the repro-
duction of some accidents in the future. This study made it
possible, according to the authors, to define safety rules and reg-
ulations in three areas linked to human resources, railway tracks
and wagons.

The text mining approach using random forests and latent
Dirichlet allocation (LDA) were implemented by Brown [66] to
contribute to the analysis of railway accidents. Random forests
(or forests of decision trees) are part of decision tree learning
techniques which are decision support tools whose objective
is to represent different possible decisions in the form of
a graphical tree. As for the unsupervised learning algorithm
(Latent Dirichlet Allocation or Latent Dirichlet Allocation:
LDA), which is part of natural language processing (NLP) tech-
niques, it constitutes a probabilistic model making it possible to
explain sets of observations using data similarity measures.

The objective of Brown’s work (2016) aims to use these data
mining techniques in the form of accident narrative texts with
a view to automatically discovering the characteristics and par-
ticularities of rail accidents in the United States. The data used
comes from accidents over the 11 years from 2001 to 2012
archived in annual accident reports.

Based on around a hundred urban rail transportation accident
reports collected from the National Work Safety Administra-
tion, [49] also proposed a text mining method for analysis
of railway accident reports and thus identify participants and
safety risk factors. The “K-means” classification algorithm of
the ROST software was used to establish the descriptive model
of accidents making it possible to identify and classify keywords
such as, for example, underground pipeline, elimination of hid-
den dangers, protection of the enclosure, violation of work
regulations, hydro geological condition, construction monitor-
ing, timely communication, safety measures, personnel training,
construction management plan, etc.

Still within the framework of data exploration and in order
to reveal the presence of informative concepts on causes and
failures such as human or technical causes, [63] studied the
potential interest of natural language processing (NLP) for the
analysis of UK rail accident data from rail accident and incident
investigation reports.

To compare approaches to exploring and mining texts relat-
ing to railway accidents from investigation reports in the United
States, ref. [5] used two techniques: latent semantic analysis
(LSA) and latent Dirichlet allocation (LDA). LSA, also called
latent semantic indexing (natural language processing tech-
nique), uses a matrix describing the occurrence of certain terms

(words) in documents. The occurrence matrix is then trans-
formed to find the relationships between terms and concepts
and between these concepts and the analysed documents. LDA,
for its part, also from the field of natural language process-
ing, is a probabilistic model making it possible to explain sets
of observations based on measurements of data similarities.
Finally, the accidents identified are shunting accidents, accidents
in marshalling yards and accidents at level crossings.

Still within the framework of data mining techniques and with
a view to predicting the risks of railway derailment accidents,
[64] used an ensemble classifier which combines the predic-
tion results of each classifier by a weighted average method.
Three data mining techniques were used: artificial neural net-
works (ANN), the “Naive Bayes” classifier, and the decision
tree. Thus, three probabilistic prediction models were devel-
oped. To make the final decision regarding derailment accident
risk assessment, the output of each model is given a weighting
based on its prediction accuracy using a genetic algorithm (GA).
To validate the effectiveness of the model, this approach was
applied to data from the Islamic Republic of Iran (RAI) railway.
The objective of this study is to discover significant patterns and
trends among Iranian railway derailment accident data

Text mining is also used in [65] to discover the causes of acci-
dents from investigation reports. The implemented approach
uses three deep learning techniques: convolutional neural net-
works (CNN), recurrent neural networks (RNN) and deep
neural networks (DNN). The data comes from Federal Rail-
road Administration (FRA) reports and collected over 17 years
(2001-2017). Thus 40,164 reports were examined with five cat-
egories of major accidents. According to the authors, the ten
main causes identified show that the deep learning approaches
applied make it possible to correctly classify the cause of a
railway accident.

To predict the annual number of injuries in urban rail trans-
port [67], also used artificial neural networks. In this study, two
models were developed. Using a dataset comprising 22 URT
systems from the years 2010 to 2019, the first model aims to
examine the relationship between safety incidents and the injury
rate per million passenger trips. From a second dataset com-
prising 31 URT systems from 2013 to 2019, the second model
aims to examine the relationships between the operational char-
acteristics of the system and the number of injuries. Using the
parameters estimated in the second model, it was possible to
develop a formula for predicting the annual number of injuries.
Thus, these two models make it possible to identify the main
railway incidents and to understand the relationships between
the different operational characteristics of the system and its
safety performance. This approach, based on artificial neural
networks, was applied to a set of data from 31 railway systems.
The data comes from the Community of Metros (COMET),
a global urban rail benchmarking group run by the Transport
Strategy Center (TSC) at Imperial College London.

Analysis of railway accidents based on manufacturer files
Previous approaches that leverage rail accident data from rail
accident and incident investigation reports often use data
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mining (or text mining) techniques to analyse accident-related
data, discover the causes of accidents, predict the risks of
railway accidents, reveal the presence of informative concepts
on the causes of accidents and incidents, identify the actors and
risk factors for safety, discover relationships between the factors
of common accidents such as human errors, distinguishing the
characteristics and particularities of accidents, propetly classi-
fying the cause of an accident, discovering significant patterns
and trends in accident data or even predicting the annual num-
ber of transportation injuries railway. Other approaches use
not investigation reports but rather the files of manufacturers
and rail safety experts with a view to improving rail safety.
However, in both cases, the data comes from feedback. The
first approaches use the feedback contained in the investigation
reports and in this case the rail system is already operational
and has received its operating authorization from the safety
authorities. On the contrary, in the case of safety analyses which
is based on the files of system designers and the know-how
of safety experts, the objective of the safety studies relates to
the design and development of the system before it is put into
service. The work presented in [68—73] is part of this second
orientation. More precisely, these ate analysing of the dangers
linked to critical software and functional safety analyses which
are integrated from the specification and design phases of the
system, the objective of which is to prevent the occurrence
of railway accidents and the seriousness of the damage caused
well before the operation of the system. In order to guarantee
an acceptable level of risk with regard to man, the system
and its environment, railway safety experts use several safety
analysis methods: Preliminary risk analysis (PHA), functional
safety analysis (FSA), failure modes, effects and criticality
analysis ('MEC), software error effects analysis (SEEA), fault
tree analysis (FTA), etc. The PHA aims to identify potential
accidents linked to the transport system and its interfaces in
order to evaluate and propose solutions to eliminate reduce or
control them. The FSA focuses on justifying that the system
design architecture is safe against potential accidents identified
by the PHA and thetefore ensuting that all safety provisions ate
considered to cover potential hazards or accidents. Such analy-
ses provide (low-level) safety criteria for system design and the
creation of hardware and software safety equipment. They also
impose safety criteria linked to the dimensioning, operation and
maintenance of the rail system. An FSA can highlight danger-
ous scenarios that require improvement and rectification in the
specification and design phases of the transportation system.
Hadj—Mabrouk work falls within the framework of two safety
analyses: Functional safety analysis (FSA) and software error
effects analysis (SEEA). In order to rationalize the traditional
FSA method, improve the quality of accident risk analyses and
therefore help experts to judge the completeness of an FSA
and the adequacy of the protection measures considered, the
proposed approach is based on several aspects of Al and in
particular on the use of the following techniques [68, 70, 71]:

- A knowledge acquisition phase to gather data on functional
safety in the form of potential accident scenarios from the

files of manufacturers of the rail transport system and the
experience and know-how of experts in the field of safety;

- A learning phase by classification of concepts to group
accident scenarios into homogeneous classes, for example
accidents linked to collisions or train derailments;

- A rule-based machine learning (RBML) phase to identify,
from the basis of historical scenarios, the relevant safety rules,
often difficult to extract manually from safety experts;

- A knowledge-based system (or expert system) to which the
production rules, previously deduced by machine learning,
are transferred to build the knowledge base of the func-
tional safety assessment tool (FSA) and consequently infer
and deduce, by forward chaining, potential dangers not
considered in the rail system design files.

In the context of software safety analysis, [69] proposed a
decision support system based on case-based reasoning (CBR)
to help experts in safety to judge the completeness and consis-
tency of the analysis of the effects of software errors (Software
Error Effect Analysis—SEEA). The objective of this study is
to exploit a case base consisting of historical SEEA (source
case), carried out on already validated and certified software,
in order to explain or evaluate a new case of SEEA for a
new software safety (target case) and consequently help and
stimulate the imagination of safety experts in the search for
new critical situations contrary to safety which require the
implementation of barriers or safety instructions and adequate
preventive measures. To demonstrate the feasibility of the pro-
posed approach, the author presented an application example
based on 224 SEEA cases from the knowledge acquisition
phase of rail transport systems already certified and put into
service in France.

6.2 | AI approach based on ontology and
knowledge graphs in rail transport

Several “classic” Al techniques (presented above) are imple-
mented in particular machine learning (supervised, semi-
supervised, unsupervised), deep learning such as artificial neural
networks (ANN), natural language processing (NLP), case-
based reasoning (CBR). However, the lack of interoperability
between Al tools often based on different modes of knowledge
representation, the difficulty of structuring knowledge in a field,
the insufficiency of these approaches to bring together and cap-
italize on knowledge bases and the inability to share and reuse
this knowledge have motivated and directed research towards
the development of new approaches based on ontology and
knowledge graphs. These new approaches, based essentially on
a formal representation of knowledge and considering the intet-
operability and reusability of this knowledge, have experienced
significant growth in recent years in the railway sector. This
study shows that ontology and knowledge graphs will certainly
have a greater impact on the field of rail transport safety and in
particular on the management and prevention of rail accident
risks.
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6.2.1 | Ontology-based approaches

Data integration in the railway domain based on ontology
was proposed in [560]. The authors developed an ontology-
based methodological framework called “Network Statement
Checker” which draws on an infrastructure database describing
the railway network. This ontology integrates network declara-
tions from different countries into a single information model
to determine whether a given route can be used, from a com-
patibility perspective. The user of the tool can select a route on
the European railway map and find information on the char-
acteristics of each track section of a route. The results of this
study were evaluated using a demonstrator developed as part of
a European research project called InteGRail (Intelligent Inte-
gration of Railway Systems [74]). Indeed, to resolve the problem
of compatibility of European rail routes and in the context of
Directive (EU) 2016/797 [2] relating to the interoperability of
the rail system of the European Union, the European project
InteGRail was financed by the Commission European Union
which brings together 39 stakeholders representing the main
players in the railway industry. InteGRail aimed to strengthen
the sharing of information between infrastructure managers
(IM) and railway undertakings (RU) and is based in particu-
lar on the “Network Statement Checker” ontology presented
above.

Rail interoperability often refers to the ability of the rail sys-
tem to operate trains safely and seamlessly on different rail
networks located in different Member States. Under Commis-
sion Implementing Regulation (EU) 2019/777 of 16 May 2019
on common specifications for the railway infrastructure register,
the European Infrastructure Register (RINF) makes it possible
to define the characteristics of the railway network European by
providing the main parameters to be used to check the technical
compatibility between the vehicle and the route.

Based on the requirements linked to the European Infras-
tructure Register (RINF) which are imposed by Directive (EU)
2016/797 [2] of 11 May 2016 relating to the interoperability of
the railway system within the European Union, [57] proposed a
tool based on the ontology called “RaCoOn” making it possi-
ble to give for example the (approximate) location of the train
based on the known positions of the track circuit. Infrastructure
and location data are stored and used as the basis for modelling
train movements. Track circuits were added manually, using
simulated track circuit distances. Finally, a demonstrator for val-
idating this principle was presented, based on a new ontology
of the railway domain created at the University of Birmingham.
In the same context and in the field of railway infrastructure,
[75] presented the RAISO approach (RAilway Infrastructures
and Signalling Ontology) which is based on a railway signalling
ontology making it possible to formalize the route of a railway
network including the position of track elements (signals, train
detector etc.). Ref. [76] also developed a railway infrastructure
topology ontology to represent infrastructure characteristics in
accordance with domain standards. In the context of urban
freight transport systems, [40] proposed a personalized route
search approach based on both ontology and case-based reason-
ing (CBR). The route retrieval mechanism uses CBR to extract
city traffic information and provide the user with an optimal

route. In the field of railway control, command and signalling,
Ref. [40] proposed an ontology with a view to modelling the
European rail traffic management system (ERTMS) and in par-
ticular the ET'CS (European Train Control System). Ref. [47]
also proposed a railway ontology to take into consideration the
temporal aspect in the ERTMS/ETCS ontology. To consider
user needs, [39] proposed a transport ontology allowing the pet-
sonalization of user interface content. The concepts used are
for example Calendar, City, Connection link, Connection point,
Interchange hub, Journey, Operator, Railway element, Railway
junction, Road element, Crossing, Stopping point. To support
performance monitoring in public transport systems, [77] devel-
oped an approach based on an ontological representation. Key
performance indicators (KPIs) considered include, for exam-
ple, actual dwell time, scheduled dwell time, advanced dwell
time and average lead time/advance. Ref. [78] established an
ontology of railway equipment malfunctions based on terminol-
ogy (extracted from standards) such as dangers, causes, effects
and safety measures. The idea of considering dysfunctions is
very important but requires more modelling; This is a high-level
ontology that requires the in-depth instantiation of knowledge
from the railway safety domain. The work of [43] aims at the
ontological harmonization of railway freight transport informa-
tion systems in Ukraine and in particular the automated freight
traffic control system.

In the field of railway accidents, [79] proposed an approach
to construct ontologies of the railway domain and in particular
processes accident data relating to the derailment of a train, as
for [80, 81] their approach to helping model railway accident
scenarios is based on two complementary ontologies: (1) a
generic ontology which brings together high-level concepts
involved in railway safety such as context, dangerous elements,
events dangerous, the causes of the accident and (2) an ontol-
ogy of the domain centred on the railway system, the human
operator and the environment. The concepts involved in the
domain ontology are specializations of other concepts of the
generic ontology. This is a feasibility study focused on rail
collisions with a view to better formalizing and structuring
the knowledge involved in rail accident scenarios. Still in the
context of modelling railway accident scenarios, [82] developed
an approach based jointly on ontology and machine learning
whose objective is the prevention of potential accidents. The
proposed example of ontology formalizes accident scenarios
according to four dimensions: (1) symptoms (general context
of the scenario, potential accidents, level of risk); (2) causes
(system, human factors, environment, and interactions); (3)
potential dangers and (4) safety measures adopted (protective
measures and preventive measures).

In the field of railway maintenance, several works based on
ontology have been developed. Ref. [52] used the ontology
to integrate railway condition monitoring data; [53] developed
an ontology-based modelling approach to perform predictive
maintenance operations on railway subsystems; [54] developed
several conceptual models based on ontologies to improve
railway maintenance. By exploring explicit and tacit knowl-
edge from domain experts, [83] also developed ontology to
manage railway maintenance. Finally, [51] proposed an approach
to support the management of rolling stock maintenance with a
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virtual depot based on ontology. In the context of autonomous
driving, [84] proposed the ontology called ATMO intended for
autonomous trains.

Considering the importance of ontologies in the transporta-
tion sector, [85] presented a survey of existing ontologies in the
field of land transportation by examining several characteristics
of the developed ontologies such as precision, generality, gran-
ularity, the competence. Several ontologies are examined in this
study which focuses mainly on road safety:

- Road accident ontology to capture accidents and their
relevant information;

- Road traffic management ontology to provide decision
support to drivers;

- Transport ontology for personalizing information for trav-
ellers (presented above);

- Ontology of transport disruptions;

- iCity ontology to capture data collected and generated on the
urban system;

- Network statement checker ontology to check the feasibility
of running a train on a given track (presented above).

According to [85], data in land transportation comes from
different organizations, sensors, surveys and is varied, complex
and published in different formats, with different granulari-
ties and with different and sometimes ambiguous properties.
There is no single ontology covering all concepts relevant
to transportation research. No single ontology captures the
entire high-level transportation taxonomy. Ref. [86] carried
out an inventory of systems engineering based on ontolo-
gies, considering in particular product systems (concurrent
engineering), service systems, business systems and the I1SO
standard /IEC/IEEE 15288. The authors provide important
insights related to systems engineering by successively examin-
ing the knowledge areas supported, the contribution of existing
ontologies and the techniques adopted. Emphasis is placed
on the main advantages of ontology in terms of interoper-
ability, communication, explicitness, reusability of knowledge,
homogeneous terminology to eliminate inconsistencies, unified
vocabulary, controlled semantics, common understanding of a
domain and reasoning on logical axioms [86].

Ontologies for the harmonization of risk management standards

The objective of the work of [87] aims at the harmoniza-
tion of standards, in particular the ISO 27001 and ISO 20000
standards. This study is essentially based on the implementa-
tion of an ontology providing a vocabulary, terms, concepts
and specialized relationships in harmonizing multiple models.
The objective is to eliminate inconsistencies, confusion and
terminological conflicts at the different hierarchical levels and
therefore propose precise definitions, a simple representation
of processes and a uniform and formal vocabulary. This arti-
cle describes an ontology that provides consistent terminology
to support the harmonization of multiple models. In this same
context of harmonization of standards, [88] proposed an ontol-
ogy to support the implementation of ISO standards relating
to risk management with a view to facilitating the choice of

risk management techniques most approptiate to the needs
of a specific risk management activity. The objective of this
ontology is to support the implementation of ISO standards
on hazard identification, analysis and risk assessment. For this
purpose, several ISO standards were examined: ISO 31000
(Risk management — Principles and guidelines), ISO 31010
(Risk management — Risk assessment techniques) and ISO 73
(Risk management — Vocabulary). Using the “Protégé” tool, the
authors have developed an ontology called “OntologyRATIS”
which brings together the basic concepts extracted from the
ISO 31010 document. In order to facilitate the choice of risk
management techniques best suited to the needs, the ontology
can be questioned through general questions, such as: “What
methods are used for risk identification?” For a risk analy-
sis? For the evaluation? Which methods provide quantitative
results? Or qualitative? According to [89], the semantics of
terms used in international standards (ISO) can often be con-
tradictory, or at best misaligned, between pairs of standards
with similar objectives. The authors showed how conceptual
modelling and ontology engineering can be effective in recon-
ciling variation in disparate standards, particulatly engineering
standards. The objective is to study the potential usefulness
of ontologies for streamlining the suite of international soft-
ware engineering standards. In this context of harmonization
of ISO standards, the authors identified five ateas in which
ontologies could be useful: (1) the definitional area often called
fundamental ontologies or higher-level ontologies; (2) the mod-
elling domain; and (3) the domain of practice. Building on
the work of [89, 90], a project was initiated within the frame-
work of ISO/IEC, the objective of which is to provide a
shared ontology for SC7 standards. According to the authors,
software engineeting standards often use different underlying
metamodels and ontologies, which sometimes differ from one
standard to another. To this end, the harmonization of these
standards through the use of domain ontology was created from
existing ISO/IEC standards, in particular ISO/IEC 24744 and
24765 which is based in particular on the ontology of defini-
tional elements (DEO) and the configured definitional ontology
(CDO).

6.2.2 | Approaches based on knowledge graphs

In recent years, several works focused on knowledge graphs
have been developed to improve the safety of rail transport.
Based on railway accident investigation reports (published on
the UK RAIB website), [91] proposed a knowledge graph-based
approach to explore the causes of railway operational accidents.
In the framework of railway accident causality networks, nodes
represent accidents and/or their causal factors, for example,
hazards and the edges connecting the nodes represent the rela-
tionships between the nodes. In the field of maintenance of
railway rolling stock and based on the fault tree method [92] pro-
posed an approach to construct a knowledge graph with a view
to assisting the maintenance technician maintenance in its task
of researching the causes and remedies for failures (or break-
downs) of rolling stock. Based on “FAR” accident data from
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American railways, [93] proposed a knowledge graph based on
ontology with a view to identifying, preventing and control-
ling the main points of risk as well as the risk paths of railway
fire accidents. The study proposed by [94] concerns the devel-
opment of a knowledge graph with a view to modelling the
correlations between the dangers linked to rail accidents in the
United Kingdom covering a decade. In the context of the con-
struction of railway bridges, [95] developed a method for the
dynamic updating of a knowledge graph based on multi-source
data in the bridge construction process. The authors propose
a scientific basis necessary for bridge management and thus
help to improve the level of management of bridge comput-
erization. To prevent railway operating accidents, [96] proposed
an interesting hazard prediction approach based on knowledge
graphs. This approach to modelling railway operating acci-
dents called ROAKG made it possible to identify the main
lessons:

- Missing or late deceleration applied by a train driver;

- Error of assessment of the current dangerous situation;

- Deterioration or damage to rolling stock including bogies and
wheels;

- Failure of a signalling system or equipment.

Several other approaches to preventing railway dangers and
accidents are presented in [96] in particular the distribution
of freight rail accidents in Canada from 1995 to 2015 accord-
ing to fatigue, the distribution of accidents at railway crossings
level in the United States between 2009 and 2014, the distri-
bution of the severity of railway accidents in the United States
from 2000 to 2016 according to the types of accidents, the
study of the frequency of fatal accidents according to differ-
ent types of level crossings, the evaluation of the frequency
of freight train derailments, the study of the frequency of 407
accidents/incidents which led to the most important cause,
namely human error, the study of the relationships between
human errors and types of railway accidents. In accordance with
European regulations on the interoperability of European rail
systems, it is mandatory to check the compatibility of routes
between the European rail network managed by infrastructure
managers and the vehicles for which the railway undertakings
are responsible. In 2020, and in order to check the compatibility
of routes, the European Union Agency for Railways (Agency)
developed a knowledge graph which is based in particular on
data from two European registers: the European Register of
infrastructures (RINF) and the European Register of Autho-
rized Type Vehicles (ERATYV). The knowledge graph covers 27
European countries and describes more than 2000 vehicle types,
270,000 track segments and 50,000 stations [60]. According to
[58], the verification of route compatibility is based in partic-
ular on: (i) An ontology of the railway infrastructure and the
types of authorized vehicles, (i) a knowledge graph describing
the railway infrastructure European; (iii) a system architecture
for use case development; and (iv) an open source, native RDF
(Resource Description Framework) web application to support
route compatibility checks. Ref. [59] also proposed a knowledge
graph for checking the compatibility of routes. The objective is
to exploit the terminological harmonization achieved in railway

legal documents by developing a reference vocabulary based
on a reusable knowledge graph that can be used by railway
stakeholders and thus improve the interoperability of railway
data. The interest and importance of knowledge graphs as tools
for explainable machine learning are studied through a detailed
investigation in [97]. The need to improve interpretability and
explainability in machine learning systems and in particular
deep learning, often considered as black boxes that are diffi-
cult to verify and interpret, has directed researchers towards
the development of approaches, techniques and tools allow-
ing explainable learning, According to the authors, knowledge
graphs, which naturally provide basic domain knowledge in a
machine-readable format, could be integrated into explainable
machine learning approaches to provide meaningful explana-
tions and thus improve the interpretability and reliability from
the user’s point of view. Indeed, semantic approaches and sym-
bolic representations in the form of ontologies and knowledge
graphs make it possible to structure, represent and capture
knowledge and data in the domain.

7 | SUMMARY OF AI APPLICATIONS IN
RAIL TRANSPORT AND CLASSIFICATION
ACCORDING TO EUROPEAN
REGULATIONS

This bibliographic study presented an overview (which does
not claim to be exhaustive) of Al applications involved in the
rail transport sector with a particular emphasis on approaches
related to rail safety. To this end, several summaries have been

proposed:

1. List of subsystems, equipment and constituents involved in
AT applications;

2. Distribution of Al methods and algorithms between struc-
tural elements, functional elements and approaches related
to railway safety;

3. Distribution of Al approaches studied by type of equip-
ment:

- Summary of Al methods involved in structural elements;

- Summary of Al methods involved in the functional
elements;

- Summary of Al methods involved in both structural and
functional elements;

4. Distribution of Al approaches involved in railway safety:

- Summary of Al applications involved in the analysis of
railway accidents based on investigation reports;

- Summary of Al applications involved in the prevention of
railway accidents based on manufacturer files;

- Summary of Al applications involved in the harmoniza-
tion of ISO standards;

- Summary of ontology-based Al applications;

- Summary of Al applications based on knowledge graphs.

Table 3 presents a summary of this literature review on the
applications of Al in the field of rail transport safety. What to
remember from these summaries on the application of Al to
rail transport:
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TABLE 3  Summary of the literature review on Al applications in the field of rail transport safety.
Equipment/
System Subsystems Constituents AI methods and algorithms Objectives
Structural Infrastructure — Railway tracks (Ballast) — Learning by back propagation of the gradient ~ — Analysis of the dangers linked to
elements — Railway tracks (Rails) — Deep learning that uses neural networks accidents at level crossings
— Railway tracks (Track — Ontology — Detection of rail surface defects
geometry) — Multilayer perceptron (artificial neural — Diagnosis of switching system faults
— Track devices (Switch network organized in several layers) — Inspection of rail surface defects
system) — Case-based reasoning (CBR) — Railway track inspection
— Levelcrossing — Support vector regression (SVR) — Maintenance of railway ballast
— Infrastructure — Petri net — Railway infrastructure topology
— Long-term and short-term memory (LSTM) ontology
neural network — Prediction of change in railway track
— Convolutional Neural Network (CNN) geometry
— Convolutional Neural Networks (CNN) — Forecasting breakdowns on railway
— Artificial neural networks tracks
— Deep Convolutional Neural Networks
(DCNN)
— ELMAN Recurrent Neural Networks
— Expert system
— Natural Language Processing (NLP)
Rolling stock — Locomotive — Decision trees — Diagnosis and detection of defects for
(Vehicle) /Running — Principal component analysis (PCA) the maintenance of “Axles”
parts/Axle — Expert system — Diagnosis and detection of defects for
— Locomotive (Vehicle)/ — Digital twin based on machine learning the maintenance of “Wheels”
Running gear/ Wheels  — Fuzzy logic — Diagnosis and prediction of
— Locomotive (Vehicle) — Statistical analysis methods (Standard breakdowns for the maintenance of
— Wagons (Goods) deviation, Regression, Hypothesis testing) “Locomotive”
— Case-based reasoning (CBR) — Diagnosis and prediction of
— Artificial Neural Network (ANN) breakdowns for the maintenance of
— Deep Belief Network (DBN) “Wagons”
— Short Term Fourier Transform (STFT)
— Non-negative matrix factorization (NMF)
— One-class support vector machine
(OC-SVM)
— Multi-layer perceptron autoencoder
(MLP-AE)
— Convolutional Neural Network Autoencoder
(CNN-AE)
Energy Traction equipment Learning based on automatic classification Diagnosis and prediction of breakdowns
(Pantograph) for the maintenance of “Pantographs”
Functional Telematics TA freight — Ontology — Ontology for customizing user
elements applications (TA) TA Voyageurs — Case-based reasoning (CBR) interfaces
— Ontology for searching personalized
routes
— Ontology to evaluate key performance
indicators
Care/Maintenance ~ — Rolling stock/ Wagons — Ontology Maintenance and monitoting of railway
— Rolling stock/Metro — Expert system rolling stock (Locomotive, Wagon, Metro)
— Rolling stock — Principal component analysis (PCA)
— Support vector machine (SVM)
— Decision tree, Random forests and
Classification rules
— Linear classifier
— Monte Catrlo technique by Markov chain
Operation and — Locomotive — Expert system — Rail traffic control
traffic management — Wagons — Ontology — Ontology to model ERTMS/ETCS
— ERTMS/ETCS — Fuzzy logic — Driving assistance for the train driver
— Metro — Case-based reasoning (CBR) — Analysis of the causes of metro
— Trains — Association rules (a priori algorithm) operating accidents

— Theory of complex networks (graph theory)
— Artificial neural networks (ANN)

— Analysis of operational risks

— Assessment of derailment accident
risks

— Harmonization of freight transport
information systems

(Continues)

85U07 SUOWIWOD) 8A1E8.D (et |dde au Aq pausenob ae saoe YO ‘8SN JO S9N 104 Akeid)8UlUO A1 UO (SUORIPUOD-pUe-SLLBIALIY" A3 | 1M AfeIq 1 [pU1|UO//SANY) SUOTIPUOD pue Swie | 841 88S *[¢202/TT/.0] uo Ariqi]auliuo A8|IM “dV LISH| Aq 2852 2M/6v0T 0T/I0p/w0d A8 |im Aeiq Ul 0"y essa.181//:Sdny Wolj pepeojumod ‘0 ‘8/G6TS.T



HADJ-MABROUK

23

TABLE 3 (Continued)
Equipment/
System Subsystems Constituents AI methods and algorithms Objectives
Safety in railway Tunnels — Machine learning, Detection of damage caused by the

tunnels

— Finite element method (FEM)
— Shapley Additive ExPlanations (SHAP)

digging of Metro tunnels

Route Compatibility Check

Autonomous train card ATMO ontology

— Data mining and analysis of railway
accidents

— Analysis of railway accident stories

— Predict the annual number of injuries

— Analysis and prevention of accident
risks linked to functional safety;

— Analysis and prevention of accident
risks linked to software safety.

Analysis of dysfunctions in the design of

Structural and  Infrastructure and ~ Rail system — Ontology
functional rolling stock — Knowledge graph
clements
Autonomous train  Autonomous train Ontology
Rail safety Analysis of Rail system — Natural language processing (NLP)
accidents based on — Latent Dirichlet Allocation (LDA)
investigation — Latent Dirichlet Allocation (LDA)
reports — Random forests (or decision tree forests)
— K-means
— Case-based reasoning (CBR)
— Rule-based reasoning (RBR)
— Association rules (Clementine softwate)
— Artificial neural networks (ANN)
— Convolutional neural networks (CNN)
— Deep neural networks (DNN)
— Recurrent neural networks (RNN)
— Social network theory
Accident Rail system — Learning by classification
prevention based — Learning production rules
on manufacturer — Expert system
files — Case-based reasoning (CBR)
— Ontology
Accident Rail system Ontology
prevention based
on railway
standards
Harmonization of ~ ISO standards Ontology
standards
Literature Railway track Rail system Apprentissage automatique
review maintenance
Ontologies in land ~ Land transportation Ontologie
transport
Ontology-based Systems engineering Ontologie
systems
engineering

railway systems

Ontology for ISO standards

Applications of machine learning in
railway maintenance [55]

A survey of ontologies in the field of land
transportation [85]

State of the art on ontology-based
systems engineering [80]

- The structural elements of the rail system involved are
infrastructure, rolling stock and energy;

- Al applications relating to infrastructure concern track
devices (connections or switch systems), railway tracks (rails,
ballast, track geometry) and level crossings (PN);

- The functional elements concern telematics applications
(passengers and goods), traffic operation and management
(locomotive, freight wagon, metro, train, European rail traf-
fic management system: ERTMS/ETCS), maintenance and
maintenance (wagons, metro, tunnel) and finally safety in
railway tunnels;

- Some applications involve both structural and functional
elements and relate to infrastructure and rolling stock (vehi-
cle). All these applications are dedicated to establishing and
checking the compatibility of routes, particularly from the
infrastructure register and the vehicle or vehicle type register;

Al applications linked to the safety of the railway system
concern the harmonization of ISO standards, the analysis of
railway accidents based on investigation reports (feedback)
after the commissioning and operation of the railway system
and finally the prevention of railway accidents from manufac-
turers’ files well before the operation of the system, but rather
during the specification and design phases of the system. It is
for this reason that a distinction was established between the
prevention of accidents in this second case as opposed to the
analysis and understanding of the causes of accidents in the
case of feedback.

The AI methods and algorithms are distributed in Table 3
according to this equipment, these constituents and these
security approaches.

Deep learning plays an important role: Long-term and
short-term memory (LSTM) neural network, artificial
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neural networks (ANN), convolutional neural networks
(CNN), deep convolutional neural networks (DCNN), deep
neural networks (DNN), recurrent neural networks (RNN),
deep belief network (DBN), multilayer perceptron trained
with the BFGS algorithm, multi-layer perceptron autoen-
coder (MLP-AE), convolutional neural network autoencoder
(CNN-AE).

- Only an application that integrates the explainability problem
in Al using Shapley Additive ExPlanations (SHAP) which is a
way to explain the output of machine learning models.

- Ontology and knowledge graphs have been used in particular
to solve problems related to railway safety.

- Latent semantic analysis (LSA) and latent Dirichlet allocation
(LDA) have been used for natural language processing (NLP).

- Several applications use case-based reasoning (CBR) to search
for similar or analogous solutions from a base of soutce cases.

- To discover interesting relationships between variables stored
in databases, several researchers have used association rules,
in particular the a priori algorithm and the Clementine
software.

- One-class support vector machine (OC-SVM) is often used
for discrimination and regression problems. While support
vector machines (SVR) is implemented for classification and
regression analysis.

- Several statistical data analysis methods like statistical mean,
standard deviation, regression, hypothesis testing, principal
component analysis (PCA) and non-negative mattix factoriza-
tion (NMF) as an algorithm in analysis multivariate and linear
algebra have been commonly used.

- Several approaches have also been used to solve group-
ing, discrimination and classification problems, in particular
the linear classifier (statistical classification), K-means (com-
binatorial optimization), decision trees (random forests),
classification rules, back propagation learning (MLP) or
gradient back propagation.

- Finally, the expert system, the learning of production rules,
fuzzy logic, the theory of complex networks (graph theory),
the Monte Catlo technique by Markov chain, the theory of
social networks, the Fourier transform short term (STFT),
the finite element method (FEM), the digital twin (based on
learning) and the Petri net are also used for decision support.

8 | POSITIONING OF THE STUDY IN
RELATION TO RAILWAY REGULATIONS

Table 4 summarizes all the works studied by distinguishing
the list of railway subsystems, equipment and the objectives
of the Al and machine learning approaches. 65 articles ate
examined, of which 61% of the documents concern subsys-
tems of a “structural” and “functional” nature, 26% are related
to the safety of the railway system and finally 6% concern the
harmonization of standatds:

- Structural elements: 32% of the documents are devoted to
“structural elements” (rolling stock and infrastructure). The
“structural” elements of the Furopean railway system are

infrastructure, rolling stock and energy. Al applications relat-
ing to “rolling stock” concern the following equipment: Axle,
wheels, ballast, rails, switch system, track geometry, locomo-
tive, wagons. They have two main objectives: (1) diagnosis,
fault detection and failure prediction and (2) inspection and
maintenance of rolling stock. As for the work dedicated to
“Infrastructure,” it focuses either on analysing the dangers
related to accidents at level crossings (LC), or on developing
ontologies describing the topology of the infrastructure. Only
one application concerns the “Energy” subsystem and more
precisely the “Pantograph” whose objective is to identify the
dangers related to defective pantographs.

Functional elements: 32% of the documents are also devoted
to “functional elements” which involve telematics applica-
tions, operation and traffic management (locomotive, wagon,
metro, train and ERTMS/ETCS), maintenance (wagons,
metro, tunnel) and finally safety in railway tunnels. The
“telematics applications” intended for passengers and goods
are focused on developing ontologies for (1) customizing user
interfaces, (2) searching for personalized routes and (3) eval-
uating key performance indicators. Al applications related to
“operation and traffic management” aim at: (1) analysis and
assessment of risks related to operation, (2) driving assistance
for the train driver, (3) control of rail traffic, (4) modelling of
the ERTMS/ETCS system based on ontology and (5) har-
monization of rail freight transport information systems. Al
applications related to the “Maintenance/Maintenance” func-
tional subsystem mainly concern the maintenance of rolling
stock and in particular the maintenance of freight wagons.
Studies related to “tunnel safety” concern the identification
and prevention of hazards during the construction of railway
tunnels.

Structural and functional elements: 9% of the documents
concern both “structural and functional elements” (infras-
tructure and rolling stock) and are mainly interested in
establishing “route compatibility” from infrastructure regis-
ters and vehicle or vehicle type registers. All these appli-
cations are based on the use of ontologies and knowledge
graphs.

Railway safety: 26% of the documents are devoted to the
“safety” of the railway system. The studies that explicitly aim
to improve “railway safety” are divided into two categories.
The first concerns the analysis and prevention of railway acci-
dents based on investigation reports and after the system is
put into service (feedback). The second category also aims
at the analysis and prevention of railway accidents but rather
based on manufacturer files as well as the experience and
know-how of safety experts. This involves consideting the
analysis of accident risks from the design phase of the sys-
tem and well before it is put into operation. This is why a
distinction has been made between “accident prevention” in
this second case and the analysis and understanding of the
causes of accidents in the case of feedback.

Harmonization of standards: 6% of the documents concern
the harmonization of ISO standards and are based on the
use of ontologies. An application that is also based on the
ontology concerning the autonomous train.
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TABLE 4

Study results and positioning in relation to railway regulations.

Railway system

Subsystems

Equipment

List of 65

Objectives Authors articles

Structural

elements

Functional
clements

Structural and
functional
clements

Railway safety

Harmonization
of standards

Rolling stock

Infrastructure

Energy

Telematics

applications (TA)

Traffic operation
and management

Maintenance
Safety in tunnels

Infrastructure and
rolling stock

Autonomous train

Analysis of railway
accidents

Analysis of railway
accidents

Axle, wheels, ballast, rails,
switch system, track geometry,

locomotive, wagons

Level crossings (LC)

infrastructure

Pantograph

TA_ Travelers
TA_ Goods/Freight

Locomotive, wagons, Metro,
ERTMS/ETCS, Train driving

Rolling stock, Wagons, Metro

Railway tunnels

From investigation reports

From the manufacturers files

From railway standards

— Diagnosis, fault detection [6,7,27-29, 14

and failure prediction; 31-38, 98]
— Inspection and maintenance

of rolling stock.

— Analysis of hazards related to [20, 76] 2
railway accidents at the PN;

— Infrastructure topology
ontology.

Identifying the hazards [30] 1
associated with faulty
pantographs

— Ontology for customizing [39, 40, 77] 3
user interfaces;

— Ontology for evaluating key
performance indicators;

— Ontology for searching

personalized routes.

— Analysis and assessment of [41-48] 9
operational risks;

— Driving assistance (train
driver);

— Rail traffic control;

— Ontology for modelling
ERTMS/ETCS;

— Harmonisation of rail freight
transport information
systems.

Rolling stock maintenance [38, 49-55] 8

Construction of railway tunnels 4] 1

Ontology and knowledge graph
for “Route Compatibility”
Search

[56-60] 5

ATMO ontology of [84] 1

autonomous train card

Analysis and prevention of [5, 49, 61-64, 8
railway accidents based on 66, 67]

investigation reports (feedback)

Analysis and prevention of [68-71] 4
railway accidents based on

manufacturer files (from the

system design phase)

Ontology for the analysis of [78] 1
malfunctions in the design of
railway systems.

Ontology for the harmonization [87-90] 4
of ISO standards

The first findings that emerge from this literature review

show:

- France is not yet aligned with other countries that are much

more dynamic and tesponsive in the research and implemen-

tation of Al approaches and techniques in the field of rail
transport, such as China, India, the United Kingdom and the

United States.

There are few (if not non-existent) studies that focus on the
design, construction and consideration of safety from the
specification and design phases of the rail system. The studies
examined are mainly focused on the operation, maintenance
and feedback phases.

To our knowledge, there is no work that would consider
the requirements imposed by Directive (EU) 2016,/798 relat-
ing to railway safety in particular national reference value
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(NRV), common security objectives (CSO), common safety
indicators (CSI), safety certificate, safety approval, safety
management system (SMS), change management (Modifica-
tions).

- The data, information and knowledge on safety come largely
from accident and incident investigation documents and
reports, ISO standards, infrastructure and rolling stock reg-
isters, specifications related to the Furopean rail traffic
management system: ERTMS/ETCS.

- The use of approaches based on ontologies and knowledge
graphs seems interesting in the context of rail transport safety
in order to improve at least the semantics, interoperability and
reusability of knowledge in the field of safety.

- Deep learning approaches, including artificial neural networks
(ANN), occupy an important place in applications dedi-
cated to rail transport. However, despite their interests in
terms of efficiency since they are based on digital learning as
opposed to symbolic learning, they remain to this day quali-
fied as black boxes. Authorities and railway safety specialists
are still reluctant to apply these models in critical railway
safety tasks. It is therefore appropriate to use new explain-
able artificial intelligence (XAI) approaches as a solution to
improve these opaque models qualified as black boxes. How-
ever, during this literature review, only one application that
integrates the explainability problem into Al using SHapley
Additive exPlanations (SHAP) which is a unified framework
for the interpretation of machine learning models. This new
branch of Al, whose goal is to understand black box mod-
els and make the behaviour of these systems understandable
and controllable by humans, has been addressed by several
researchers: [22, 99-101].

9 | CONTRIBUTIONS AND
LIMITATIONS OF THE STUDIED AI
APPROACHES

Current Al approaches face two major obstacles. The first con-
cerns the quality and availability of the data involved in a rail
transport system and the second relates to the processing and
interpretation of the data produced by machine learning algo-
rithms. In addition, with complex models referred to as “black
boxes,” it is difficult to understand how and why the internal
reasoning mechanisms of the Al system impact the solution and
predictions. The new explainable AT (XAI) approach may pos-
sibly provide an element of response to this problem. However,
there is currently no real application to address a key problem
such as rail safety.

The following two paragraphs give a quick overview of these
two issues related to “data” and “explainability.”

9.1 | AI dataissues involved in rail
transportation

The study of all Al applications shows that the stages of
acquisition, recovery, analysis, structuring, formalization, and

modelling, processing by learning and interpretation of the data
produced pose a problem crucial in the field of rail transport.
These data-related issues were also raised by [15] as part of his
work on Big Data challenges specific to railway applications:

- The heterogeneity of the data collected, particularly during
track monitoring, such as data on defects and rail geometry;

- The data used from different databases may be incomplete,
inconsistent and sometimes subjective;

- Merging different databases such as ballast state data and
runway geometric data still poses obstacles;

- Collection of real-time track data for maintenance purposes
may have a time limit (deadlines);

- Data confidentiality.

Despite the interest in new approaches to improve the
explainability of learning algorithms, “their use is not yet com-
mon and machine learning still does not have the rigor of
traditional statistical methods” [102]. To this end, the authors
detailed all of the “biases” involved in machine learning: Bias in
data entry, Bias in data conservation (editing, transformation,
labelling and enrichment) and Bias in data analysis especially
when choosing learning algorithms.

To mitigate the subjectivity of data and therefore identify
issues of “explainability” and “bias” in learning models, [103]
suggested implementing two additional steps in the systems
design process current learning processes: (1) understanding the
subjectivity of the data involved in designing a learning system
and (2) examining the social context in which the learning model
is to be implemented. Furthermore, according to the author, it is
not enough to focus only on the technology related to machine
learning, but also to conceive of the socio-technical system in a
broader way within which the learning model must be deployed.

Data-driven machine learning approaches are also critiqued
in [104] by comprehensively reviewing several articles based on
learning data from four aspects: paradigm, model, data source
and the objective of learning. According to the author, machine
learning systems implement five correlated tasks: collection,
storage, processing, exploration and transformation of data.
Thus, data is omnipresent throughout the development cycle of
a learning system and the quality of knowledge and the models
produced strongly depend on this data. Current learning tech-
niques cannot, to date, replaces the advantages of traditional
approaches for several reasons [104] and in particular:

- The authors focus on the performance of learning models
without realizing the distinction between domain knowledge
and the processed data;

- Data preprocessing crucially influences machine learning
results;

- Machine learning requires more prior knowledge of the
application domain;

- Failure to consider the design of data structures can lead
to results that suffer from “interpretability,”
and external “validity” and this problem of explainability

generalization”

and interpretability of results from learning systems poses a
serious problem for users.
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According to the authors, the main challenges and future
directions of machine learning research concern not only the
systematic consideration and integration of domain knowl-
edge into the learning model, but also the development of
new approaches to define explicitly the knowledge in order to
improve the interpretability and generalizability of the results.

The problem related to training data was also highlighted and
discussed in [105]. According to the authors, data availability,
scarcity of labelled data, and confidence in the ability of learn-
ing models represent significant barriers to the development
and adoption of machine learning methods. Indeed, the avail-
ability and accessibility of datasets to the public, the scarcity of
labelled data which remains a laborious and costly task, often
requiring specialized human expertise. As for data quality, which
does not adequately represent the complexity of the real world,
it frequently suffers from inconsistencies, noisy data, outliers
and lack of standardized vocabulary. Therefore, reliance on the
ability of models to learn from experimental and simulated data
often fails to perform well in real-world settings. Furthermore,
unlike some learning models like decision trees and linear mod-
els, which can contribute to interpretability and transparency
in their decision-making processes, so-called “black box” deep
learning models like neural networks, despite their performance,
make the task of interpretability and explainability difficult for
the end user. Therefore, it is paramount that research efforts
should focus on explainable Al techniques [105].

To improve the reliability and security of complex systems
[106], proposed a review of the state of the art (between
2016 and 2022) of physics-based machine learning methods
whose objective the main objective is to exploit the wealth
of traditional modelling approaches as “prior” knowledge in
order to improve the effectiveness of machine learning models
and in particular to address the problem of representativeness
and completeness of learning data. Two types of physics-
based machine learning approaches have been distinguished.
The first relies on considering known physical constraints
(loss functions) in learning models, which can be observed
as a physics-based loss function. The second approach, called
physics-based architecture, integrates physics knowledge into
the structure of the learning model by the authors. According to
the authors, future directions for the development of physics-
based learning models require five major challenges: model
selection, model structure, model parameters, model optimizet,
and model prediction.

9.2 | Explainable artificial intelligence (XAI)
as a solution to improve “black box” models

In AT and particularly machine learning, the terms interpretability
and explainability are commonly interchangeable [107]. To under-
stand how the AT model generates predictions, it is necessary to
examine the internal reasoning mechanisms of the Al system
in order to interpret the different particularities of the model
allowing it to produce a given result. In this case, and in order to
make the model transparent, we speak of interpretability. With
complex models (or black boxes), it is difficult to understand

how and why the internal reasoning mechanisms of the Al sys-
tem impact the solution and predictions. However, using an
independent model like SHapley Additive exPlanations (SHAP),
we can understand the meaning between the model input and
output data, which helps explain the nature and behaviour of the
Al model. So, explainability is the way of forcing an Al model
to explain its behaviour in human terms. The concern to undet-
stand black box models and the desire to make the behaviour
of these systems understandable and controllable by humans
in particular Al systems based on multilayer neural networks
whose predictions involve human lives motivated [99] to present
a social conceptual framework for Al systems whose objective
is to guide future research on explainable AT (XAI).

After a detailed and relevant study of Al applications in
the railway field, [22] addressed the new explainable AT (XAI)
approach, the objective of which is to make learning approaches
and algorithms automatic, often “opaque” and desctribed as
“black boxes,” accessible to users. This new discipline of Al
which, according to the authors has not yet received attention
in rail transport, is based on three concepts [22]: znterpretabil-
ity, also called transparency, is defined by “the characteristic
of a model of being at a level that makes sense for a human
observer, thus allowing interventions aimed at making impartial
decisions and improve robustness;” Explainability is the char-
acteristic of a model taking actions and procedures to clarify
its behaviour; Understandability is the characteristic of a model
to represent its acquired knowledge in a way that humans can
understand.

Understanding black box models has become essential as sys-
tems based on opaque artificial intelligence (AI) continue to
thrive in various real-world applications. To master the complex-
ities and nuances of explainable Al, [108] proposed a roadmap
for future research which is based on 28 open problems clas-
sified into nine categories. This article highlighted advances
in explainable AI (XAI) and described the challenges facing
researchers in this field including developing explanations for
new types of Al, improving current XAI methods, the clarifica-
tion of the use of the concepts involved in XAlI, the evaluation
and adjustment of the methods and explanations proposed,
favouring human-centred Al approaches, etc. Ref. [100] studied
explainability and interpretability in a risk management context
by identifying several considerations and characteristics of ques-
tions and concerns that could guide the development of risk
analyst-related Al approaches:

- Key indicators for explainability and interpretability linked to
the dimension of the risk study process;

- Key indicators for explainability and interpretability linked to
the uncertainty management dimension;

- Key indicators for explainability and interpretability linked to
the dimension of use and transfer of knowledge.

These indicators were applied to an example of an
autonomous vehicle encountering the trolley problem.

To our knowledge, and in the field of railway safety, there
is currently no AI approach that explicitly considers the
explainability problem. Only an application that integrates
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the explainability problem in AI using SHAP during the
construction of railway tunnels [4].

10 | CONCLUSION

This study examined several methods, techniques, algorithms
and applications of Al in the field of rail transport. It pro-
poses a framework for the classification of these AI applications
based on European railway regulations, in particular the three
European directives relating to the development (Directive
2012/34/EU [1]), interoperability (Directive 2016/797/EU
[2]) and safety of the European railway system (Directive
2016/798/EU [3]). Indeed, to help Al researchers, railway
companies, infrastructure managers and national safety author-
ities, this synthesis work proposes to classify Al applications
according to the structural elements (infrastructure, energy,
rolling stock, control-command and signalling) and functional
elements (operation and traffic management, maintenance,
telematics applications) of the European railway system.

Useful both to researchers involved in the field of machine
learning and knowledge engineering and particulatly ontology
engineering as well as to Al researchers and experts in railway
safety, this work can serve as a resource and contributes to the
present and future development of Al applications in the field
of railway safety. However, certain remarks seem necessary.

In recent years and in the field of rail transport, researchers
and experts in the field have become increasingly interested
in the application of Al techniques and in particular machine
learning to solve certain decision support problems, such as
transport equipment diagnosis, maintenance operations man-
agement, driver behaviour analysis, prediction of transport
infrastructure detetioration, planning and forecasting of traffic
demand, traffic light control, etc. These methods are also used
to extract the presence of informative entities on recurring acci-
dents and incidents with a view to understanding the causes
of accidents and finding causal relationships from accident
investigation reports.

Al efforts to solve object clustering, discrimination (or classifica-
tion), regression and generalization problems have resulted in a wide
variety of learning methods, techniques, algorithms and systems
applied to the field of computer security rail transport. How-
ever, this abundant literature makes it difficult to perceive the
field, given the ambiguity of its vocabulary and the absence of
rigorous reference definitions. To clarify certain essential con-
cepts in the management of railway safety, we have used the
regulations in force, in particular the three European directives
relating to development (Directive 2012/34/EU [1]), interop-
erability (Directive (EU) 2016/797 [2]) and safety (Directive
(EU) 2016/798 [3]) of the European rail system. These guide-
lines have been used to clatify not only structural and functional
elements, equipment and components, but also to better for-
mulate railway safety terms, concepts and requirements. The
aim is to position the contribution of Al techniques in relation
to current European legislation and regulations and therefore
promote understanding and interest in new Al approaches by
national safety authorities and railway operators.

However, despite the certain interest of the works analysed,
each of the approaches developed concerns a particular applica-
tion and does not cover all of the concepts involved in the field
of rail transport and there are few works that focus on taking rail
safety into account from the specification and design phases of
the rail system. The work examined focuses mainly on the oper-
ation, maintenance and feedback phases. Data, information and
knowledge on safety come largely from accident and incident
investigation documents and reports, ISO standards, infras-
tructure and rolling stock registers, specifications linked to the
European traffic management system, railway: ERTMS/ETCS
and user information in terms of needs. Another important lim-
itation concerns the terminology and concepts used to develop,
for example, an ontology linked to railway safety. Certain works,
such as those linked to ISO standards, ERTMS/ETCS and
European registers, take into consideration the imposed termi-
nology. In other works, based on “classic”” Al, the vocabulary
used suffers from a lack of precision and clarity, in patticular the
visible confusion between the term’s danger, risk, accident, inci-
dent, potential accident, dangerous event, dangerous situation,
dangerous element, risk analysis, hazard analysis, risk assess-
ment, risk management, risk reduction, secutity, safety etc. In
this context, the vocabulary used when developing an Al sys-
tem in particular to define classes, descriptors, properties, etc.
cannot in any way guarantee the semantics, interoperability and
reusability of knowledge. Consequently, the problem of the
validity of certain approaches arises since these are approaches
intended for risk management for critical systems such as rail
transport. It should also be noted the absence (for certain appli-
cations) of common, identifiable and reusable concepts. This
constitutes an obstacle for future work and the implementation
of a common conceptual model which considers the semantics
of all the terms and concepts used in railway safety and risk
management is essential.

11 | PERSPECTIVES

Furthermore, the analysis of the field of railway safety has
shown that the process of transferring knowledge from experts
to the machine is complex and little studied and that the famous
bottleneck in the development of a rail safety assistance sys-
tem the decision is not limited to the sole phase of collecting
data and learning examples but is also linked to the characteris-
tics and formalization of this data and knowledge. On the one
hand, the know-how of railway safety experts is based on empir-
ical and sometimes subjective and implicit knowledge which can
generate several interpretations, and on the other hand, there is
generally no scientific explanation to justify this expertise com-
piled. This knowledge is not always conscious in the expert in
the security field, understandable by a novice or sometimes even
expressible through language. The transcription of natural ver-
bal language into formal machine-interpretable language often
causes a distortion of expert knowledge. This introduces a bias
between the cognitive model of the expert and the model imple-
mented on a machine learning system. This discrepancy is due
not only to the fact that the representation languages used in
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Al are not yet sufficiently rich to explain the cognitive function-
ing of the expert but also to the often-subjective interpretation
of Al users and researchers. All these constraints restrict the
field of investigation of the process of acquisition, transfer and
processing of this knowledge. However, the introduction of
machine learning systems working on examples makes it pos-
sible to generate new knowledge likely to help the expert solve
a particular problem. Expertise in a field is not only held by
experts but also distributed and stored implicitly in a mass of
historical data that the human mind has difficulty synthesizing,
Extracting relevant knowledge from this mass of information
for explanatory or decision-making purposes constitutes one
of the objectives of machine learning. However, learning from
examples is insufficient to acquire all of the know-how of
experts and requires recourse to the acquisition of other types
of complementary knowledge. In this sense, each of the two
approaches (acquisition and learning) can fill the weaknesses of
the other. To improve the expertise transfer process, it is there-
fore interesting to reconcile these two approaches in the iterative
process of knowledge acquisition. From initial knowledge of
the domain (expert knowledge and historical data), the acqui-
sition of knowledge makes it possible in particular to construct
a model of the expert’s reasoning and a model of representation
of examples and to obtain a set of examples and object classes.
This acquired knowledge is used by machine learning to pro-
duce new knowledge learned by the system which must then be
evaluated by the domain expert. The comparison of the knowl-
edge discovered through learning with the knowledge acquired
from the expert makes it possible to enrich the initial knowl-
edge of the field. There is always a gap between the knowledge
acquired and the knowledge actually held by the expert.
Remember that in supervised learning, it involves learning
to classify a new object (individual) among a set of predefined
classes: we know the classes a priori. This involves learning a
prediction function from annotated (or labelled) examples. On
the contrary, in unsupervised learning, the number and defini-
tion of classes are not given a priori and it involves extracting
classes or groups of individuals presenting common charac-
teristics from unlabelled data. The semi-supervised learning
approach lies between supervised learning which only uses
known labelled data and unsupervised learning which only uses
unlabelled data. This learning technique uses both a labelled and
unlabelled dataset. The use of unlabelled data, in combination
with labelled data, allows in our opinion to improve the quality
of learning and particularly the problem of interpretability and
explainability which to date constitutes the “bottleneck” learn-
ing techniques applied in high-risk systems such as rail transport
security. Indeed, we can rarely extract all the data and knowl-
edge from experts in the field on the first try, but when we
present the knowledge learned by the system to the expert, he is
aware of their interest, identifies contradictions, “holes” or rele-
vant rules. It can provide advice on the choice of examples and
descriptors, interpret the results produced by learning, improve
the previously acquired expertise model, correct and complete
the description language of the examples and adjust the learn-
ing parameters. By encouraging the expert to better verbalize
his expertise, we therefore not only contribute to the enrich-

ment of knowledge in the field, but we also contribute to the
interpretability of the learning models developed which today
constitutes the main objective of the explanatory Al

The obstacles linked to the formalization and capitalization
of shareable and reusable knowledge bases have led research
towards the development of new approaches based on ontology
and knowledge graphs in order to better structure and formally
represent knowledge and facilitate its reusability.

Another important point concerns the phase of identification
and specification of the area of expertise which has often been
neglected within the framework of this literature study. How-
ever, this crucial step in the knowledge acquisition methodology
makes it possible to verify that the context of the problem is
favourable for collecting knowledge, to verify the existence and
availability of one or more experts in the field, to verify the
presence of expertise in line with the objectives of the study
and the possibility of attending real case treatments on the site
for example. The domain identification step also makes it pos-
sible to understand the nature and origin of the information
used by the expert as well as the specification of the form of
solution to be developed by the planned decision support sys-
tem. Several knowledge gathering techniques such as interviews
or questionnaires can be used to identify the area of expertise.
The benefit of this phase of acquisition and collection of data
and knowledge makes it possible, among other things, to extract
knowledge that is often implicit among experts and to make it
more explicit and usable in two forms: surface knowledge and
deep knowledge. After having clearly defined the field of study,
the step of extracting surface knowledge consists of identifying
the broad outlines of the expert’s activity in the face of real prob-
lems. It aims to generally identify the mechanisms and modes of
reasoning of the expert, the strategies and heuristics for solv-
ing the problem, the relationships between the key concepts of
the domain, etc. The technique of verbalization and/or proto-
col analysis can be implemented during this stage in order to
observe the expert at work. For the extraction of deep knowl-
edge, this involves the detailed specification of the different
knowledge modules as well as the refinement of the concepts
used and their relationships. This step makes it possible, in fact,
to precisely identify the expert’s reasoning mechanisms. To carry
out this step, the use of several knowledge collection techniques
is necessary. The protocol analysis technique can be applied to
acquire the observable part of the expert’s activity. On the other
hand, the conceptual sorting technique can be used to iden-
tify the mental organization of the concepts manipulated by the
expert. This extraction step ultimately leads to the identification
of the main facets of the expert’s reasoning. The results of this
step include detailed descriptions of all knowledge (object, class,
entity) as well as problem-solving heuristics.

Several constraints can be raised during this phase of knowl-
edge acquisition in close collaboration with experts in the field,
such as the completeness of data, functions, concepts, rela-
tionships, classes of objects, etc., clarity, precision, unambiguity
and consistency to remove any contradictions between data and
knowledge.

It is also essential to have evaluation knowledge intended
to assess the results produced by the learning system. This
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evaluation, often neglected in the approaches studied, can
be carried out by using, for example, a batch of fest exam-
ples proposed by the expert in the field. The domain expert
can also help evaluate and validate the knowledge learned.
This approach involves intense interactivity and cooperation
between the expert and the learning system which is not
without consequences on the design of the interfaces. Other
knowledge for processing #oisy data is also necessary. If a learn-
ing algorithm makes it possible to generate rules or concepts
from experimental examples, the fact remains that the quality
of the knowledge learned depends largely on the quality of
the example base (correct information, complete, consistent,
rich, sufficient number of examples and descriptors). Machine
learning is particularly sensitive to the relevance of the available
data. Control of this quality is based in particular on the acqui-
sition and use of additional knowledge to reduce diffuse noise
in the examples. The production of usable knowledge leads to
respecting various constraints:

- Ensure interactivity between the domain expert and the
learning system: The system must explain its reasoning by
producing knowledge understandable by the user or the
domain expert whose role is to control, complete and validate
this knowledge. This transparency of the approach requires
particular care in the creation of human/machine interfaces,

- Guarantee the representativeness and completeness of the
base of learning examples,

- Ensure resistance to “noise” to overcome the disturbing
effects of poorly characterized examples,

- Consider the incrementality and scalability of knowledge to
facilitate updating of knowledge.

The ability to acquire “good” knowledge despite the intro-
duction of erroneous data (tainted by noise) and the incremental
nature of the enrichment of the knowledge base are two impor-
tant constraints for a learning system to be truly usable in an
industrial environment. The notion of incrementality does not
simply mean that the system accepts training examples one after
the other. It is also necessary that when adding a new exam-
ple, the modifications to be made to the learning system do not
result in the complete reconstruction of the knowledge obtained
from the examples already used. This characteristic of learning
is often necessary to allow the use of the learned information
when the training set is not yet sufficiently representative of the
problem considered.

If the representation of knowledge, in the form of numeri-
cal and statistical data, commonly used by classic data analysis
techniques, has proven to be very useful for the processing
of simple observations, it is not suited to the processing of
more complex knowledge complex. The numerical approach
focuses on optimizing a global criterion such as entropy or a
distance between examples in data analysis. The major disad-
vantage of numerical methods is not only the impoverishment
of the initial data during their translation into number but
also lies in the fact that the semantics of the numerical oper-
ations sometimes differ from that of the initial symbolic data.
Furthermore, the knowledge generated is often incomprehen-

sible to humans. The numerical approach is efficient and has
methods to resist the noise induced by erroneous data. On
the other hand, the purpose of symbolic methods is to use
knowledge in order to produce new knowledge which is not
trivially presented in the initial description of the problem. This
new knowledge constitutes an explanation at a higher level
than that of observation in traditional data analysis. In the
symbolic approach we no longer ask ourselves what is most
effective but what is most meaningful. However, the major
drawback of the symbolic approach is its sensitivity to noise
which makes its application difficult when the learning popu-
lation is highly incoherent. Combining these two approaches
which pursue a common objective, the discovery of useful
knowledge from facts, to inhibit their respective weak points,
can certainly help to improve the learning process. Indeed, the
simultaneous presence of quantitative and symbolic data and the
imperfect nature of certain information make purely symbolic
approaches insufficient. The symbolic operation of generaliza-
tion of observations is a very complex and highly combinatorial
process (several generalizations possible) which requires signifi-
cant calculation time. This shows the interest of using numerical
data relating to the examples to be generalized to accelerate
the convergence of the generalization process. The symbolic
approach is capable of explanations because it operates on data
in the form of conceptual graphs, semantic networks, ontolo-
gies, etc. The use of a digital component is fundamental or even
essential to optimize the learning process and deal with com-
plex real problems where knowledge of the domain is often
incomplete, non-exhaustive or noisy. These remarks attest to
the interest of the symbolic-numerical approach for the creation of
effective learning systems integrating the explanation compo-
nent. The use of symbolic reasoning to promote explainability
and interactivity with human experts constitutes an interesting
contribution to the field of railway safety analysis. The numerical
approach, for its part, is the essential complement to symbolic
approaches to enable them to deal with real problems whose
data are often noisy.
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