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A B S T R A C T   

Listeria monocytogenes biofilms present a significant challenge in the food industry. This study explores the impact 
of different acidic conditions of culture media and food matrices on the development and removal of biofilms 
developed on stainless steel surfaces by wild-type (WT) L. monocytogenes strains as well as in two mutant de-
rivatives, ΔsigB and ΔagrA, that have defects in the general stress response and quorum sensing, respectively. 
Additionally, the study investigates the efficacy of nanoencapsulated carvacrol as an antimicrobial against 
L. monocytogenes biofilms developed in Tryptic Soy Broth (TSB) culture media acidified to different pH conditions 
(3.5, 4.5, 5.5, 6.5), and in food substrates (apple juice, strained yogurt, vegetable soup, semi-skimmed milk) 
having the same pH levels. No biofilm formation was observed for all L. monocytogenes strains at pH levels of 3.5 
and 4.5 in both culture media and food substrates. However, at pH 5.5 and 6.5, increased biofilm levels were 
observed in both the culture media and food substrates, with the WT strain showing significantly higher biofilm 
formation (3.04–6.05 log CFU cm− 2) than the mutant strains (2.30–5.48 log CFU cm− 2). For both applications, 
the nanoencapsulated carvacrol demonstrated more potent antimicrobial activity against biofilms developed at 
pH 5.5 with 2.23 to 3.61 log reductions, compared to 1.58–2.95 log reductions at pH 6.5, with mutants being 
more vulnerable in acidic environments. In food substrates, nanoencapsulated carvacrol induced lower log re-
ductions (1.58–2.90) than the ones in TSB (2.02–3.61). These findings provide valuable insights into the impact 
of different acidic conditions on the development of L. monocytogenes biofilms on stainless steel surfaces and the 
potential application of nanoencapsulated carvacrol as a biofilm control agent in food processing environments.   

1. Introduction 

Listeria monocytogenes, a ubiquitous foodborne pathogen, poses sig-
nificant public health risks. L. monocytogenes biofilms developed on 
various surfaces in food processing and handling environments serve as 
a constant source of contamination, leading to recurrent listeriosis 
outbreaks and product recalls (Byun et al., 2022; Colagiorgi et al., 2017; 
Keeney et al., 2018; Labidi et al., 2023; Mazaheri et al., 2021; Yammine 
et al., 2023a, b). Therefore, L. monocytogenes is considered as a great 
concern and challenge for producers of ready-to-eat foods. One of its key 

attributes as a pathogen is its tolerance to sub-optimal conditions (e.g., 
low pH, low temperatures, high salt concentrations or low aw) enabling 
its survival and proliferation in diverse food environments and food 
products (Arcari et al., 2020; Bucur et al., 2018; Melo et al., 2015; Wu 
et al., 2023). Acidic conditions can directly influence microbial growth 
and physiology, potentially altering the expression of genes associated 
with biofilm formation, adhesion, stability, and matrix production 
(Arcari et al., 2020; Fan et al., 2020). 

However, some microorganisms can develop an efficient response to 
stress and a swift adaptation at the transcriptional level (NicAogáin and 
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O'Byrne, 2016). In L. monocytogenes, the general stress response sigma 
factor σB and the agr cell-cell communication system, two primary global 
regulators, have been shown to play significant roles in adapting to 
fluctuating environmental conditions, surface attachment, and biofilm 
formation (Abram et al., 2008a, b; Guerreiro et al., 2022; Hsu et al., 
2020; Kumar et al., 2009; Marinho et al., 2020; Riedel et al., 2009; 
Vivant et al., 2015; Zetzmann et al., 2019). σB plays also an important 
role in regulating the expression of >300 genes, accounting for 
approximately 10 % of L. monocytogenes genes, contributing to resis-
tance against multiple stresses, including acidic conditions (Arcari et al., 
2020; Boura et al., 2016; Guerreiro et al., 2020, 2022). Moreover, the agr 
system is crucial for protein secretion, response regulation, cell surface 
attachment, and biofilm formation (Autret et al., 2003; Guerreiro et al., 
2022; Lee and Wang, 2020; Pinheiro et al., 2018). Mutants of 
L. monocytogenes lacking sigB and agr exhibit defective cell walls, 
increased sensitivity to various stresses, including acidic conditions, and 
modified expression of several genes (Abram et al., 2008a, b; Arcari 
et al., 2020; Lee and Wang, 2020; Pinheiro et al., 2018). Moreover, the 
presence of food constituents has been shown to alter bacterial cell 
adhesion to surfaces and subsequent biofilm formation (Baranauskienė 
et al., 2006; Gutierrez et al., 2009). 

Therefore, understanding the impact of acidic conditions and food 
substrates on L. monocytogenes growth and biofilm formation is crucial 
for developing effective control strategies. Various methods have been 
adopted to prevent or control biofilm formation in the food processing 
environments. In recent years, essential oils extracted from various 
plants have emerged as promising candidates for combating biofilms 
(Aiemsaard et al., 2011; Chorianopoulos et al., 2008; Heckler et al., 
2020; Kamimura et al., 2014; Srey et al., 2013; Yammine et al., 2022a, 
b). Carvacrol, a major phenolic compound found in various essential 
oils, such as oregano, thyme, pepperwort, and wild bergamot, has 
garnered attention for its remarkable antimicrobial properties, attrib-
uted to its acidic hydrophyl group and delocalized electrons (Khan et al., 
2020; Sharifi-Rad et al., 2018; Somrani et al., 2021; Yammine et al., 
2022a, b). Numerous studies have consistently reported its broad- 
spectrum antimicrobial activity (Bernal-Mercado et al., 2022; De 
Abreu Pereira et al., 2019; Engel et al., 2017; Heckler et al., 2020; 
Yammine et al., 2023a; Yammine et al., 2023b). However, challenges 
remain in the practical implementation of essential oils and their active 
components due to their high volatility and susceptibility to degradation 
(Mechmechani et al., 2022; Yammine et al., 2022a, b; Yammine et al., 
2023a, b). To overcome these challenges, encapsulation techniques have 
emerged as a valuable approach to enhance the stability, controlled 
release and efficacy of essential oils (Barradas and de Holanda e Silva, 
2021; Sharma et al., 2022; Shishir et al., 2018; Siva et al., 2020; Yam-
mine et al., 2023a, b). 

Thus, the objectives of this study were to investigate: i) the impact of 
a laboratory culture acidified to different pH values of 3.5, 4.5, 5.5 and 
6.5 on the development of L. monocytogenes biofilms on stainless steel 
surfaces, ii) the impact of different food matrices (apple juice, strained 
yogurt, vegetable soup, and semi-skimmed milk) with the same pH 
values on L. monocytogenes biofilms, iii) the efficiency of nano-
encapsulated carvacrol on the removal of L. monocytogenes biofilms 
developed under different acidic conditions in culture media and food 
matrices, and iv) the role that sigB and agrA play in biofilm formation in 
response to acid, food-related stresses, and carvacrol antimicrobial 
formulations. 

2. Materials and methods 

2.1. Bacterial strains and preparation of the inocula 

L. monocytogenes WT strain EGD-e, and its two derivative mutant 
strains ΔsigB and ΔagrA were used in this study. The mutant strains with 
sigB and agrA deletions were constructed during previous works (Begley 
et al., 2005; Marinho et al., 2019; Rieu et al., 2007). The strains were 

stored at − 80 ◦C in Tryptic Soy Broth (TSB; Biokar Diagnostics, Pantin, 
France) supplemented with 20 % glycerol (v/v). Prior to experiments, 
one bead of each strain was added to 10 mL of TSB and incubated at 
37 ◦C for 24 h. Then, 10 μL of each pre-culture were added to 10 mL of 
TSB and further incubated for 16 h under continuous shaking at 37 ◦C. 
Overnight cultured cells were then harvested by centrifugation (5000 g 
for 10 min at 4 ◦C), washed twice with quarter-strength Ringer solution 
(¼ Ringer, Ringer's tablets; Merck, Darmstadt, Germany) and re- 
suspended in ¼ Ringer solution. The final inocula were used for the 
biofilm formation assays. 

2.2. Biofilm formation on stainless steel coupons 

2.2.1. Preparation of stainless steel coupons 
Stainless steel (SS) coupons (3 × 1 × 0.1 cm, Type AISI-304, Haly-

vourgiki Inc., Athens, Greece) were soaked overnight in 95 % ethanol 
(Fluka, Sigma-Aldrich, France), then properly rinsed with distilled water 
and soaked with shaking in a 2 % (v/v) commercial detergent RBS 35 
(Fluka/Life Science Chemilab, S.A.) for 30 min at 50 ◦C. Subsequently, 
coupons were rinsed thoroughly with tap water followed by distilled 
water, then air dried at 60 ◦C before being autoclaved at 121 ◦C for 20 
min (Giaouris et al., 2005). 

2.2.2. Biofilm development under different acidic conditions 
For bacterial adhesion to surfaces, 0.5 mL of each bacterial suspen-

sion (106 CFU mL− 1) were added into a glass test tube containing 4.5 mL 
of ¼ Ringer solution and a sterilized SS coupon, and incubated for 3 h at 
15 ◦C under static conditions following Giaouris et al. (2013) protocol. 
The incubation temperature was 15 ◦C to simulate standard temperature 
conditions within the food industry (Gkana et al., 2017). After incuba-
tion, coupons were removed from the glass tubes using sterile forceps 
and were rinsed by immersing for 5 min in 5 mL of ¼ Ringer solution, 
with shaking to remove the loosely attached cells. Subsequently, each 
coupon was introduced into a new sterile glass tube containing 5 mL of: 
(i) TSB adjusted to four different acidic conditions (3.5, 4.5, 5.5, 6.5) by 
adding HCl (0.1 or 1.0 M) or NaOH (0.1 or 1.0 M), (ii) food substrates 
having different pH values: apple juice (pH 3.5; Pur jus de pomme 
Auchan, France), strained yogurt (pH 4.5; Fromage blanc 3.2 % fat, 
Cora, France), vegetable soup (pH 5.5; Soupe mouliné de légumes verts, 
Carrefour, France), and semi-skimmed milk (pH 6.5; Lait demi-écrémé, 
Prospérité, France). The tubes were incubated statically at 15 ◦C for 48 
h, under static conditions, with renewal of the TSB culture media or the 
food substrates media after 24 h. Coupons with attached biofilms were 
used for the quantification of biofilms at the different acidic conditions 
as well as for the antibiofilm treatments. 

2.2.3. Recovery and enumeration of biofilm cells 
The recovery and enumeration of the three strains of 

L. monocytogenes biofilm cells was performed following a 48 h incuba-
tion at the different acidic conditions using the bead vortexing and agar 
plating method (Kostaki et al., 2012). Each coupon was aseptically 
removed from the glass tube using sterile forceps and rinsed twice with 
10 mL of ¼ Ringer solution. Coupons were then transferred to Falcon 
centrifuge tubes containing 6 mL of ¼ Ringer solution with 10 sterile 
glass beads of diameter 3 mm. The tubes were left for 10 min at room 
temperature, then vortexed at maximum speed for 2 min to detach 
biofilms from the coupons. Detached cells were subsequently plated on 
TSA after ten-fold serial dilutions in ¼ Ringer solution and the plates 
were incubated at 37 ◦C for 24 h. 

2.3. Nanocapsules formation and characterization 

2.3.1. Antimicrobial agents and carrier materials 
For the preparation of the nanocapsules, carvacrol (98 % purity), 

sodium caseinate and maltodextrins DE 21 were obtained from Sigma- 
Aldrich (St. Louis, MO, USA), Fisher Scientific (United Kingdom) and 
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Roquette-Frères SA (Lestrem, France), respectively. For the choice of the 
carrier materials, maltodextrin was chosen as it is a generally recognized 
as safe (GRAS) plant-based polysaccharide, with relatively low viscosity 
and good water solubility at high temperatures. While, sodium caseinate 
was used as emulsifier due to its relative good emulsifying properties 
and resistance to high temperatures, in addition of being an abundant 
animal-based protein with low cost (Aguiar et al., 2016; Fathi et al., 
2021; Gharsallaoui et al., 2007). 

2.3.2. Spray-drying process 
The capsules were developed as described in details in our previous 

works (Yammine et al., 2022a, b; Yammine et al., 2023a, b). Briefly, 
specific amounts of carvacrol were added to a sodium caseinate stock 
solution. The emulsions were then homogenized using an Ultra Turrax 
PT 4000 homogenizer (Polytron, Kinematica, Switzerland) at 20,000 
rpm for 5 min and further subject to high pressure microfluidization 
using an LM20 Microfluidizer (Microfluidics Co., MA, USA), at 500 bar 
and five recirculations. To the freshly prepared emulsions, stock 
maltodextrin DE 21 solutions (50 % w/v) were added to obtain a final 
composition (w/w) of: 20.0 % maltodextrins DE 21, 0.5 % sodium 
caseinate and 1.0 % carvacrol. The feed emulsions were then injected 
into a 0.5 mm nozzle of a laboratory spray-dryer (Büchi B-290, 
Switzerland) and the collected powder particles were stored in sealed 
containers at 4 ◦C until further analysis (Yammine et al., 2022a, b; 
Yammine et al., 2023a, b). Nanocapsule stock solutions were prepared 
by dissolving capsules in ¼ Ringer solution to obtain desired specific 
concentrations. 

The size and surface charge of the developed particles, as determined 
in our previous study (Yammine et al., 2023a, b) using a Zetasizer Nano 
ZS90 (Malvern Instruments, United Kingdom), were of 234.76 ± 7.88 
nm and + 24.66 ± 0.90 mV, respectively, suggesting a high level of 
particle stability (Luna et al., 2022). 

2.4. Determination of the minimum inhibitory concentration of 
nanoencapsulated carvacrol 

Our previous studies revealed that the minimum inhibitory concen-
trations (MICs) of nanoencapsulated carvacrol were lower than those of 
free carvacrol against various microorganisms, indicating an enhanced 
antimicrobial activity through nanoencapsulation (Khelissa et al., 2021; 
Mechmechani et al., 2023; Yammine et al., 2023a, b). Building upon 
these results, the primary objective of the current study was to specif-
ically assess the antimicrobial activity of nanoencapsulated carvacrol 
against L. monocytogenes biofilms. The MIC of nanoencapsulated 
carvacrol was determined for the three L. monocytogenes strains by 
measuring the optical density (OD) changes in a microplate reader 
apparatus (Versamax™). Nanoencapsulated carvacrol stock solutions 
were prepared by dissolving carvacrol in a ¼ strength Ringer solution to 
obtain a final concentration of 10 mg mL− 1. Then, one hundred micro-
liters of Tryptic Soy Broth (TSB; Biokar Diagnostics, Pantin, France) 
were transferred to each well of a sterile 96-well polystyrene microplates 
and mixed with 100 μL of serial two-fold dilutions of the nano-
encapsulated carvacrol solution to yield final concentrations ranging 
from 10 to 0.156 mg mL− 1. One hundred μL of the bacterial suspensions 
(106 CFU mL− 1) were then added to each microplate well. Wells without 
nanoencapsulated carvacrol were used as positive controls, while for the 
negative controls, bacterial suspensions were not added. The micro-
plates were subsequently sealed with highly transparent membrane to 
avoid contamination and incubated in a microplate reader at 25 ◦C with 
a continuous agitation according to Argyri et al. (2021) protocol. The 
OD measurements were carried out at 610 nm (OD610) every 10 min for 
24 h (Yammine et al., 2023a, b). MIC values were defined as the lowest 
concentrations of nanoencapsulated carvacrol that inhibited the visible 
growth of L. monocytogenes strains. All tests were done in two replicates. 

2.5. Antibiofilm activity of nanoencapsulated carvacrol 

In order to determine the activity of nanoencapsulated carvacrol on 
the three strains of L. monocytogenes biofilms developed under the 
different acidic conditions, coupons were removed aseptically from the 
glass tubes and were rinsed by pipetting 10 mL of ¼ Ringer solution on 
each side to detach the loosely attached cells. Then, each coupon was 
immersed for 15 min at 20 ◦C in a new glass tube containing 5 mL of the 
nanoencapsulated carvacrol solution prepared in ¼ Ringer solution at 
the MIC determined for each strain. Following the treatment time, 
coupons were withdrawn from the nanoencapsulated carvacrol solution 
and washed twice with 10 mL of ¼ Ringer solution. Then, for the 
quantifications of the remaining biofilms, coupons were transferred to 
centrifuge tubes containing 6 mL of ¼ Ringer solution with 10 sterile 
glass beads and vortexed at maximum speed for 2 min to detach bio-
films. Serial dilutions were performed in ¼ Ringer solution and 100 μL of 
each dilution were plated on TSA plates and incubated at 37 ◦C for 24 h. 

2.6. Statistical analysis 

Each experiment was performed twice using independent bacterial 
cultures and three replicate coupons. The statistical analysis was per-
formed by Analysis of variances (ANOVA) and Tukey's test using the 
Matplotlib software (Version 3.3.4., Python). Values of p < 0.05 were 
considered as statistically significant. 

3. Results and discussion 

3.1. Effect of different acidic conditions on biofilm formation of 
L. monocytogenes cultured in TSB 

In order to investigate the impact of different acidic conditions on 
biofilm formation of L. monocytogenes with variable resistance to low pH 
conditions, biofilms were developed on SS surfaces using the WT strain 
and its two mutants ΔsigB and ΔagrA. When cells from the WT and the 
two mutant strains were developed in TSB at pH levels of 3.5 and 4.5, 
none of them were capable of forming biofilms on SS surfaces (Fig. 1). 
However, at higher pH levels of 5.5 and 6.5, the three L. monocytogenes 
strains exhibited a significant increase (p < 0.05) in biofilm formation 
(4.90–6.05 log CFU cm− 2). Furthermore, a slight increase in biofilm 
formation was observed with increased pH to 6.5 for the three different 
strains (additional 0.06–0.31 log CFU cm− 2). Similar results were 
demonstrated by other studies that showed a significant decline of 
L. monocytogenes biofilm formation at low acidic pH values (below 4), 
and an increase in its formation at higher pH values (Borges et al., 2011; 

Fig. 1. Biofilms of the L. monocytogenes WT strain EGD-e and its mutants ΔsigB 
and ΔagrA grown in TSB acidified to different pH. The dotted line represents 
the detection limit (D.L.), the asterix (*) indicate bacterial counts below the D. 
L., and the letters denote a difference with statistical significance (p < 0.05). 
The error bars represent the standard deviations. 
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Fan et al., 2020; Labidi et al., 2023; Nguyen et al., 2014; Tresse et al., 
2006). The decrease in biofilm formation at lower pH levels can be 
attributed to various factors including alterations in: cell wall compo-
sition, regulation of cytoplasmic proteins, secretion of exopolymeric 
substances, activity of enzymes, and production of flagella and fimbriae 
(Chaieb et al., 2007; Nguyen et al., 2014; Tilahun et al., 2016; Tresse 
et al., 2006; Xu et al., 2010). Moreover, low pH levels can not only 
damage bacterial DNA but can also disrupt the pH gradient of the cell 
membranes (Roy et al., 2021). These changes collectively contribute to 
the reduced ability of L. monocytogenes to form biofilms under acidic 
conditions. 

Furthermore, it is worth noting that at pH levels of 5.5 and 6.5, both 
ΔsigB and ΔagrA mutant strains exhibited significantly decreased (p <
0.05) biofilm formation compared to the WT strain (p < 0.05). The WT 
cells showed biofilm counts of 5.89 and 6.05 log CFU cm− 2 at pH 5.5 and 
6.5, respectively. While, the ΔsigB mutant has reached maximum biofilm 
counts of 5.42 and 5.48 log CFU cm− 2 at pH 5.5 and 6.5, respectively. 
The ΔagrA mutant has achieved even lower biofilm counts of 4.90 and 
5.21 log CFU cm− 2 at pH 5.5 and 6.5, respectively. The reduction in 
biofilm formation observed in the two mutant strains, as compared to 
the WT strain, is likely attributed to the deletion of the sigB and agrA 
genes from the mutant strains. This removal consequently leads to an 
altered expression of essential cell surface proteins that are crucial for 
the attachment of L. monocytogenes to surfaces resulting in a decreased 
ability to develop biofilms (Guerreiro et al., 2022; Hsu et al., 2020; 
Kumar et al., 2009; Pinheiro et al., 2018; Riedel et al., 2009; Rieu et al., 
2007, 2008; van der Veen and Abee, 2010; Zetzmann et al., 2019). 
Moreover, mutations in ΔsigB and ΔagrA have been found to impact 
genes involved in flagellar motility, cell envelope structure, and cellular 
integrity, which in turn affect the viability and adhesion properties of 
L. monocytogenes and further contribute to changes in biofilm formation 
(Dessaux et al., 2021; Dorey et al., 2019; Hsu et al., 2020; Oliveira et al., 
2022; Rieu et al., 2007; Schwab et al., 2005; Zetzmann et al., 2019). 
Furthermore, the deletion of σB in ΔsigB mutant strain has been shown to 
have a clear role in reducing low pH stress tolerance, consequently 
affecting their ability to produce biofilms (Abram et al., 2008a, b; 
Guerreiro et al., 2020). 

3.2. Effect of different acidic conditions and food substrates on 
L. monocytogenes biofilm formation 

The same experiment was conducted on L. monocytogenes biofilms 
developed on SS surfaces in various food substrates with pH ranging 
from 3.5 to 6.5. The food substrates used included apple juice, strained 
yogurt, vegetable soup, and semi-skimmed milk, with pH values of 3.5, 
4.5, 5.5, and 6.5, respectively. The selection of these diverse food sub-
strates aimed to simulate realistic conditions for biofilm development 
within the food industry. It is known that organic substances on food 
contact surfaces can influence bacterial adhesion and subsequent bio-
film formation in processing environments (Campana et al., 2017; 
Lapointe et al., 2019). Biofilm development of the three 
L. monocytogenes strains on SS surfaces was significantly reduced (p <
0.05) in all the tested food substrates compared to the TSB culture media 
(Fig. 2). This decline is likely due to the interaction between the con-
stituents of the food substrates and bacterial cells, preventing them from 
adhering to SS surfaces and forming biofilms (Hamadi et al., 2014). 
Similar findings have been reported in other studies, which observed 
greater Salmonella enterica biofilm formation on SS and polystyrene 
surfaces in TSB culture compared to milk, tomato juice and chicken meat 
juice media (Paz-Méndez et al., 2017). In addition, a study by Hamadi 
et al. (2014) observed a decrease in Staphylococcus aureus adhesion to SS 
surfaces in the presence of milk compared to a clean substratum. 
However, contrary to these findings, other studies have demonstrated 
that Salmonella and Campylobacter tend to develop more biofilms in the 
presence of meat, pork and chicken juices compared to standard labo-
ratory growth medium (Brown et al., 2014; Dhowlaghar et al., 2018; Li 

et al., 2017). This phenomenon was attributed to the capacity of the 
juice residues to act as surface conditioners and provide nutrients that 
support the initial attachment of bacterial cells and subsequent biofilm 
formation (Brown et al., 2014; Dhowlaghar et al., 2018; Li et al., 2017). 
On the other hand, in this study, it should be pointed out that no biofilms 
were developed in apple juice (pH 3.5) and in strained yogurt (pH 4.5) 
for any of the three L. monocytogenes bacterial strains. These findings are 
consistent with those observed in the culture of L. monocytogenes strains 
in TSB at the same pH levels. In the case of vegetable soup (pH 5.5), the 
three strains of L. monocytogenes exhibited considerably lower biofilm 
development (3.04–3.35 log CFU cm− 2) compared to the TSB culture at 
pH 5.5. The highest biofilm count reported at pH 5.5 was 3.35 log CFU 
cm− 2 for the ΔsigB strain, which was not significantly different from that 
of the WT strain (3.04 log CFU cm− 2) and the ΔagrA strain (3.20 log CFU 
cm− 2). The notable reduction in biofilm counts observed in the vege-
table soup could potentially be attributed to the presence of various 
constituents and components that could potentially interfere with 
L. monocytogenes cells, decreasing their ability to adhere to SS surfaces. 
Such interactions could have hindered the formation and development 
of biofilms. In contrast, in the semi-skimmed milk with a pH of 6.5, 
notably higher biofilm counts were observed for the three 
L. monocytogenes strains compared to those in the vegetable soup. The 
ΔagrA strain produced the lowest biofilm counts of 4.23 log CFU cm− 2, 
whereas the WT and ΔsigB mutant strains exhibited significantly higher 
counts of 5.45 and 5.29 log CFU cm− 2, respectively (p < 0.05). This 
indicates that L. monocytogenes strains displayed varying abilities to 
form biofilms in semi-skimmed milk, with the ΔagrA strain demon-
strating the least biofilm development in this particular environment. In 
comparison with the TSB media, the three strains exhibited notably 
higher biofilm counts in semi-skimmed milk compared to those devel-
oped in vegetable soup at pH 5.5, which suggests that the strains have a 
greater propensity for thriving at a higher pH level in the presence of 
food substrate. 

3.3. MIC of nanoencapsulated carvacrol 

MIC of the nanoencapsulated carvacrol was determined against the 
three strains of L. monocytogenes: the WT and the two corresponding 
mutant strains ΔsigB and ΔagrA. Both mutant strains showed lower MIC 
values of 0.31 mg mL− 1 compared to 0.62 mg mL− 1 for the WT strain. 
This indicates that lower concentrations of nanoencapsulated carvacrol 
were required to inhibit the growth of the two mutant strains compared 
to the WT strain. The mutations have led to an increased sensitivity of 
L. monocytogenes to the antimicrobial agent. In ΔsigB strain, the 
increased susceptibility to the nanoencapsulated carvacrol could be 

Fig. 2. Biofilms of the L. monocytogenes WT strain EGD-e and its mutants ΔsigB 
and ΔagrA grown in food substrates with different pH levels. The dotted line 
represents the detection limit (D.L.), the asterix (*) indicate bacterial counts 
below the D.L., and the letters denote a difference with statistical significance 
(p < 0.05). The error bars represent the standard deviations. 
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attributed to the alterations in its cell wall integrity after the deletion of 
the sigB gene that contributes to the maintenance of an intact cell wall 
(Abram et al., 2008a, b; Arcari et al., 2020). This might result in an 
increased permeability to the carvacrol and thus lower concentrations 
would be needed to inhibit bacterial growth. While for the ΔagrA, the 
lower MIC values might be pointed to the alterations in the global gene 
expression in the mutant strain as well as to the significant changes in 
the expression of proteins that participate in the cell wall peptidoglycan 
biosynthesis (Lee and Wang, 2020; Pinheiro et al., 2018). 

3.4. The antibiofilm activity of nanoencapsulated carvacrol against 
L. monocytogenes wild-type and mutant strains cultured in TSB at different 
pH values 

Several studies have been conducted to investigate the antibiofilm 
activity of nanoencapsulated essential oils against bacteria (Gong et al., 
2021; Hasheminejad and Khodaiyan, 2020; Heckler et al., 2020; 
Mechmechani et al., 2022; Moghimi et al., 2018; Sun et al., 2019; 
Yammine et al., 2022a, b; Yammine et al., 2023a, b). However, there 
remains a scarcity of research on the assessment of their effects under 
different acidic conditions. Therefore, in this study, the antibiofilm ac-
tivity of nanoencapsulated carvacrol was evaluated against the WT and 
the two mutant L. monocytogenes strains cultured in TSB with varying pH 
levels of 3.5, 4.5, 5.5, and 6.5. The 48-h biofilms developed on SS sur-
faces in the different media were exposed to the MIC of nano-
encapsulated carvacrol for 15 min. At pH 3.5 and 4.5, neither the WT nor 
the two mutant L. monocytogenes strains formed biofilms in the TSB 
culture media. Consequently, the evaluation of the antimicrobial ac-
tivity of the nanoencapsulated carvacrol was not possible under these 
conditions. On the other hand, the results showed significantly higher 
log reductions for the WT and the two mutant L. monocytogenes strains at 
pH 5.5 compared to pH 6.5 (p < 0.05) (Fig. 3). At pH 5.5, nano-
encapsulated carvacrol resulted in log reductions of 2.87, 3.45 and 3.61 
for the WT, ΔsigB, and ΔagrA strains, respectively. In contrast, at pH 6.5, 
the log reductions observed were of 2.02, 2.79 and 2.95 for the WT, 
ΔsigB, and ΔagrA strains, respectively. These findings demonstrate that 

nanoencapsulated carvacrol exhibited more potent antimicrobial activ-
ity against the biofilms of all three strains at a pH of 5.5 compared to pH 
6.5. The increased susceptibility of biofilms developed at pH 5.5 to 
carvacrol is likely due to the effects of lower pH on the cell physiology, 
cell surface and extracellular polysaccharide properties (Lianou and 
Koutsoumanis, 2012; Roy et al., 2021). Such findings further support the 
notion that nanoencapsulated carvacrol could be particularly advanta-
geous and more effective for biofilm formed in acidic conditions (at pH 
5.5). Furthermore, the considerably higher log reductions observed in 
the ΔsigB and ΔagrA mutant strains formed at both pH 5.5 and 6.5, 
compared to the WT strain, can be attributed to the inappropriate ability 
of the mutant strains to respond to the stress induced by carvacrol, 
which primarily involves disrupting cell membrane function, ultimately 
leading to reduced survival. As a result, the mutant strains exhibited 
greater susceptibility to the effects of the nanoencapsulated carvacrol 
compared to the WT strain. These findings suggest that genes regulated 
by SigB and AgrA are likely to contribute to the normal response to 
carvacrol-induced stress. Further studies will be needed to elucidate the 
precise protective mechanisms these regulators provide against 
carvacrol-induced stress. It is important to highlight that previous 
studies have compared the antimicrobial activity of carvacrol with 
various other antimicrobials, including chlorhexidine, sodium hypo-
chlorite, ozonized water, and enzymes. These studies demonstrated that 
the antimicrobial efficacy of carvacrol is equivalent, if not superior, to 
that of other commonly used antimicrobials (Dev Kumar and Rav-
ishankar, 2019; Masocatto et al., 2021; Mechmechani et al., 2023; 
Sharifian et al., 2009). This underscores the potential of carvacrol as a 
robust and effective antimicrobial agent in comparison to established 
alternatives. 

3.5. The antibiofilm activity of nanoencapsulated carvacrol against 
L. monocytogenes wild-type and mutant strains cultured in food substrates 
at different pH values 

Most of the literature studies have utilized a standard laboratory 
growth media to evaluate the antibiofilm activity of essential oils 
(Adukwu et al., 2012; Aiemsaard et al., 2011; Amaral et al., 2015; da 
Silva Gündel et al., 2018; Siva et al., 2020). While these studies provided 
valuable insights, it is important to explore the effects of essential oils in 
more realistic food matrices which can offer a closer representation of 
the actual conditions found in food processing environments. This 
approach becomes particularly useful as it allows researchers to better 
understand how essential oils could be optimally applied in real-world 
scenarios to combat biofilm formation in the food industry. Therefore, 
in this study, the antibiofilm activity of nanoencapsulated carvacrol was 
assessed against the three L. monocytogenes biofilm strains developed in 
four different foods: apple juice, strained yogurt, vegetable soup, and 
semi-skimmed milk. Each of these food matrices had the same pH values 
mentioned for the TSB media (pH 3.5, 4.5, 5.5, 6.5). Similar to the 
growth in TSB, the WT and mutant strains were not able to develop 
biofilms in apple juice at pH of 3.5 and in strained yogurt at pH 4.5. 
Consequently, the evaluation of the antibiofilm activity of nano-
encapsulated carvacrol was not feasible under these specific pH and food 
conditions. Further investigations were carried out for the two other 
foods with higher pH, where biofilms were successfully developed. 
Consistent with the findings in the TSB culture, both the WT and ΔsigB 
strains of L. monocytogenes exhibited higher log reductions for the bio-
films developed at pH 5.5 compared to pH 6.5 (Fig. 4). In contrast, the 
ΔagrA strain showed a log reduction of 2.3 at pH 5.5 compared to 2.5 
logs at pH 6.5. Notably, higher removal ratios were observed for both 
the WT and ΔsigB strains in vegetable soup (pH 5.5) (0.74 and 0.86, 
respectively) compared to TSB (0.48 and 0.63, respectively) at the same 
pH value, while almost identical removal ratios were noted in the semi- 
skimmed milk (pH 6.5) (0.29 and 0.43, respectively) compared to TSB at 
pH 6.5 (0.33 and 0.50, respectively). Additionally, for the ΔagrA strain, 
nearly similar removal ratios were reported in food substrates and in 

Fig. 3. Effect of nanoencapsulated carvacrol on the removal of the 
L. monocytogenes WT strain EGD-e and its mutant ΔsigB and ΔagrA biofilms 
grown in TSB adjusted to different pH levels. The letters denote a difference 
with statistical significance (p < 0.05). The error bars represent the stan-
dard deviations. 
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TSB at both pH values of 5.5 (0.71 and 0.73, respectively) and 6.5 (0.59 
and 0.56, respectively). These findings do not conclusively determine 
whether the nanocapsules antibiofilm activity is more pronounced on 
biofilms developed in food substrates or in TSB culture media. Other 
studies reported a reduced efficiency of essentials oils against bacteria 
when grown in food media compared to standard laboratory growth 
media (Baranauskienė et al., 2006; Gutierrez et al., 2008, 2009; Hsieh 
et al., 2001; Shah et al., 2013; Ultee and Smid, 2001; Valero and Sal-
merón, 2003). This diminished effectiveness can be attributed to the 
presence of food components, particularly those rich in proteins and fats, 
which were found to have contrasting effects on essential oils when 
present together (Gutierrez et al., 2008, 2009). They could either 
interact with the essential oils, altering their chemical properties and 
reducing their antimicrobial activity, or act as a protective barrier for 
bacterial cells, limiting the contact between essential oils and bacteria, 
and thus diminishing their antimicrobial efficacy (Gutierrez et al., 2009; 
Hsieh et al., 2001; Shah et al., 2013; Ultee and Smid, 2001; Valero and 
Salmerón, 2003; Yammine et al., 2022a, b). Therefore, to comprehen-
sively understand the antibiofilm activity of nanocapsules, further 
research and experimental studies are still needed. 

4. Conclusions 

The present study reveals the importance of evaluating the growth 
and removal of L. monocytogenes biofilms developed at different pH and 
within food matrices mimicking real food applications, rather than 
solely assessing standard laboratory media conditions. Overall the 
findings of this study highlight the potential role of nanoencapsulated 
carvacrol as an effective antimicrobial agent against L. monocytogenes 
biofilms, especially when formed in acidic environments. The results 
contribute to the development of novel strategies for controlling bio-
films in food processing environments, with a focus on optimizing the 
application of nanoencapsulated essential oils for enhanced control and 
food safety. It would be interesting to study in future research the same 
food matrices at different pH levels. This approach would help to further 
understand how food constituents can modify the chemical properties 

and antimicrobial effectiveness of encapsulated essential oils. Another 
aspect that warrants further evaluation is the potential presence of 
essential oil residues, which could have an impact on the organoleptic 
properties of food products. It should, however, be noted that nano-
encapsulation of these essential oils has the potential to significantly 
reduce the concentrations used, thereby mitigating their effects on the 
food products. Further research in this area could pave the way for 
innovative and sustainable approaches to combat biofilm-related issues 
in the food industry. 
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NicAogáin, K., O’Byrne, C.P., 2016. The role of stress and stress adaptations in 
determining the fate of the bacterial pathogen Listeria monocytogenes in the food 
chain. Front. Microbiol. 7 https://doi.org/10.3389/fmicb.2016.01865. 

Oliveira, A.H., Tiensuu, T., Guerreiro, D.N., Tükenmez, H., Dessaux, C., García-del 
Portillo, F., O’Byrne, C., Johansson, J., 2022. Listeria monocytogenes requires the 
RsbX protein to prevent sigB activation under nonstressed conditions. J. Bacteriol. 
204 (1) https://doi.org/10.1128/JB.00486-21 e00486-21.  

Paz-Méndez, A., Lamas, A., Vázquez, B., Miranda, J., Cepeda, A., Franco, C., 2017. Effect 
of food residues in biofilm formation on stainless steel and polystyrene surfaces by 
Salmonella enterica strains isolated from poultry houses. Foods 6 (12), 106. https:// 
doi.org/10.3390/foods6120106. 

Pinheiro, J., Lisboa, J., Pombinho, R., Carvalho, F., Carreaux, A., Brito, C., Pöntinen, A., 
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