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Abstract. The emerging field of convective organization has
attracted significant attention due to its potential implications
for weather and climate. Numerous indices have been devel-
oped to identify organization of convection, serving as essen-
tial tools for advancing our understanding in this area. Be-
cause of the large number of these indices, many results on
convective organization are still uncertain, and different stud-
ies have shown diverging results. The present analysis stud-
ies and compares nine object-based indices in order to eval-
uate their ability to quantify organization. The analysis be-
gins by establishing a set of criteria expected for convective
organization and subsequently subjecting the indices to as-
sessment against these benchmarks. The criteria are grouped
into three categories. The first category tests the robustness
of the indices against noise. The second category evaluates
their sensitivity to the size and position of the convective ob-
jects. The third category assesses their dependency on the
specific characteristics of the dataset in use. Among the in-
dices scrutinized, none fulfill all the desired conditions, and
some conditions are only marginally satisfied. Therefore, we
developed a new index, called the Organization Index based
on Distance and Relative Area (OIDRA), as an example of a
well-behaving index. The unmet conditions and differences
between indices can explain the discord between different
organization studies. The results come down to a guideline
that will help to advance our description of deep convective
organization.

1 Introduction

Atmospheric convection is a fundamental process charac-
terized by the vertical movement of air masses within the
Earth’s atmosphere. As the sun heats the Earth’s surface,
warm air rises, transporting heat and moisture through the
atmosphere. This upward motion triggers the formation of
clouds and weather phenomena, playing a crucial role in
shaping our planet’s weather and climate. In radiative–
convective equilibrium simulations, convection shows a ten-
dency to cluster horizontally as time passes. This behav-
ior was firstly pointed out by Held et al. (1993), and then
it was confirmed in several other studies (e.g., Tompkins,
2001; Bretherton et al., 2005; Wing and Emanuel, 2014).
Because of this feature, clustered convection is referred to
as aggregated or organized convection, or convective orga-
nization. In recent years, because of the great importance of
convection on climate, many studies have focused their at-
tention on convective organization, either looking for an ex-
planation of such a phenomenon with simulation (e.g., Wing
and Emanuel, 2014; Tompkins and Semie, 2017; Cronin and
Wing, 2017; Muller and Romps, 2018; Muller et al., 2022)
or trying to measure convective organization in observations
and relate it to known quantities (Wing et al., 2017, 2020;
Bony et al., 2020; Bläckberg and Singh, 2022; Stubenrauch
et al., 2023). Both types of analysis need a method to quan-
tify convective organization. However, quantifying the de-
gree of convective organization is challenging. There is still
no consensus on the best method to use, and various meth-
ods have been proposed in recent years, reviewed by Biagioli
and Tompkins (2023). These organization metrics are often
given by a single real number, called an organization index.
The recently emerging large number of convective indices
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and diverging results (Wing et al., 2017; Stubenrauch et al.,
2023) ask for a systematic assessment, i.e., statistical studies
that verify the robustness of these indices. This is challeng-
ing because convective organization does not currently have
a rigorous definition. Nevertheless, it is still possible to verify
if these indices satisfy certain conditions expected from the
metrics of organization. Such studies have so far only been
performed for example cases (Retsch et al., 2020; Jin et al.,
2022).

Assessing metrics by verifying expected conditions has al-
ready been undertaken in other fields, for example, in high-
energy physics by Cacciari et al. (2008). This approach is
reproduced here to refine our definition of convective orga-
nization. Hence, this statistical study assesses nine object-
based indices by verifying if they satisfy seven conditions.
Only object-based indices are studied in this work, while
non-object-based indices are not included. The convective
objects have been identified by images of continuous areas
of cold infrared (IR) brightness temperature measurements.
This assessment is complementary and independent of the
assessment of convection tracking methods (e.g., Prein et al.,
2023), which have been developed to identify the convective
objects.

This article is outlined as follows. Section 2 describes how
we reconstruct the convective objects within a selected region
from an existing deep convective cloud tracking database.
Moreover, Sect. 2 briefly recalls the convective organization
indices under study. Section 3 describes the procedure of this
study, and Sect. 4 shows the results. Finally, Sect. 5 summa-
rizes the results and discusses a potential outlook.

2 Data and methods

2.1 Datasets of convective objects

The statistical comparison between indices needs a dataset
of horizontal binary fields that mimic deep convective clouds
for which it is possible to compute the convective organiza-
tion indices. Since the goal is not to study physical processes
but the behavior of the indices, any dataset can be used. How-
ever, in order to represent well the typical size, occurrence,
and disposition of deep convection in the tropics, we have
chosen a real satellite dataset with a good spatial and tempo-
ral resolution.

Fiolleau et al. (2020) provide such a dataset with cali-
brated infrared (IR) brightness temperatures (TB) by combin-
ing different geostationary satellites to span the entire band
from 40° N to 40° S. The spatial resolution is 0.04°, and the
temporal frequency is 30 min. For this study, we reconstruct
convective objects from cold brightness temperatures with a
cold core (TB < 190 K) surrounded by TB < 235 K by group-
ing all eight connected grid boxes. Holes in each object are
filled to avoid degenerate dispositions. This procedure is im-
plemented with the Python framework developed by van der

Walt et al. (2014). We selected the oceanic Tropical Warm
Pool region expanding over 0–9.6° N and 140.4–150° E. The
original resolution is downscaled to 0.08° to analyze images
with a size of 120×120 grid boxes. Then, images with fewer
than two objects are rejected (4.1 % and 2.9 % of the events
with no object and one object, respectively). Finally, a total
of 76 462 images in the period 2012–2016 are considered for
this study.

The following analysis aims to study the behavior of the
organization indices, and the results will not be dependent
on the dataset used. The robustness of this analysis against
the dataset can be proven by comparing the results obtained
using different datasets. When comparing datasets, several
differences may emerge. Some can be caused by the inherent
nature of the datasets, including the shape and spatial distri-
bution of objects, while others arise just from different dis-
tributions of object numbers and sizes. The primary focus
of this work is to address the former, as they bear a more
direct relevance to the intrinsic concept of convective organi-
zation. To prove the reliability of the results presented here,
we have simulated a dataset to compare with the convective
object dataset obtained from cold brightness temperatures.
Therefore, we have built images of randomly placed circular
objects of different sizes. We used a Monte Carlo simulation
technique which follows distributions of object sizes and the
number of objects with the same shape as the ones of the
convective object dataset from cold TB. Examples of images
generated with this method are given in the Supplement. De-
spite the large differences in shape and spatial distribution
of the objects in the two datasets, the final results are sim-
ilar, meaning that they do not depend on the nature of the
objects. The results obtained with the brightness temperature
database are shown in the following, while the ones obtained
with the newly simulated dataset are shown in the Supple-
ment.

In order to provide a context for this study, the frequency
distribution of the number of objects and their total area is
shown in Fig. 1. For both datasets, the frequency of the num-
ber of objects decreases, while the total area of the convec-
tive systems increases with an increasing number of objects.
Examples of the analyzed images are given in the following
sections.

2.2 Indices of convective organization

The indices of organization try to measure the degree of orga-
nization in a determined domain. These indices are computed
by using the size and position of the objects described in the
previous section. Using the same data is crucial for perform-
ing a comparison because any differences in the organization
values come entirely from differences in the indices’ behav-
ior.

The index Iorg was conceptually developed by Weger et al.
(1992) for the study of cumulus cloud fields. They compared
the cumulative distribution of the object’s nearest neighbor
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Figure 1. Distributions of events and total area of convection as a
function of the number of objects for both the brightness temper-
ature dataset and the simulated dataset. The horizontal size of the
domain is 0.92 Mm2.

distance (NNCDF) of the cloud disposition with the one of
a random disposition. Later, Tompkins and Semie (2017) ex-
ploited the idea of comparing the two NNCDFs to extract
one single value that discriminates between random and clus-
tered clouds. The Iorg is a real number between 0 and 1. Val-
ues larger than 0.5 are associated with organized convection,
while values of Iorg . 0.5 indicate disorganized convection.
The comparison between nearest neighbors makes Iorg insen-
sitive to organization beyond the β-mesoscale (∼ 100 km).
Therefore, Biagioli and Tompkins (2023) developed a new
index, called Lorg, that is sensitive to all scale organization.
Lorg is computed by comparing the theoretical and observed
distributions of all paired convective object distances. The in-
dex Lorg is dimensionless: it is zero for random disposition,
and it is positive for organized convection. Both Iorg and Lorg
do not take into account the size of the objects.

As a consequence, White et al. (2018) developed the Con-
vective Organization Potential (COP) by assuming that 2D
objects that are larger and closer together are more likely to
interact with each other on the horizontal plane. Its concept
reproduces the gravitational potential, and it is determined
from the distance between the centers of the objects and the
radii of equal-area circles A scalar value is associated with
each unique connection between pairs of objects, and the
arithmetic average is computed over all the pairs. Recently, a
modification of COP, called area-based COP (ABCOP), was
proposed by Jin et al. (2022) in order to improve the depen-
dency on the object’s area and number. Both COP and AB-
COP are positive and dimensionless, and higher values rep-
resent higher degrees of organization.

The Radar Organization Metric (ROME) (Retsch et al.,
2020) was built, similarly to COP and ABCOP, on a sum of
scalar values associated with all unique object pairs. Orig-
inally, ROME was developed to quantify organization on

small domains with high resolution. However, it has also
been applied to larger domains (Bläckberg and Singh, 2022;
Stubenrauch et al., 2023). The value of ROME is always
positive and between 1 and 2 times the object’s mean area.
ROME is measured in square kilometers (or, equivalently, in
number of grid boxes), and its value is large for a high degree
of organization.

The Simple Convective Aggregation Index (SCAI) was in-
troduced by Tobin et al. (2012) and is based on the number
of and distance between convective objects within a domain.
This index was used in studies by Tobin et al. (2012, 2013)
and Stein et al. (2017). Since SCAI does not consider the
object sizes, the Modified Convective Aggregation Index
(MCAI) was proposed by Xu et al. (2019) to correct this fea-
ture. These indices are unitless, and they are inversely pro-
portional to the total number of grid boxes in the domain.
Thus, their values scale with the size of the image under
consideration, as for ROME. SCAI and MCAI are the only
indices that identify organized convection with low values;
therefore, in our study, we have negated SCAI and MCAI for
an easier comparison with the other indices. Consequently,
both negated SCAI and MCAI are always negative, and their
values are high (close to zero) for organized objects and low
for disorganized ones.

The Morphological Index Of Convective Aggregation
(MICA) (Kadoya and Masunaga, 2018) is the only index that
does not consider the relative object’s disposition, but it con-
siders the amount of space on the domain where no convec-
tion occurs.

Along with all the abovementioned organization indices,
the degree of organization has also been estimated using just
the total area of convection (Tan et al., 2015; Bao et al.,
2017), and they are included in this comparison. The num-
ber of convective objects within the domain has also been
used to quantify convective organization (Tobin et al., 2013;
Bläckberg and Singh, 2022). However, in this paper, it is not
explicitly presented, since the associated results closely re-
semble those obtained with SCAI and MCAI.

The study of the above indices led us to the development of
a new index of organization. This index is called the Organi-
zation Index based on Distance and Relative Area (OIDRA),
and it is studied in the next section together with all the other
indices.

The exact definitions of all indices are given in Ap-
pendix A1. All the introduced indices have the same goal:
to identify organized convection and discriminate it from un-
organized convection. However, as shown by the correlations
in Table 1, the indices do not give a coherent answer.

The correlation coefficients between these indices are of-
ten smaller than 0.5, and sometimes they are even negative.
This means that the estimated strength of organization de-
pends on the index. Hence, the choice of the organization in-
dex may strongly affect the conclusions of climate studies of
deep convective organization, in particular, when the indices
used are anti-correlated.
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Table 1 also presents the correlations between the above
indices with three important variables that characterize the
convective systems within the studied domain: the mean size
of the convective objects (

∑
iAi/N ), their number (N ), and

the total convective area covering the domain (
∑
iAi). Be-

fore proceeding with the analysis, we highlight the following
correlations:

– ROME is completely correlated to the mean size of the
objects. Thus, ROME reflects the mean object size en-
tirely.

– SCAI and MCAI are strongly correlated to the number
of objects.

– ABCOP strongly correlates to the total area of convec-
tion covering the studied domain.

All the other indices show weaker relationships with these
variables. The dissimilarities between the correlations pre-
sented in Table 1 motivate this work. They highlight the chal-
lenge of studying convective organization, and they show that
different indices may consider different aspects of convective
organization.

3 Analysis strategy

3.1 Conditions to be satisfied

The studied indices were designed with the purpose of quan-
tifying the degree of deep convective organization. Estimat-
ing their skill is challenging because organization has no for-
mal definition. However, we can assess if the indices sat-
isfy some expected conditions of convective organization.
We have chosen seven conditions, which can be grouped into
three categories and will be evaluated via sensitivity studies.

The first category concerns the behavior of the indices
towards small perturbations. The indices should not signif-
icantly change

1. when one random grid box in the domain is set to con-
vective,

2. when two objects merge into one by adding one single
grid box as convective.

Both conditions are meant to study the effect of noise. To
simulate the difference in behavior, in the first case, we ran-
domly add one grid box in a non-convective region of the
image; thus the number of objects increases by one. In the
second case, we add the convective grid box between two
close objects in such a way that the objects merge and the
number of objects decreases by one. The indices that satisfy
the criteria above are called noise-safe.

The second category evaluates the intrinsic behavior of the
indices. The indices should

3. decrease when objects are moving apart,

4. increase when one object’s size is increasing.

Condition (3) is the most relevant one of all because it defines
the relationship between the proximity of the objects and the
organization. The indices that do not satisfy it should not be
used to quantify organization.

Condition (4) states that the organization gets stronger
when any object area is increasing. This condition is not ex-
plicitly taken into account in all convective indices. ROME,
COP, ABCOP, and MICA are built with this assumption,
while Iorg, Lorg, SCAI, and MCAI do not consider the area of
convective objects in their formulation. If this assumption is
not satisfied, one potential approach to study organization is
to stratify the images by the total area of convection. This ap-
proach is marginally performed by Tobin et al. (2012), where
the values of organization are compared within similar inter-
vals of total precipitation. Either way, if condition (4) will
prove to be important or if it will be considered to be irrel-
evant, we evaluate it for all the indices in order to provide
awareness of the relationship between the indices and the
area of convection.

The third category evaluates the dependency on the resolu-
tion and on the domain limits. This set of conditions is crucial
to compare conclusions from analyses of organization using
different data. The indices should not significantly change

5. when using a slightly different spatial resolution,

6. when using data taken at a slightly different time,

7. when choosing a slightly different spatial domain.

3.2 Comparison strategy

In order to quantify the dependence of the indices on the spe-
cific perturbance under consideration, we modify the images
accordingly: for each image, we compute the value i of each
index (reference), then we modify the image as required by
the condition under study, and we compute the new value of
the index i′ (perturbation). The difference i′− i shows how
much the value of the index has changed. However, the orga-
nization strength is given by ranking the value i: for exam-
ple, extremes are defined by percentiles. Therefore, instead
of comparing the absolute change in the values of the indices
i, we compare their percentiles p(i). Let f (x) be the mea-
sured distribution function of a certain index; the percentile
of the value i is defined by

p(i)= 100

i∫
−∞

f (x)dx, (1)

where the factor 100 is set to have values from 0 to 100. A
value of p(i)= 90 means that the convection is in the 10 %
most organized disposition.

Using percentiles is particularly advantageous because the
difference 1p = p(i′)−p(i) really quantifies the amount of
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Table 1. Correlation coefficients, multiplied by 100, of the indices with each other and with the number, total area, and mean size of
convective objects. Bold numbers highlight correlations with coefficients larger than 0.5.

Iorg Lorg COP ABCOP ROME SCAI MCAI MICA OIDRA Number Total area Mean size

Iorg 100 74 38 −15 −25 35 31 43 10 −23 −33 −26
Lorg 100 47 −16 −16 41 40 56 22 −26 −27 −16
COP 100 −1 39 47 50 72 48 −43 1 39
ABCOP 100 47 −34 −31 −13 39 33 81 46
ROME 100 5 10 14 52 −10 68 100
SCAI 100 99 49 31 −96 −48 5
MCAI 100 51 34 −96 −43 10
MICA 100 49 −43 −19 13
OIDRA 100 −29 39 51

change in organization estimated by the indices. For exam-
ple, a difference1p = 10 means that the perturbation results
in a jump in the organization of 10 % of the events. Since1p
is dimensionless, it can be compared between different in-
dices. Consequently, we quantify changes in each index with
1p. In the following, an average value of 1p < 3 is consid-
ered small, while an average value of 1p > 10 is considered
large.

We have found that it is very difficult for a single index to
satisfy all the presented conditions. In particular, as shown
in the next section, none of the considered indices does that.
Hence, we developed a new index, called OIDRA.

4 Results

4.1 First category: noise-safeness

In this section, we study conditions (1) and (2). Condition (1)
states that the consequences on the indices must be small
when one grid box is added as a new convective object. The
consequences of adding a single convective grid box are also
shown by Retsch et al. (2020) and Jin et al. (2022). However,
only a few cases have been examined. Instead, this work pro-
vides a statistical picture that validates previous results, prov-
ing that those cases were not cherry-picked.

Condition (2) states that, if there are two objects as close
as one grid box, merging them does not produce significant
changes in the value of the indices. The validity of this con-
dition stems from the fact that the presence of an additional
grid box does not substantially alter the disposition of con-
vection. Consequently, it is expected that the inclusion of this
grid box would not significantly affect the values of the or-
ganization indices. Condition (2) has never been discussed
in studies of organization. Still, it is of great importance be-
cause, when two objects merge, the sizes, number, and dis-
tances between objects change, thus changing the value of
the indices. Therefore, both conditions (1) and (2) contribute
to comprehending the potential impacts of any source of
noise on the organization indices.

Figure 2 illustrates the perturbations implemented for the
two conditions. For the sensitivity study (1), the additional
grid box is always placed randomly and it is never in contact
with other objects. For study (2), the additional grid box al-
ways merges two objects. The perturbation shown in Fig. 2b
is only possible when there are two objects as close as one
grid box. Therefore, only those events are used to evaluate
condition (2) (26 255 events out of 76 462).

The procedure is similar for all sensitivity studies: for each
image, the indices of organization are computed (labeled as
“reference”), then the associated perturbation is applied and
the indices are computed on the new image. The set of im-
ages after the perturbation is labeled as “perturbed”. As an
illustration, Fig. 3a and b compare the distributions of Iorg
and COP before and after the perturbation of condition (1)
using the complete statistics. As expected, the random noise
produces on average a decrease in both Iorg and COP. How-
ever, for Iorg, a non-negligible fraction of events close to zero
is redistributed at higher values. Those events are mainly im-
ages with only two objects that are placed at opposite sides of
the image (not shown). Therefore, the additional grid box re-
duces the nearest neighbor distances and increases the value
of Iorg. Figure 3c and d show the distributions of the per-
centiles for Iorg and for COP. The percentiles are always
computed with respect to the reference distribution; thus the
distributions of the reference dataset are flat, while the ones
of the perturbed dataset are not.

The gray and red arrows indicate the values of Iorg and
COP for the event shown in Fig. 2a. The values of Iorg and
COP move from 0.80 to 0.70 and from 0.32 to 0.28, re-
spectively. The corresponding percentiles move from 0.91
to 0.78 and from 0.14 to 0.06, leading to differences of
1p(Iorg)= 13 and 1p(COP)= 8. This means that one ad-
ditional grid box, even if it is just 1 out of 1202, changed the
rank of the value of Iorg by 13 % and the rank of COP by
8 %. It is also worth noting that the case depicted in Fig. 2a
is classified as highly organized according to Iorg, whereas it
is classified as highly disorganized according to COP.

The distributions in Fig. 3e and f present the relationship
between the percentiles of the reference and of the perturbed
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Figure 2. (a) Convective objects in the domain of interest are shown in gray for 4 January 2012 at 12:30 UTC; the additional convective grid
box is in red, and it shows the perturbation associated with condition (1). (b) Convective objects in the domain of interest for 1 January 2012
at 21:00 UTC; the additional grid box is in red, and it shows the perturbation associated with condition (2).

dataset for Iorg and for COP. The two figures are similar, and
they show that both indices decrease on average. Thus, the
new convection dispositions are correctly identified as less
organized. Moreover, the vertical spread of the distribution
comes from the randomness of the additional grid box po-
sition. Figure 3 proves that the behaviors of Iorg and COP
under noise are similar even if their reference distributions
are very different.

The results of the sensitivity study for all the indices and
for both conditions are shown in Fig. 4 as the distributions of
1p. The difference 1p produced by the perturbation of con-
dition (1) has a long tail for Iorg, Lorg, COP, and MICA. A
long tail means that one single grid box can heavily modify
the index value. The other indices exhibit a narrower peak
around zero. For SCAI and MCAI, the 1p distributions de-
rive mostly from the average number of objects. In the other
cases, the enhanced peak at zero occurs because the indices
are closely related to the total area of the objects in the do-
main; thus adding one single grid box does not affect their
value significantly. Under perturbation (2), all the indices
peak at zero, proving that merging two close objects does
not affect their value much. However, Iorg, Lorg, COP, and
ABCOP show a significant tail at negative 1p.

The most frequent sign of 1p is very important because
it indicates if the indices generally classify the perturbed
dataset as more or less organized. In most cases, the sign is
negative for perturbation (1), meaning that the organization is
reduced. The only index that classifies the perturbed dataset
as more organized is ABCOP, which is in contrast with the
other organization indices. In particular, adding one convec-
tive grid box always produces an increase in the value of AB-
COP. For perturbation (2), Iorg, Lorg, and ABCOP predict a
decrease in organization, while SCAI, MCAI, COP, ROME,
MICA, and OIDRA predict an increase after the perturbation.

In order to quantify the average change in the values of
the indices, we report in Table 2 the average of the abso-
lute percentile difference 〈|1p|〉 for each index under study.

Large values reveal a higher sensitivity to noise, while low
values indicate noise-safe indices. The indices ABCOP and
OIDRA do not change significantly under perturbation (1).
Under perturbation (2), the indices MICA and OIDRA do
not change significantly, while Iorg exhibits large changes.

For all indices and for both conditions, 1p is influenced
by the average and distribution of the number of objects of
the reference dataset: images with a larger number of objects
show less sensitivity to noise. Therefore, we report the values
of 〈|1p|〉 as a function of the number of objects in the refer-
ence dataset in Fig. 5. For both perturbations, the sensitivity
of all indices decreases as the number of objects increases.
As a result, each index becomes noise-safe when a sufficient
number of objects is present. The index Iorg is very sensitive
to noise at a low number of objects, and it becomes noise-
safe when more than 35 objects are present. This result is in
agreement with Semie and Bony (2020), who raised a sim-
ilar statement of robustness for Iorg. The index Lorg has a
similar behavior to Iorg for a low number of objects, but it
becomes more robust to noise as the number of objects in-
creases. The sensitivities to noise of SCAI and MCAI follow
the distribution of the number of events shown in Fig. 5 be-
cause of the high correlation between them. Generally, the
indices that take into account the area of the objects become
noise-safe more rapidly than the ones that do not. Among
the various methods available to quantify convective orga-
nization, ROME, OIDRA, and the total convective area are
demonstrated to be the most robust against noise.

4.2 Second category: intrinsic behavior

In this section, we study conditions (3) and (4). Condition (3)
states that the degree of organization must increase with the
proximity of the objects. This condition is the most impor-
tant one, and no index of organization can miss it because it
encapsulates the essence of convective organization. Condi-
tion (4) states that the degree of organization must increase

Geosci. Model Dev., 17, 7795–7813, 2024 https://doi.org/10.5194/gmd-17-7795-2024
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Figure 3. Distribution of Iorg (a) and COP (b) for both the reference and the perturbed dataset. Percentile distribution of Iorg (c) and COP (d).
Bidimensional distribution of p(Iorg) (e) and p(COP) (f) of the reference and the perturbed dataset. The red and gray arrows indicate values
and percentiles of Iorg and COP, respectively, for the configuration in Fig. 2a with and without the additional grid box.

Table 2. Average of the absolute change in percentile 〈|1p|〉 after the perturbations of condition (1) and condition (2).

Iorg Lorg SCAI MCAI COP ABCOP ROME MICA OIDRA Number Total area

Condition (1) 11.7 7.8 4.9 5.2 10.4 0.6 2.5 6.7 0.4 3.5 0.0
Condition (2) 8.7 5.5 2.8 3.3 4.2 2.8 2.6 0.0 0.8 3.9 0.0

when the object sizes are increasing. The sensitivity study as-
sociated with this condition distinctly presents the role of the
object sizes for each index.

The procedure is similar for conditions (3) and (4). Firstly,
every image in the dataset has been extended rightward by

50 grid boxes with an empty space. Then, an object called
the “test object” is placed in the extension. For condition (3),
the test object is as big as 10×10, it is placed in the leftmost
part of the extension, and the perturbation consists of moving
it rightward up to the end, as shown in Fig. 6a. The pertur-
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Figure 4. Distribution of 1p for all the indices (a) for condition (1) and (b) for condition (2).

Figure 5. Sensitivity of each index as a function of the number of objects in the reference dataset. Perturbation (1) is shown in panel (a), and
perturbation (2) is shown in panel (b).

bation is parametrized by the magnitude of the displacement.
For condition (4), the test object has a square shape of 2× 2,
it is placed in the center of the extension, and the perturba-
tion consists of increasing its size up to 48× 48, as shown in
Fig. 6b. The perturbation is parametrized by half the length of
the object side. The reference configuration is the one where
the test object is present and is not perturbed, and all the other
configurations are compared to that one.

Figure 7a and b show the distribution of 1p(COP) as a
function of the perturbation of both conditions. The two fig-
ures show that COP has the correct trends for both perturba-
tions: COP decreases when the test object is moving away,
and it increases when the test object size is increasing. In ad-
dition, the high correlation with the reference dataset proves
that the value of COP is still linked to the reference value af-
ter the perturbations. The mean 〈1p〉 is reported in Fig. 7c
and d for all the indices as a function of the perturbation of
both conditions. In Fig. 7c, all the trends are negative; thus
all indices correctly increase with the proximity of the ob-
jects. However, the trends have different magnitudes: ROME

and ABCOP have very little dependency on the test object
position. Conversely, MICA shows a very large dependency
on the object position. Such a large value is due to the spe-
cific definition of MICA (see Appendix A8) and to the strat-
egy used to evaluate condition (3): the perturbation affects
Acld; thus it proportionally affects the value of MICA. The
index Iorg exhibits a rapid decrease initially, followed by sta-
bilization, because it is not sensitive to organization beyond
the β-mesoscale. This behavior has been corrected in Lorg,
which looks to be sensitive to the object’s position across all
distances. Even if this condition should be satisfied by con-
struction, it has never been validated before this work, and it
is always taken for granted.

Figure 7d displays the behavior of the indices when the
test object’s size is increasing. The left part of Fig. 7d corre-
sponds to the increase in a small object, whereas the right part
corresponds to the increase in a large object. We observe dif-
ferent behaviors. Firstly, SCAI, Iorg, and Lorg are constantly
zero because their values do not depend at all on the object
sizes. Then, ROME and COP strongly increase, the latter lin-
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Figure 6. Convective objects in the domain of interest, similar to Fig. 2. Perturbations of condition (3) and condition (4) are shown in panels
(a) and (b), respectively, for 1 January 2012 at 13:30 UTC. The leftmost part shows the initial image. The rightmost part shows the extension
of 50 grid boxes, where a test object is added. In panel (a), the extra object has a size of 10× 10 and it is shifted rightward. In panel (b), the
extra object is centered and its size is increased.

early, while ABCOP, MICA, and MCAI only have a small
increase. Lastly, OIDRA first decreases and then increases
with respect to the object’s side. Therefore, OIDRA shows a
larger organization when a big object increases, while it in-
dicates a smaller organization when a small object increases.

4.3 Third category: capacity to compare across diverse
datasets

Having multiple independent studies that agree with each
other is crucial for advancing scientific understanding. It
shows that the results are reliable and can be trusted. In
the specific case of convective organization, those indepen-
dent studies can be performed by analyses that use different
datasets. Therefore, it is crucial to ensure that the indices of
organization do not depend significantly on the dataset char-
acteristics. Otherwise, achieving consensus among different
studies becomes exceedingly challenging. Conditions (5),
(6), and (7) are meant to evaluate the possible dependency
of the indices on the resolution and domain limits. In the fol-
lowing, each of them is discussed separately.

4.3.1 Condition (5): sensitivity to the horizontal spatial
resolution

The datasets that are used to study convective organization
may be different; in particular, the horizontal resolution used
in the various analyses may vary by up to 1 order of mag-
nitude. It is thus of great importance to understand the role
of horizontal resolution on the organization indices. In this
section, we evaluate condition (5), which states that the hor-
izontal resolution of the dataset should not significantly in-
fluence the value of the organization indices. The role of the
resolution is studied by downscaling each image of factors 2,
3, 4, 5, and 6. In other words, the images, which are initially
120×120, are reduced to 60×60, 40×40, 30×30, 25×25,

and 20×20 grid boxes. The reduction is performed by group-
ing the initial images’ grid boxes in blocks of n×n, then the
mean values over the blocks are computed where the values
1 and 0 are associated with convective and non-convective
regions. If the mean value is larger than 0.5, the block is set
to 1 (i.e., it is associated with convection); otherwise, if the
mean value is smaller than or equal to 0.5, the block is set
to zero (it is not associated with convection). An example is
given in Fig. 8, comparing an image with the original reso-
lution of 120× 120 grid boxes and an image with the reso-
lution downscaled by a factor 3 so that it consists of 40× 40
grid boxes. The set of images with the original resolution is
considered to be the reference sample, and the images with
different resolutions are the perturbed datasets.

When the grid box size is rescaled, the value of each index
may change correspondingly, depending on the index units.
ROME and the total area of convection have a dimension of
square kilometers; therefore the area per grid box has to be
corrected when the resolution is changed. SCAI and MCAI
are inversely proportional to the number of grid boxes; thus
they quadratically increase with the resolution downscaling.
All the other indices are dimensionless, and they do not have
any explicit dependency on the resolution. These different
scaling factors are removed by multiplying the indices by the
inverse factor so that, in principle, the average value of the
indices should not change. Such an operation is crucial to
studying differences between the reference and the modified
dataset.

Figure 9 shows the distribution of 1p for all the indices
under a change in resolution of a factor of 3. It is note-
worthy that ROME, SCAI, and MCAI have a clear peak at
zero, proving that the artificial scaling described above is cor-
rect and that we understand the resolution’s dependency on
the indices well. The distributions of 1p exhibit a generally
broad range, indicating the significant impact of the resolu-
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Figure 7. Distribution of 1p(COP) as a function of perturbation (3) (a) and perturbation (4) (b). The gray boxes indicate the percentile
range from 30 % to 70 %, the colored boxes indicate the percentile range from 20 % to 80 %, and the colors display the correlation between
the reference and the modified dataset. The whiskers cover 10 % to 90 % of the distributions. The means and the medians of 1p(COP) are
shown by the rhombuses and the black lines, respectively. The means of1p are displayed for all the indices as a function of the perturbations
of condition (3) (c) and condition (4) (d).

Figure 8. Convection in the domain of interest on 1 January 2012 at 02:00 UTC with the original resolution (a) and with the coarse-grained
resolution reduced by a factor of 3 (b).
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Figure 9. Distribution of 1p for all the indices after downscaling
the resolution by a factor of 3.

tion on the values of the indices. The most important effect
of downscaling the resolution is due to the smaller objects in
the domain (the ones with sizes of one or two grid boxes).
The smaller objects can be lost (if they are isolated) or can
be merged with bigger objects nearby, and, in both cases, the
consequences can be significant. These effects are particu-
larly pronounced for Iorg: the disappearance of the small ob-
jects produces an increase in the nearest neighbor distances
and consequently a decrease in the value of Iorg. Conversely,
COP is influenced by the size of the objects; thus its value in-
creases with lower resolutions. The distributions of Iorg and
COP are shown in Fig. 10 as a function of the resolution
downscaling factor as described in Sect. 4.2. When the res-
olution reduction does not change the reconstructed number
of objects, the value of1p is close to zero for all the indices.

The mean of 1p is shown in Fig. 11a for different res-
olutions of the indices. When the resolution scale factor is
small, the values of 〈1p〉 are close to zero, and they move
away from zero when the scale factor increases. The sign of
〈1p〉 is different for different indices: it is negative for AB-
COP and Iorg, and it is positive for all other indices. The in-
dex which shows less sensitivity to different resolutions on
both spread (not shown) and average of 1p is OIDRA.

The most important information for comparing the
datasets with different spatial resolutions is given in Fig. 11b.
The figure shows the correlations between the reference
dataset and the datasets with lower resolutions. They vary
with respect to the originally observed values, decreasing
monotonically with increasing scaling factor. The total area
is not much affected by the change in resolution, and, along
with it, the indices more related to the total area are also
the ones less sensitive to changes in resolution. The indices
which are more affected are Iorg, Lorg, and COP. The corre-
lation of Iorg drops to 0.5 when the resolution is downscaled
by a factor of 3. The index which has a higher correlation
between different resolutions is OIDRA.

The presented results are of great importance for compar-
ing the results of different studies. Different analyses often
have different resolutions; thus, they can have discrepancies
even if they make use of the same organization index. This
effect has to be summed up with other sources of uncertain-
ties, like noise or different thresholds as remarked upon in
Sect. 4.1, and the resulting discrepancies can be consider-
able. In particular, they can be very important when Iorg is
used, and they can lead to different results even in similar
analyses.

4.3.2 Condition (6): sensitivity to observation time

The time variability of the organization index has already
been shown (Tompkins and Semie, 2017; Cronin and Wing,
2017; Muller and Romps, 2018; Muller et al., 2022), and
seasonal and diurnal cycles of organization have been stud-
ied using satellite observations (White et al., 2018; Stuben-
rauch et al., 2023). In most analyses, convective organization
indices are computed per snapshot and then averaged over
long periods, while small variability is not examined. In this
section, we analyze the variability in the indices on a small
timescale, evaluating condition (6). In principle, the daily cy-
cle can affect all the results of this analysis because we are
comparing the indices at different times. Therefore, the effect
of the daily cycle has been calculated. Since it is found to be
negligible for the considered region, its effect is not shown.

The variability with time for each index is summarized in
Fig. 12, which shows the autocorrelation of the indices as
a function of the time shifts from 30 min to 12 h. The auto-
correlations have large values for small differences in time,
while they decrease with increasing shifts. There are large
differences between indices: COP, Iorg, and Lorg have a very
rapid decrease, with correlations already lower than 0.5 for
COP and Lorg and 0.4 for Iorg after 1 h. This means that these
indices cannot be compared when computed with more than
1 h distance and that they cannot be related to any physical
variable which has different timescales. The autocorrelation
of ROME, MICA, and OIDRA is close to 1 for a small time,
while it decreases toward zero with timescales of a few hours.
Lastly, the autocorrelation of SCAI, MCAI, and ABCOP has
a slower decrease, and it is still about 0.5 after 12 h. All the
autocorrelations reach zero after a few days.

In order to further explore the fluctuations in the indices
with time, the differences 〈|1p|〉 are given in Table 3 for time
shifts of 30 min, 90 min, 12 h, and 6 months. The table shows
that 〈|1p|〉 increases with time for all the indices and that
the increase rate can differ depending on the specific index.
The differences 〈|1p|〉 also reflect the autocorrelation val-
ues and trend: where the autocorrelation is lower, 〈|1p|〉 is
larger. For very large time shifts, the autocorrelation is zero,
and 〈|1p|〉moves towards the limit 33.3 (not shown); the ex-
act value does not depend on the atmospheric dynamics, but
it depends on the amplitude of the seasonal cycle, the daily
cycle, and on whether there are any points of accumulation in
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Figure 10. Distribution of 1p(Iorg) (a) and 1p(COP) (b) as a function of the resolution scale factor. The description is similar to Fig. 7.

Figure 11. Means of 1p (a) and correlations with the reference (b) are displayed for each index as a function of the resolution scale factor.

Figure 12. Autocorrelation of each index between 30 min and 12 h.

the distribution of the indices. The values of 〈|1p|〉 are very
large for COP, Iorg, and Lorg, and they are already larger than
10 when the time shift is 90 min (except for MICA, which is
9.6). This means that the organization ranking given by in-
dices is moving on average by more than 10 % every 90 min.
After a time shift of 12 h, the differences 〈|1p|〉 are larger
than 20, and, in particular, they are close to 33.3 for COP,
Iorg, Lorg, and OIDRA in agreement with the low correlation
shown in Fig. 11.

This analysis can be of help in two cases. Firstly, when
two studies employ the same organization index but compute
it with a time lag, the two indices may exhibit a weak cor-
relation, making direct comparisons challenging. Secondly,
when organization is linked to other atmospheric variables
that are measured with a time delay (e.g., from a different
instrument), the rapid variability in organization may cause
the relationship to weaken or disappear due to the time lag.
By considering these cases, this analysis helps to account
for temporal differences and enables a more accurate under-
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Table 3. Average of the absolute change in percentile 〈|1p|〉 due to different shifts in time. The last row shows 〈|1p|〉 for a random shuffle
of the dataset.

Iorg SCAI MCAI COP ABCOP ROME MICA OIDRA Number Total area

〈|1p(|1t = 30min)|〉 18.5 7.6 8.6 13.4 7.9 6.7 4.3 5.4 7.9 1.5
〈|1p(|1t = 90min)|〉 24.4 11.4 12.6 19.1 10.5 11.1 9.6 11.6 11.3 3.9
〈|1p(|1t = 12h)|〉 30.8 21.8 22.6 29.8 22.6 26.2 23.4 30.6 20.7 18.0
〈|1p(|1t = 6 months)|〉 33.4 33.3 33.3 33.3 33.4 33.4 30.1 33.4 32.8 33.1

standing of the relationship between organization and other
variables in atmospheric studies.

4.3.3 Condition (7): sensitivity to the domain limits

Convective organization is computed from the disposition
of convection in a specific domain. Different studies may
not target exactly the same domain, leading to possible dif-
ferences in their final results. In this section, we analyze
condition (7), which states that organization indices must
not be significantly different on similar domains. In partic-
ular, we analyze the changes in the indices of organization
for domains that overlap from 80 % to 99 %. Such a study
is performed by taking into consideration the region 0.8–
8.8° N× 140.4–148.4° E made by 100×100 grid boxes with
0.08° resolution. This region is shifted eastward one grid box
at a time, and, for each shift, the indices of organization are
computed. The shift of one grid box eastward changes the
domain by 1 %.

Figure 13 shows the distributions of 1p for Iorg and for
COP as a function of the eastward shift in the domain. The
distributions of1p are very narrow for small shifts, and they
get broader with larger shifts. The mean and the median are
very close to zero with no trends, and the correlation de-
creases with the magnitude of the shift. The variability in
both 1p(Iorg) and 1p(COP) is similar, as is the correlation
with the reference dataset.

The correlations of the indices between the shifted and the
initial domains are shown in Fig. 14. They are large for small
shifts, and they slowly decrease as the domain moves east-
ward. In particular, for small shifts, the trend is about 0.01
per grid box, and, since a one-grid box shift corresponds
to 1 % of the image, the correlations decrease at a rate of
approximately 0.01/%. For large shifts, the indices are di-
vided into two groups: SCAI, MCAI, ROME, and ABCOP
decrease slowly, while COP, OIDRA, MICA, and Iorg show
a more rapid decrease.

The results obtained with this analysis prove that the in-
dices of organization have small differences when similar do-
mains are considered. The larger the differences between do-
mains, the larger the discrepancies of the indices are. Thus,
all the indices show a small rate of change under the shift-
ing of the domain, proving that all the indices satisfy condi-
tion (7).

5 Conclusions

Convective organization is an emerging topic that has re-
ceived a lot of attention in recent years because of its po-
tential implications for weather and climate. Several indices
have been developed to identify organization, and they be-
came an essential tool to deepen our knowledge on this topic.
In this study, we assessed the reliability of each index by em-
ploying innovative methodology. Initially, we established a
set of criteria that are anticipated for convective organization.
Subsequently, we evaluated the indices to ascertain whether
they met these established conditions.

In this article, we compare nine object-based indices. The
conditions are assessed by applying different perturbations to
the dataset and measuring the repercussions on the indices.
This assessment considers objects of the size of mesoscale
convective systems defined by cold brightness temperature.

In the previous sections, the indices are compared for each
condition. In the following list, we summarize the results for
each index, combining the different conditions to obtain the
global picture that emerges from the results.

– Iorg: The index Iorg does not fulfill several of the studied
conditions. First of all, it is very sensitive to noise. Sec-
ondly, when two close objects are merged, Iorg has large
changes, and, on average, it predicts the new configura-
tion to be less organized. In particular, the index Iorg
is not noise-safe when the number of objects in the do-
main is less than 35. Furthermore, Iorg is not sensitive to
the objects’ sizes. Another weakness of Iorg is its large
sensitivity to the images’ resolution. In fact, identical
images with different resolutions produce significantly
different values of Iorg; the differences are in both the
mean values and the distributions. Lastly, the time au-
tocorrelation is decreasing rapidly; thus the relationship
with other atmospheric variables may be lost if it is not
searched exactly at the right time.

The abovementioned behaviors of Iorg are obtained us-
ing convective object reconstruction. However, since
Iorg does not consider the size of the objects, some stud-
ies (e.g., Semie and Bony, 2020; Bony et al., 2020)
applied it to local minima in brightness temperature,
which may be seen as a proxy for the convective core
positions. Such an approach may modify the behavior
of this index. Identical considerations apply to Lorg.
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Figure 13. Distribution of 1p(Iorg) (a) and 1p(COP) (b) as a function of the perturbations of condition (7). The description is similar to
Fig. 7.

Figure 14. Correlation of each index between the reference and the
modified datasets as a function of the domain shift.

– Lorg: The behavior of Lorg is similar to that of Iorg, but
its behavior improved for all the studied perturbations.
Firstly, it is more robust to noise than Iorg: the index
Lorg becomes noise-safe when there are more than 20
objects in the domain. Secondly, it is less sensitive than
Iorg to the spatial and temporal resolutions and to the
domain limits. Moreover, Lorg shows a dependency on
the object’s position across all distances, confirming its
sensitivity to organization beyond the β-mesoscale. Fi-
nally, both Iorg and Lorg are not sensitive to the object’s
size.

Equivalently to Iorg, the present results hold only when
convective objects are reconstructed.

– COP: The index COP, similarly to Iorg, is sensitive to
noise, and it becomes noise-safe when more than 25
objects are present in the domain. It increases with the

proximity of objects, and it correctly increases with the
objects’ size. On the other hand, COP is sensitive to the
images’ resolution. In particular, the same image with
the original resolution and a 3 times worse resolution
gives values of COP that have a correlation of 0.65. For
this reason, COP is not a good index for comparing dif-
ferent studies. Lastly, similarly to Lorg, COP varies very
rapidly with time.

– ABCOP: The index ABCOP has a large correlation with
the total objects’ area

∑
iAi . Therefore, it mostly re-

flects the total objects’ area. This relationship uniquely
comes from the larger objects in the images, while
the smaller objects do not play a significant role in
the value of ABCOP. This behavior comes from the
maxj 6=i() function in the ABCOP definition (Eq. A8),
which gives great importance to large objects. As a con-
sequence, ABCOP is not very sensitive to noise. How-
ever, it strongly depends on the number of objects be-
cause it is defined as a sum over each object instead of
as a mean like COP. This characteristic is visible in two
of the studied conditions, and it negatively influences
ABCOP response to noise. Firstly, when one convec-
tive grid box is added randomly in the domain, ABCOP
incorrectly increases instead of decreasing because the
number of objects increases. Secondly, when two close
objects are merged, ABCOP incorrectly decreases in-
stead of increasing because the number of objects de-
creases. In addition, ABCOP follows the behavior of
the number of objects even under a change in horizontal
resolution. ABCOP proves to be robust under changes
in resolution, shifts in time, and shifts in the considered
domain. Last but not least, the index ABCOP increases
with the proximity of the objects but more slowly than
the majority of the indices.
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– SCAI and MCAI: The indices SCAI and MCAI have
similar behaviors. Their value is highly correlated with
the number of objects (R =−0.961); thus they do not
offer much more information than the number of ob-
jects itself. Hence, the behaviors of SCAI and MCAI
reflect that of the number of objects. Upon adding a
single random convective grid box to the images, both
SCAI and MCAI show a decrease in their value. Fur-
thermore, these indices indicate an increased level of
organization when two nearby objects are merged. Both
indices correctly exhibit an increase in value as the
proximity of the object increases, with MCAI being
slightly more sensitive than SCAI. The main distinction
between these two indices lies in their dependence on
the object’s size. SCAI displays no sensitivity to object
size, whereas MCAI takes into account the object’s size,
thereby rectifying SCAI’s wrong behavior. Changes in
resolution have an impact on the values of SCAI and
MCAI, primarily due to variations in the number of
objects. Nonetheless, their correlations with the orig-
inal resolution decrease slowly, making them suitable
indices for comparing different resolutions. Similarly,
SCAI and MCAI are the indices that are less affected
by shifts in time and space.

– ROME: The index ROME satisfies most of the condi-
tions presented here; however, its biggest problem is
the very high correlation with the mean objects’ size∑
iAi/N as shown in Table 1. Thus, it is not conve-

nient to quantify convection with ROME (Eq. A9) when
a simpler formula can be used to obtain a very simi-
lar value. ROME is noise-safe enough, having values
of 1p smaller than 3. Knowing the correlation with the
mean area, we can state that those conditions are sat-
isfied because of the dataset instead of the index be-
havior. Among all indices, ROME is the least sensi-
tive to the proximity of the objects, with a variation
of only 1p . 0.3 when a 10× 10 test object is mov-
ing away from the other convective objects. Moreover,
ROME is highly dependent on the size of the objects.
The dataset’s horizontal resolution does not strongly af-
fect the ROME index, and the autocorrelation shows a
slow decrease with time. The changes in ROME with
the considered domain are about 0.5 % for a 1 % shift in
the domain.

– MICA: The index MICA is noteworthy because of its
unique definition which has to be kept in mind when
reading these results and when using MICA for an anal-
ysis. The obtained results are very much influenced by
the type of data and the adopted strategy. For example,
this work suggests that MICA is greatly influenced by
the proximity of objects; however, this is not true in gen-

1We recall that SCAI and MCAI are negated in this work; hence
the correlation with the number of objects is negative.

eral, and it is only true when the test object changes
Acld (defined in Appendix A8). Similarly, the test ob-
ject size studied in Sect. 4.2 is also influenced by the
change in Acld. One other example is the result given
in Sect. 4.1, where MICA predicts a very small increase
when two close objects are merged. The simulated noise
produces a long tail of 1p, which means that a source
of noise can produce a large change. The reason is that
MICA does not take into account each object size, and it
strongly depends on the disposition of the objects. Thus,
if a simulated noise is placed far from the convective
objects, the value of MICA decreases significantly. For
the same reason, MICA increases when the resolution
is reduced because small objects may be lost, reducing
the area Acld. The autocorrelation of MICA decreases
rapidly with time, but it is large for small time lags. The
changes in MICA with the considered domain are simi-
lar to those of the other indices.

– OIDRA: The index OIDRA is the most noise-safe in-
dex, having percentile differences 1p smaller than 1
for conditions (1) and (2). It correctly depends on the
proximity of the objects, and the change in OIDRA is
significant for large shifts in the extra object. OIDRA is
also the least sensitive to different resolutions. Specif-
ically, even after a change in resolution of 6 times, its
values remain correlated at 0.9 with those of the origi-
nal resolution. The autocorrelation of OIDRA is close to
1 for small shifts in time, and it decreases rapidly, reach-
ing less than 0.2 in 10 h. The correlation of OIDRA
with itself during a domain shift is nearly 1 for small
shifts, gradually decreasing initially and then exhibit-
ing a more rapid decline for larger shifts. The index
OIDRA is the best index according to the conditions
studied in this work, except for condition (4). However,
it increases when an object increases if the size of that
object is larger than the mean size. Conversely, if the
size of that object is smaller than the average, OIDRA
decreases. This behavior can be avoided by comparing
OIDRA within bins of total convective area.

Among the indices considered in this work, none satisfy all
the desired conditions. Besides, some of the studied con-
ditions are only poorly satisfied by the indices. Thus, two
main conclusions can be extracted from these results. Firstly,
the unsatisfied conditions and the different behavior that
emerged from this study can explain the disagreement be-
tween different studies on organization. Secondly, the indices
studied here may not be enough to completely characterize
organization, and a more complete metric could be built by
simultaneously using more indices, as suggested by Pscheidt
et al. (2019) and performed by Janssens et al. (2021).
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6 Outlook

The results of this assessment provide the first step to esti-
mating uncertainties in quantifying convective organization.
In the following, we discuss possible extensions of this study.

This article focuses on a domain of 10°× 10° because it
is comparable to the domain sizes used in cloud-resolving
model studies (Tompkins, 2001; Bretherton et al., 2005;
Muller and Held, 2012; Wing and Emanuel, 2014; Holloway
and Woolnough, 2016). In recent years, several observational
studies tried to quantify the convective organization in the en-
tire tropics (Xu et al., 2019; Bony et al., 2020; Jin et al., 2022;
Bläckberg and Singh, 2022; Stubenrauch et al., 2023); hence
a similar assessment should be performed using the tropics as
a domain. Such a domain is far from being a square; thus at-
tention should be given to the influence of domain shape and
size. Furthermore, the tropical band is composed of regions
with different degrees of convective homogeneity; therefore,
it may be interesting to study the influence of the spatial dis-
tribution of convection on organization. Other effects to be
studied include the smoothing of the data (Bony et al., 2020;
Bläckberg and Singh, 2022) and the variables and thresh-
olds used to identify convection (Stubenrauch et al., 2023)
because these affect the shape and disposition of the objects.

Appendix A: Definitions of the organization indices

The indices under study are briefly described below. The spe-
cific case of a sole aggregate in the domain is not considered.
In the following, the number of objects under study is indi-
cated by N , the area of the ith object is Ai , and the distance
between the centroids of the ith and the j th object is dij . The
characteristic domain length is called L, and the total image
size is L2.

A1 Organization index

The organization index (Iorg) (Weger et al., 1992; Tompkins
and Semie, 2017) is derived from the comparison of two dis-
tributions. Let F̂ (dnn) be the cumulative distribution of the
nearest neighbor distance dnn of the objects under study. The
cumulative distribution of the nearest neighbor distance of
point-like objects randomly displaced in an unbounded do-
main is a Weibull distribution, F(dnn)= 1− exp(−λπd2

nn),
where λ is the mean number of objects per unit area. The
organization index is then defined by

Iorg =

1∫
0

F̂ (F−1(x))dx; (A1)

that is, the area under the curve (F(dnn), F̂ (dnn)) between 0
and 1. The value of Iorg is between 0 and 1, and it is close to
0.5 for random distributions.

A2 The index Lorg

The index of organization Lorg (Biagioli and Tompkins,
2023) is computed by comparing the distribution of all
neighbor distances. The cumulative distribution of all neigh-
bor distances is represented by Ripley’s function (Ripley,
1976, 1977, 1981):

K(r)= E(N(b(x, r) x), (A2)

where E(N(b(x, r) x) is the expectation value of the number
of objects in a dist b(x, r) centered in x and with radius r ,
excluding {x}. Besag’s L-function (Besag, 1977) is defined
as L(r)=

√
K(r)/π , and its value for point-like objects ran-

domly displaced in an unbounded domain is L(r)= r . Let
L̂(r) be the observed Besag’s L-function, and let Lth(r)= r

be the theoretical one. The index Lorg is

Lorg =
1
rmax

rmax∫
0

[L̂(r)−Lth(r)]dr, (A3)

where rmax is the integration limit, and it has to be equal to
the greatest possible distance between objects’ pairs.

A3 Simple Convective Aggregation Index

The Simple Convective Aggregation Index (SCAI) (Tobin
et al., 2012) is based on the number of objects and the
distances between objects. Let D0 be the geometric aver-
aged distance between each paired object’s centroid D0 =
N(N−1)

2
√
5i,jdij . SCAI is defined by

SCAI= k
ND0

L3 , (A4)

where k is a constant. It was originally set to 2000, but this
does not affect the result.

A4 Modified Convective Aggregation Index

The Modified Convective Aggregation Index (MCAI) (Xu
et al., 2019) is a modification of SCAI that also takes into ac-
count the areas of the objects under study. Similarly to SCAI,
MCAI is defined by

MCAI= k
ND2

L3 , (A5)

where k is a constant and D2 is the arithmetical average of
size-corrected distance between objects

D2 =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

max(0,dij

−
√
Ai/π −

√
Aj/π). (A6)
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A5 Convective organization potential

The Convective Organization Potential (COP) (White et al.,
2018) is built on the concept of an interaction potential that
tries to reproduce the gravitational force among cloud sys-
tems in a bidimensional space. The definition of COP is given
as

COP=
2

N(N − 1)

N∑
i=1

N∑
j=i+1

√
Ai/π +

√
Aj/π

dij
, (A7)

which is the mean over all possible pairs of the interaction
potential.

A6 Area-based Convective Organization Potential

The area-based Convective Organization Potential (ABCOP)
(Jin et al., 2022) is a modification of COP. It is defined by

ABCOP=
1

2L

N∑
i=1

max
j 6=i

(
Ai +Aj

d2(i,j)

)
, (A8)

where d2(i,j)=max(1,di,j −
√
Ai/π −

√
Aj/π) is an esti-

mate of the distance between the edges of the ith and the j th
object.

A7 Radar Organization Metric

The Radar Organization Metric (ROME) (Retsch et al., 2020)
was originally defined to measure the strength of organiza-
tion within a radar scene. Let d̃ij be the smallest distance be-
tween the edges of the ith and the j th object in the domain.
ROME is defined by

ROME=
2

N(N − 1)

N∑
i=1

N∑
j=i+1

·

[
A
(max)
ij +A

(min)
ij ·min

(
1,
A
(min)
ij

d̃2
ij

)]
, (A9)

where A
(max)
ij =max(Ai,Aj ) and A

(min)
ij =min(Ai,Aj ).

The value of ROME is always in between Ā < ROME< 2Ā,
where Ā is the object mean size

∑
iAi/N .

A8 Morphological index of convective aggregation

The morphological index of convective aggregation (MICA)
(Kadoya and Masunaga, 2018) is the only index that takes
into account both the cloud and the clear sky coverage. Let
Acld be the area of the smaller rectangle that encloses all the
objects under study in the domain. MICA is defined by

MICA=
∑
iAi

Acld
·
|L2
−Acld|

L2 , (A10)

which is the multiplication of two terms: the first term quan-
tifies the density of objects within a confined area, and the

second term quantifies the amount of clear sky in the studied
domain.

A9 Organization Index based on Distance and Relative
Area

A new index of organization, called the Organization Index
based on Distance and Relative Area (OIDRA), is defined
and given as an example of a well-behaving index. Let d̃ij be
the smallest distance between the edges of the ith and the j th
object in the domain, and let AT =

∑
iAi . OIDRA is defined

by

OIDRA=
1
A2
T

N∑
i=1

A2
i +

2
A2
T

N∑
i=1

N∑
j=i+1

AiAj

1−

√
d̃ij

l

 , (A11)

where l is the length scale at which we desire to study or-
ganization, and it is set to L/

√
2 in this study. The first part

takes into account the different object sizes, while the second
part also depends on the distances between them. OIDRA in-
troduces two new concepts that have never been used before
in other organization indices. Firstly, OIDRA does not de-
pend explicitly on the size of the objects but only on their
relative fraction. Secondly, the parameter l can be set to dif-
ferent values in order to calculate organization at different
scales. When two objects are in close proximity (d̃ij � l),
their contribution to OIDRA is similar to what it would be
if the objects were merged. When two objects are very far
(d̃ij � l), their contribution becomes negative. This index is
always smaller than 1, and it is positive if l > L/

√
2. In our

case (l = L/
√

2), OIDRA varies between 0 and 1.
Because of its specific formulation, OIDRA is different to

all the other indices. The main reason can be attributed to
its dependence on the object sizes, which are squared. This
feature makes OIDRA very sensitive to object sizes, which
makes it similar to ROME. ROME and OIDRA exhibit simi-
lar behaviors for conditions 1, 2, and 5, where the object size
plays a crucial role. Moreover, ROME and OIDRA correlate
higher than 0.5. Nevertheless, OIDRA’s response to object
proximity aligns more closely with Lorg than with other in-
dices.

Code and data availability. The TOOCAN dataset is available
on the official website: https://doi.org/10.14768/1be7fd53-
8b81-416e-90d5-002b36b30cf8 (Fiolleau and Roca, 2023).
The code developed to perform this study is available at
https://doi.org/10.5281/zenodo.8287752 (Mandorli, 2023). The
simulated dataset can be obtained with the available code,
and the entire analysis can be run using the simulated dataset.
All the plots produced by the code are already available
at https://web.lmd.jussieu.fr/~gmandorli/Assessment_of_the_
object-based_indices_of_convective_organization (last access:
24 August 2023).
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