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A B S T R A C T

The possibility of automatically aligning the transmission electron microscope (TEM) is explored using an
approach based on artificial intelligence (AI). After presenting the general concept, we test the method on
the first step of the alignment process which involves centering the condenser aperture. We propose using a
convolutional neural network (CNN) that learns to predict the x and y-shifts needed to realign the aperture
in one step. The learning data sets were acquired automatically on the microscope by using a simplified
digital twin. Different models were tested and analysed to choose the optimal design. We have developed a
human-level estimator and intend to use it safely on all apertures. A similar process could be used for most
steps of the alignment process with minimal changes, allowing microscopists to reduce the time and training
required to perform this task. The method is also compatible with continuous correction of alignment drift
during lengthy experiments or to ensure uniformity of illumination conditions during data acquisition.
1. Introduction

A transmission electron microscope (TEM) is a powerful but com-
plex instrument. Before observations can be carried out, the microscope
needs to be aligned correctly. This alignment can take dozens of min-
utes and is highly dependent on the user’s expertise and desired level
of performance. Sometimes alignment fails and a more experienced
operator is required for assistance. Even for experienced users, many
different modes of operation are now available, each of which has its
particular requirements. In fact, particularly complex elements, such
as imaging spectrometers and aberration correctors, have their own
alignment procedures. Another issue is that for lengthy experiments,
alignments drift. The microscope configuration should therefore be
adjusted continually to maintain comparable observation conditions
across a whole series of data acquisitions. All these reasons have led to
research over the years to introduce automated alignment procedures
by computer control; and only through alignment automation can fully
automated workflows be realized.

Early work focused on correcting the aberrations associated with the
objective lens [1–3]. Further developments only truly became viable
with the introduction of high-performance digital cameras (now con-
sidered an essential part of automation) in the form of slow-scan CCD
cameras [4,5]. In fact, without some kind of automation, aberration
correction in TEM would have been impossible due to the complexity

∗ Corresponding author at: CEMES-CNRS, 29 rue Jeanne Marvig, Toulouse, 31055, France.
E-mail address: loic.grossetete@cemes.fr (L. Grossetête).

of aligning the multiple elements that make up a corrector [6]. Aut-
ofocus and astigmatism correction are now integrated into automated
image acquisition workflows, notably in cryo-electron microscopy (for
a review, see [7]). Despite these advances, the available automation
solutions remain incomplete and fragmented. The application is often
too specific — to the microscope, the particular microscope component,
the specimen, or the type of data to be acquired — to be used more
generally. We would also like corrections to be made dynamically,
on the fly [8], to compensate for optical and specimen drift in real-
time through feedback control of the microscope [9]. The processes
therefore need to be fast, faster than the drift in the alignments, and
computationally light to avoid interference with observations or data
acquisition underway. Traditional algorithms have to be custom-made
for each alignment step and are hard to adapt from microscope to
microscope. Indeed, they are not used outside of some very specific ap-
plications. It is therefore interesting to investigate whether an approach
based on artificial intelligence (AI) could better address the issues of
generality and speed.

New algorithmic solutions to similar issues are emerging from the
machine learning community, for example, for image processing. Con-
volutional neural networks [10–14], in particular, allow image ex-
traction and could be used to predict the modification to perform on
the microscope configuration to correct the alignment. Convolutional
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Neural Networks (CNNs) are a family of deep learning models inspired
by the human visual system that is revolutionizing image analysis.

NNs work by hierarchically extracting features. They are composed
f several layers, including convolutional layers that identify different
haracteristics within an image, pooling layers that reduce spatial
imensions of the data, and fully linked layers that extract information.

Deep learning, and more specifically CNNs, are already being used
n electron microscopy for various tasks [15,16] such as noise re-
oval [17], segmentation [18] and compressed sensing [17]. By scan-
ing the input image with filters, convolutional layers extract infor-
ation such as edges, textures, and patterns. Using these traits to

enerate higher-level representations, the network can then identify
omplex structures in electron microscope images. Concerning align-

ment, deep learning has been applied to autofocus in scanning electron
microscopy (SEM) [19], but the most significant development is for the
configuration of specific components such as an orbital angular electron
sorter [20]. There are also reports of use for aberration correction [21,
22].

The main difficulty in applying machine learning methods, and
ndeed traditional methods, to microscope alignment is that a great
umber of parameters are involved (as can be seen Fig. 1), including
igh tension, gun, apertures, lenses, stigmators, deflectors, goniome-
er(s), detectors and additional elements like biprisms, phase plates and

spectrometers. Furthermore, many parameters can take a large range
of values leading to a stupendous number of possibilities. A random
configuration would most likely produce a beam that does not reach
the screen. Another difficulty is that a single image might not contain
ll the information necessary to correct the configuration, for example,
he beam tilt with respect to the detector. Unleashing an AI model

blindly on the microscope to learn by itself is, maybe, too ambitious for
he moment. We therefore first looked at the way that a microscope is
urrently aligned by humans.

The alignment of the microscope is decomposed into several steps,
n general starting at the gun and working down (see e.g. [23] and

Fig. 1). Alignments are achieved by fluctuating the currents in one
lement (‘‘wobble’’) or sweeping a range of values, and observing the
ffect on the image. The microscopist is left to decide in which direction

to adjust the currents to achieve the desired result, for example, the
beam pulsing on itself or minimizing image shift. The advantage of
this procedure is that very different kinds of alignment can be achieved
similarly, from gun tilt and condenser aperture alignment to correcting
astigmatism and beam tilt: the alignment procedure is more general
and easier to learn. Since AI is supposed to ape humans, then possibly
models should learn in the same way.

In this paper, we will focus on the centring of the condenser
aperture as a manageable but representative task. We will train deep
convolutional models to predict the displacement of the aperture.
However, the experimental dataset required for training must, how-
ver, be acquired within a reasonable time, automatically, and without
amaging the microscope or detector. At all stages, we will attempt to
eep the approach as general as possible to imagine aligning the other
lements with minimal changes. If the machine can be demonstrated
o equal the human operator, even an expert, in speed or accuracy, the

methodology is worth pursuing.
Our long-term goal is to use artificial intelligence to automate

the TEM alignment process and possibly extend this work to assist
microscopists during their experiments in maintaining ideal conditions
for sample study.

2. Experimental details

Experiments were carried out with the I2TEM microscope, an
F3300-C (Hitachi HT) [24] (Fig. 1), specifically designed for labo-

ratory needs in in-situ and interferometry. The microscope is equipped
with a cold-field emission gun (C-FEG), multiple biprisms (one in the
2 
illumination system and two post-specimen), two independent speci-
en stages (an additional Lorentz stage above the objective lens), a

wide field of view imaging aberration corrector (B-COR, CEOS), a direct
electron detector (K3, Gatan) and imaging spectrometer (Quantum ER-
965, Gatan). A standard carbon grid was inserted in the conventional
specimen stage and the microscope was operated at 300 kV.

Communication with the microscope is through TCP (Transmis-
ion Control Protocol). Using the details kindly provided by Hitachi
igh-Technology, we were able to develop our own application pro-
ramming interface (API) to communicate directly with the microscope
erver [25]. Corresponding libraries of commands were created to allow

the microscope to be controlled through DigitalMicrograph (Gatan) or
Python scripting.

The latter option was used to program automatic acquisition of
experimental training datasets. We chose to run these scripts outside
of DigitalMicrograph, acquiring images through screen capture 1 (on
the right) in a region defined by the user. There are several reasons
for this. Firstly, the implementation should be directly transferable to
microscope setups using any other image acquisition software and runs
independently to the normal control of the microscope. Secondly, the

icroscopist can easily change the acquisition from the image to, for
xample, a live fast-Fourier transform (FFT) on display. Finally, the
nformation received by the model is identical to that of the human
perator. There is about a half-second delay between the capture and
he transfer of the acquired image, which is manageable.

Simulated datasets were also produced using a previously developed
igital twin of the I2TEM microscope [25,26]. Ray paths are calculated

using the paraxial approximation, which is sufficient for our current
purposes (Fig. 1). Although simulations are not an accurate representa-
tion of experimental images, they are useful to rapidly test the viability
of different CNN architectures.

On top of that, we designed simulations to predict the path of the
lectrons inside a TEM similar to the I2TEM (Fig. 1 on the left) [25].

This greatly helps to produce large quantities of data, to test new solu-
tions fast, and continue working when the microscope is not available.
We also hope to use it as a base for transfer learning [27,28] in the
uture. Transfer learning is the ability to use a model pretrained on the

simulation data to make the real training faster with fewer microscope
images.

All Python scripts were developed for Python 3.9, the machine
earning models are implemented using TensorFlow.

3. Aperture alignment

Before tackling the issue at hand, we developed a proof of concept
ith the aim of trying to find the configuration used to generate images

hrough deep learning. Although we will not detail the results here,
hey allowed us to gain key insights regarding the project’s feasibil-
ty and to the performances we could expect from CNN’s, especially

since predicting the whole configuration shift would probably be too
ifficult. We, therefore, chose to develop a solution mimicking human
ehaviour of aligning the column component by component to adjust
nly a couple of parameters at a time. In this paper, we are showcasing
he method we developed on aperture alignment but the process would
e very similar for the rest of the column.

The first alignment step is the centring of the condenser aperture.
A human can perform this task by first ‘‘wobbling’’ the condenser lens
current and determining whether or not the spot on the images remains
centred. The aperture is then moved by an 𝑥/𝑦 shift on the control
panel, wobbling after each change, until the beam pulses on itself.
The choice of shift direction and final acceptability are subjective and

guided by experience.
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Fig. 1. (a) Simplified schema of the I2TEM, (b) Data Acquisition process with the I2TEM, (c) I2TEM image retrieving.
3.1. Traditional algorithms

Before describing the AI implementation, it is interesting to consider
the possibility of using more traditional computing methods, notably
for the analysis of a set of images with different values of condenser
lens currents. The diameter and position of the beam would first need
to be determined. Secondly, the sizes and positions would have to be
ordered and analysed to determine the central position of the wobble,
where the beam is the smallest. Finally, this position would have to
be converted into an x/y displacement of the aperture. Whilst this
procedure seems simple, there are a number of technical difficulties
associated with each step once we enter into the details. For example,
the beam might not always be entirely on the detector, resulting in
part of the beam being cut off. Neither is the beam (or aperture)
always perfectly circular or indeed clearly delineated if the aperture
is out of focus. The determination of beam size and position would
have to deal robustly with such cases. Even the determination of the
centre of the wobble could become inaccurate because of the need for
extrapolation when the recorded images miss the in-focus position. The
most delicate part, however, involves the conversion of the in-focus
3 
position recorded on the detector into an 𝑥 and 𝑦 shift of the aperture.
Only extensive calibration could address this issue. The implementation
would therefore be highly specific to the task and difficult to generalize.
And, finally, to our knowledge, traditional methods have not been
implemented for the alignment of the condenser aperture, possibly for
these reasons.

On the other hand, machine-learning-based methods do not face the
same issues. The prediction of the shift is computed using the same kind
of information available to humans. If a model performs well, it means
that the difficulties have been overcome without the need to adapt
the process for each problem. If after deployment another difficulty is
discovered, the model can be retrained using examples showcasing this
specific issue and the model should generalize. Training can be accom-
plished during microscope downtime and performance can be improved
continually without changing the basic algorithms, unlike traditional
solutions. Furthermore, transfer learning should significantly reduce
the data collection time. Most important though is the possibility of
generalizing the solution to the other alignment tasks, such as focus,
and pivot-point alignment. Some kind of adaptation will certainly be
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Fig. 2. Example of images in dataset 13. Series (a) is aligned, (b) is slightly misaligned and (c) is very misaligned. For each series, the seven first images correspond to different
wobble values and the eighth is the stacked image.
necessary but not on the scale of more traditional solutions. But if AI-
based methods fail on the very first step of the alignment process, there
is of course no point in hoping for a general solution.

3.2. Datasets

Experimental datasets were acquired corresponding to the task at
hand. We started with an aligned aperture and then changed the
position of the aperture by a known 𝛥𝑥 and 𝛥𝑦 resulting in a known
misalignment of the aperture. We then acquired 7 images at varying
values for the 𝐶1 (condenser) lens current. The choice in the number
of images to be taken is arbitrary but is a compromise between the
time cost and the expected gain in accuracy. The maximal displacement
values were selected to keep the beam visible in most images. This
allowed us to make datasets linking an ideal 𝛥𝑥 and 𝛥𝑦 to a 7-layer
image. Experimental examples are shown in Fig. 2.

The first row (series A) is the decomposition of the seven different
images corresponding to the aligned state, with the condenser lens
varied linearly about the original value, C1, starting at 0.9 C1 to 1.1
C1. Each image was taken with a two-second delay to allow for the
configuration to be stable again after changing the lens current. The
last image displayed on the right is a composite image representing
the sum of the seven individual images, where we see more clearly the
concentric nature of the images. Note that we chose to use the smallest
condenser aperture in the initial tests to avoid any chance of damaging
the detector. This precaution was, in fact, later found to be unnecessary
and explains the strong Fresnel fringes but we do not know if it impacts
the model predictions.

Introducing a displacement (such as Series B and C in the second
and third row of Fig. 2) means that the circles are no longer concentric.

Since the displacement of the aperture is mechanical, and hence
inherently slower than a current change, rather than choosing random
positions in a random order, the displacements were chosen in a spiral
(see Fig. 3), scaled with respect to the maximum displacement. The
algorithm was designed to guarantee a good coverage of the parameter
space as well as proximity between successive points:

The different experimental dataset are described in Table 1, most
had 127 positions of the aperture, including the aligned position, each
associated with a set of 7 wobble images. The maximum 𝛥𝑥 and 𝛥𝑦
used for the aperture position is given for the outermost point on the
4 
Table 1
Descriptions of the datasets collected on the I2TEM.

Dataset Number of samples Delta x/y Wobble

N◦ 14 84 240 3%
N◦ 13 127 240 3%
N◦ 10 127 240 3%
N◦ 6 127 200 2%

spiral. The maximum possible displacement for this aperture was ±1000
(arbitrary units) and we chose between 150 and 250 because starting
from an aligned position, a greater displacement would have caused
the beam spot to be outside of the camera’s view when wobbling. The
wobble value represents the percentage variation of the condenser lens
current around its initial position. (If the C1 value is 1.2 and wobble
is 3% then the values for C1 will be [1.2 – 0.036, 1.2 – 0.024, 1.2 –
0.012, 1.2, 1.2 + 0.012, 1.2 + 0.024, 1.2 + 0.036]).

It should be noted that dataset N◦ 6 is different than the others
on many aspects to allow us to test the model robustness against such
changes. In particular, it is wobbled by only 2% of the condenser lens
value and contrary to the others, the wobble is not centred around
maximal convergence implying a very different set of images. Also,
it was taken two days later introducing a potential drift in the ideal
configuration. Other datasets were acquired but were deemed of insuf-
ficient quality for different reasons (see Supplementary Materials for
more information).

3.3. CNN architecture

All the CNN we tested had similar architecture to the proof of con-
cept: a first group of convolution, dropout, and pooling layers followed
by a group of dense layers to process the information extracted by the
convolutions (Fig. 4). The model shown is, in fact, the best-performing
CNN, the selection of which is now described.

3.4. Training and evaluation

Models were trained on 80% of the data and tested on the remaining
20% unless otherwise specified. The RMSE was defined as a percent-
age with respect to the maximum range of 1000 for the aperture. A
human operator is happy to align the aperture to within 20 units of
displacement, which represents an RMSE of 2%. As for the proof of
concept, we know that the model is training well if the RMSE between
the predicted parameters and the ground-truth parameters decreases
steadily with epochs.

To find the best model for our needs, we compared the performance
of different candidates trained and tested on dataset N◦ 14. The result-
ing RMSE after 200 epochs of training are shown in Fig. 5 for a selection
of the models. The first column shows the fully connected network,
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Fig. 3. (a) Example of aperture coordinates (normalized) used for training where the aligned configuration is at (0.4, 0.6); (b) the normalized 𝛥𝑥∕𝑦 to predict.
Fig. 4. Architecture of the model used in this paper.

which is not in fact a CNN as per se, but is included for comparison
purposes. The next column is the initial CNN we built, which will be the
initial model for further modifications. The red dotted line corresponds
to its average performance (2.5% RMSE); models above and below this
line thus either under- or out-perform the initial CNN. We changed just
5 
Fig. 5. Performances of different model architectures tested on dataset 14. Each
cross represents one training over 200 epochs of the given model and the median
performance is high. The dotted line (red) indicates the median performance (2.5%
RMSE) of the initial model (CNN). The logarithm of the loss is used here for clarity.

one feature of this model at a time and tested the performance (results
shown in the succeeding columns). For example, we varied the use
of dropout layers, number of convolution/max-pooling layers, batch
normalization [29], some optimizers (not shown here, see Appendix A
for further details), and different activation functions. Full details of
the different models can be found in Appendix A. We then combined
all the characteristics that enhanced the model architecture into one
final model.

We can see that although the performance of the initial model is
fairly consistent, there are still 10% to 15% of the training sessions
which fail. This is not the case when other activation functions are
used such as ‘LeakyReLU’ or ‘tanh’ which is called the ‘‘dying ReLu’’
problem [30]. From those we chose to use ‘LeakyReLU’ for all layers
since it performed better. Better results were obtained using a CNN
with higher rather than lower depth. Similarly, the model with more
dense layers performs consistently better than models with fewer dense
layers, although the median performance is only marginally better.
Changing the activation function to LeakyReLU or Tanh produces good
results with no outliers, whilst Sigmoid did poorly on average despite
a few training reaching low losses.

Batch normalization (usually used to stabilize training) only seemed
to deteriorate the model performances.
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Fig. 6. Performances of different model architectures tested on dataset 14 and 13. The
dotted line indicates the average performance of the initial CNN. In red for N◦ 14: 2.2%
RMSE and in blue for N◦ 13: 2.7% RMSE.

Table 2
Performances of the model on all datasets.

Dataset N◦ samples 𝛥𝑥∕𝑦 Wobble Median RMSE Real 𝛥

N◦ 14 84 240 3% 1.37% 14
N◦ 13 127 240 3% 1.94% 19
N◦ 10 127 240 3% 2.64% 26
N◦ 6 127 200 2% 1.53% 15

N◦ 10/13 254 240 3% 1.93% 19
N◦ 10/13/14 338 240 3% 2.75% 28
N◦ 10/13/14/6 465 240 2%–3% 2.72% 27

We therefore created a model combining all improvements made
on the first model by applying all the changes that improved its
performances (more CNN and dense layers as well as LeakyReLu) and
did 30 runs to see if it would show an improvement over the initial
CNN and the results are shown in Fig. 6.

We can see that the best results are obtained with the final model.
Very similar results were obtained when these CNN were tested on
dataset N◦ 13.

3.5. Model performances on each dataset

Having chosen the best model, we trained and tested it on the other
datasets. To enlarge their number we also created merged datasets from
the initial set (Table 1). The model was trained on each dataset 20 times
during 200 epochs and the median performance was determined. The
results are summarized in Table 2 and Fig. 7.

The model reaches a performance comparable to that of an experi-
enced operator (2% RMSE) on all of the datasets, better performing on
most and underperforming on one of the original datasets (n◦ 10) and
two of the merged datasets (n◦ 10/13/14 and n◦ 10/13/14/6). The
model is also reliable, with only one case of a bad outlier (n◦ 6) in
thirty training per dataset which is probably explained by bad luck on
the data selected for the testing set.

The variation in performances between the different datasets is most
likely due to the inherent quality of the dataset which depends on a
lot of variables such as the drift of the ideal configuration with time,
the contrast, the initial condenser lens value etc... The small sample
size can also cause variations, especially for the same dataset which is
highlighted by the fact that the models trained and tested on merged
datasets seem to perform more consistently. It means that luck plays a
bigger part in the recorded performances on single runs.
6 
Fig. 7. Performances of the model on all datasets used.

Fig. 8. Performances of the model depending on the number of training samples on
the dataset n◦ 10/13/14.

3.6. Impact of dataset size

To assess the importance of the size of the dataset, we trained the
network on one of the largest datasets (n◦ 10/13/14) but with a fewer
and fewer number of configurations. The results are shown in Fig. 8.

We can see that the network probably still has room for improve-
ment if more data could be provided.

3.7. Generalization

The previous tests show that the network can predict the alignment
needed in a similar scenario to the one it was trained for. However, the
final goal is that the trained model performs well on other days and for
other configurations of the lens.

To investigate how well models might generalize we used the model
trained on the dataset N◦ 10/13 and applied it to the dataset N◦ 14
which is similar (taken just after the datasets N◦ 10 and 13 and with
the same parameters) as well as the N◦ 6 which was collected two days
later with a slightly different configuration and different parameters.
The results are shown in Table 3 and Fig. 11.

We see that the model performs remarkably well on a similar dataset
(N◦ 14), better than the training dataset (N◦ 10/13), even though
the cold-field emission gun was flashed between dataset acquisitions.
Good performance is obtained for the dataset taken on a different day,
multiple flashes, different alignment and under different conditions (N◦
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Table 3
Test of generalization: performance of the model trained on dataset N◦ 10/13 applied
to datasets N◦ 10/13, N◦ 14 and N◦ 6.

Dataset RMSE Real difference

N◦ 10/13 2.15% 22
N◦ 14 0.51% 5
N◦ 6 2.90% 29

Fig. 9. Schematic representation of AI correction.

6). The amplitude of the wobble was smaller than the training dataset
for example despite some outliers. The outliers are a natural occurrence
for such models despite causing an issue. If the image is not perfectly
stable during acquisition or sometimes due to the imperfect training of
the model.

3.7.1. Automatic alignment test
Considering these promising results, we wondered whether a fully

automated alignment scheme could function on the microscope. We
therefore set up the scheme shown in Fig. 9.

The program automatically acquires a wobbled series of seven
images, the model predicts the position of the aperture with respect
to an aligned state and the correction is communicated back to the mi-
croscope. A further wobbled series of images is automatically acquired
to confirm the accuracy of the alignment.

We tested the model trained on dataset N◦ 14 on a misaligned
configuration. The composite image of the wobble before and after
automatic alignment is shown in Fig. 10.

A more quantitative idea of the performance can be appreciated
in Fig. 11. This shows how the model trained on dataset N◦ 10/13
performed, comparing the injected misalignment with the results after
correction. The AI performs well even when applied on a different
initial configuration.

4. Discussion

For the alignment scenario tested here, there is probably no point
in improving the model further. Indeed, the initial model performed
to a near human level already. The most significant improvement
involved the activation functions, making the model more reliable. We
also chose to train the model on the minimum of data. The datasets
7 
could be easily increased by an order of magnitude by increasing the
time spent on the microscope from 30 min to 5 h. Another order of
magnitude would be more difficult perhaps, without decreasing the
time between acquisitions. If we could accept blurred images (notably
during wobble), or not completely stabilized configurations, another
order of magnitude could be achievable. This would allow more data
for a particular configuration or more configurations to be tested.

The performances shown by the model trained on dataset 10 and
13 on dataset 6 show that the technique is resilient since dataset 6 is
very different from the others. It would still be useful to stress-test the
model in the future with configurations and therefore images varying
considerably from the training data, especially with lower signal-to-
noise ratio or with completely misaligned configurations. It would also
be interesting to carry out tests using the more commonly used larger
aperture size.

The initial configuration was set by a human operator. The magni-
fication was notably adjusted so that the wobbled images were visible
on the screen. A higher level of automation could therefore require
a routine that adjusts the initial conditions, or possibly an iterative
use of AI. Currently, the model predicts the position of the aperture
in one go, so there is plenty of opportunity for exploring a sequence of
adjustments. There remains, however, the general but difficult problem
that there is no easy evaluation of whether the AI makes a mistake.

The generalization of the current scheme to other elements in the
column needs further consideration. One point that should be addressed
is the range of certain parameters, some having an intrinsic range
of values beyond most uses. For the example studied here the x/y
position of the aperture is coded by an integer in the range [−8 388 608,
8 388 607] when for a given hole, the effective range would only be in
the thousands. Normalizing on the whole range would therefore lead
to a loss in accuracy and we would probably require more data and
a dynamic adjustment of the learning rate of the optimizer. Without
changing the general approach the ranges of reasonable values for the
parameters need to be predefined in some way, ideally automatically.

Still, the results are promising since most elements to align do
follow a similar alignment method and most only concern electrical
adjustments rather than mechanical ones. There is also the exciting
possibility to use real-time training through reinforcement learning
(RL) which could allow the model to do trial-and-error to obtain the
ideal configuration as well as to explore the configuration space to get
more information than what the current model can see. An ensemble
of metrics about the output image could be developed, such as mag-
nification, position of the sample, focus etc. . . , that a reinforcement
model [31–33] could use as a goal. This would allow the user to set
a goal for the network which would then stabilize the configuration
during the experiment to maintain the conditions imposed by the goal.

5. Conclusion

We demonstrated the possibility of using machine learning to ac-
complish part of the microscope alignment, in this case, the condenser
aperture. The method was designed to be general and should be ex-
tendable to other alignment processes as well as to other microscopes.
Although it is still imperfect, the model’s performances are similar to
a human and should improve using more training data. Further tests
are still needed to ensure that the method will continue working as
the microscope’s optimal parameters shift over time to avoid the need
for periodic retraining. However, it still shows a surprising adaptability
even when the images used are very different from the images used
in the training set. It may then be possible to combine routines to
completely align the microscope automatically and stabilize imaging
conditions during experiments.
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Fig. 10. Example of alignment provided by a model trained on dataset 14 directly on the microscope after the operator set a misalignment. (a) Before alignment using the model,
(b) after alignment. Different colours were used for each image (the model sees them as 7 layers) and the aligned one only has 4 images for readability.

Fig. 11. Visualization of the correction provided by the model, trained on dataset N◦ 10–13, on dataset N◦ 14 (a) and (c) are the normalized 𝑥/𝑦 positions of the aperture of
datasets N◦ 14 and N◦ 6 respectively, while (b) and (d) are the aperture normalized 𝑥/𝑦 positions after correction by the model. The red cross corresponds to the ideal correction.
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Fig. A.12. Simple CNN model.
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Appendix A. Model architectures

This appendix describes in detail all the models used in the main
article.

A.1. Main model used in the paper

The initial model against which we tested all variants is the one
described in Fig. A.12. This is a Convolutional Neural Network taking
256 × 256 pixels images where the channels traditionally associated
with colours are replaced with the 7 grayscale images corresponding
to the different values of the first condenser lens.

The model is sequential and starts with a combination of con-
volution layers followed by max pooling layers. The first applies 𝑛
9 
convolution filter to the image of kernel’s shape (𝑥, 𝑦) before using the
activation function defined (here ReLu) and the second reduces the size
of the input data by taking the maximum value for patches of a feature
map and, uses it to create a smaller feature map.

Then it follows with a few convolution layers without pooling
followed by a flattening layer which transforms the (𝑘, 𝑘, 𝑑) array by
a vector of size 𝑘 ∗ 𝑘 ∗ 𝑑.

Finally, there is a succession of Dense layers which take an input
vector of size 𝑛 and multiply it by a (𝑛, 𝑛) matrix before applying the
activation function defined (here ReLu).

For this model and unless specified otherwise for the other models,
the optimizer used is Adam and the loss is the mean squared error.

The code for the model is the one described in

A.2. Other variants

A.2.1. Fully connected
The fully connected variant A.13 directly flattens the image and uses

dense layers to predict the output.

A.2.2. Dropout
The dropout variant A.14 adds dropout layers after some convolu-

tion/max pooling layers which can help the model with generalization
in some cases. The dropout layer hides a fraction of the layer param-
eters to prevent the model from relying too much on some part of the
input and encourages it to fully exploit the data.

A.2.3. Batch normalization
The batch normalization variant A.15 normalizes its input during

training through re-centering and re-scaling. The exact reason why it
sometimes helps with the training remains still unclear.
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Fig. A.13. Fully connected model.
Fig. A.14. Dropout model.
Fig. A.15. Batch normalization model.
Fig. A.16. High depth convolution model.
A.2.4. Depth in the convolution layer
The exact number of convolution layers is also an important param-

eter which depends on numerous other parameters such as the size of
the dataset, the type of images used, etc... We tried two variants of the
initial model, one with one less convolution layer and one with one
more as can be seen Figs. A.16 and A.17.
10 
A.2.5. Depth of the dense layers
Another important factor is the number of dense layers used to

process the output of the convolution layers. We tried two variants,
one with less dense layers and one with more dense layers as can be
seen Figs. A.18 and A.19.
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Fig. A.17. Low depth convolution model.
Fig. A.18. High depth dense layers model.
Fig. A.19. Low depth dense layers model.
A.2.6. Activation function
An important factor in the performance of the model is the chosen

activation functions. Many layers have a step after they sum the influ-
ence of different input values to form an output value where they pass
the resulting value through an activation layer which allows control
over the range of the output value and helps break linearity. We tested
different variants for the different layers involved as can be seen in
Figs. A.20, A.21, A.22 to compare with the ReLu activation function
used in the default cnn model.

A.2.7. Optimizers
We tried different optimizers for the CNN, optimizers are used to

determine how new training samples update the weight inside the
model and there are a lot of possibilities. In this article, we tried on
the initial CNN:

• Adam(0.01)
• Adam(0.001)
• Adam(0.001)
• Adadelta
11 
• Adamax
• Adagrad
• Sgd
• Nadam
• Rmsprop
• frtl

A.2.8. Final model
Given the results of the first experiment which can be seen in

Fig. A.23, we decided to create a model with all the properties which
enhanced performances.

The new model presented in Fig. A.24 was then tested against the
best models of the previous experiment and the results are presented
in Fig. A.25.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ultramic.2024.114047.

https://doi.org/10.1016/j.ultramic.2024.114047
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Fig. A.20. Tanh activation model.

Fig. A.21. Sigmoid activation model.

Fig. A.22. LeakyReLu activation model.

Fig. A.23. Performances of different model architectures on dataset 14.
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Fig. A.24. Final model.
Fig. A.25. Performances of the best model architectures on dataset 14.
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