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• This mild reaction can be used to epoxidize olefins and glycals as
well as oxidize sulfides to their respective sulfoxides.

• The oxidation method uses low enzymatic loading (0.4 mg mL-1)
in aqueous medium with low concentrations of H2O2 (< 5% v:v).

• It presents a greener and cost-effective advantage to utilize this
reaction since the reaction is conducted without organic solvent.

• The simple preparation of peracids from ester and lactone co-
catalysts in situ offers an effective route to peracids not easily
obtained.

• Mutagenesis of CpLIP2 proves to be a viable approach for the
rational engineering of the substrate pocket.

• Preliminary results suggest that mutations can change the
selectivity toward the co-ester and the subsequent final
epoxidation yield.

• Epoxides are often present in commodity chemicals and
pharmaceuticals and often act as chemical intermediates
since they are easily transformed into other functional groups.

• While limited by the harsh conditions needed to install
epoxides, recent attention has turned to using enzymatic and
chemoenzymatic methods to incorporate them.

• Lipases have been used as tools to prepare peracids in situ
by intercepting conventional hydrolysis with H2O2 to translate
their activity to the epoxidation of olefins.1

• Current chemoenzymatic methods are often implemented in
harsh conditions with high H2O2 concentrations in toluene in
order to displace the reaction equilibrium towards
perhydrolysis rather than hydrolysis.2

• Lipases/acyltransferases with higher selectivity for H2O2 over
H2O as the nucleophilic acceptor can be used to increase the
efficiency of chemoenzymatic oxidation in aqueous medium.

Above: a) Structure of CpLIP2 with
active site highlighted. b) Close up of
wtCpLIP2 active site pocket. c)
Close up of CpLIP2 Y179F active
site pocket.

• The enzyme used in
this study, CpLIP2 from
Candida parapsilosis,
displays preferences for
nucleophiles other than
H2O such as alcohols,
H2O2 and amines.3

• CpLIP2 Y179F is used
due to its potential to
catalyze perhydrolysis
over hydrolysis more
efficiently than the wt
enzyme.4

• Y179F mutant is also
known to enhance the
enzyme stability by
increasing its resistance
to alcohol.5

• Addition of an extra
ester or acid as a co-
catalyst was found to
increase conversion of
olefin to epoxide with
H2O2 in this two-phase
enzymatic system.
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• With CpLIP2 showing particular efficiency for
unsaturated fatty acid monoesters and triglycerides,
auto-epoxidation of triolein was initially screened with
an optimized concentration of H2O2 (4.6% v:v) and
CpLIP2 Y179F without inhibiting enzyme activity at
pH 6.5 over 24h at rt.

Above: Oxidation of triolein (1a) undergoes release of
corresponding peroleic acid (brackets) towards epoxyoleic
acid (1b) as one component of a complex product mixture.
Auto-epoxidation of palmitoleic acid (1c) under the same
conditions yielded epoxypalmitoleic acid (1d).

• Addition of a co-catalytic ester, methyl hexanoate, was
found to increase conversion of olefin to epoxide with
epoxypalmitoleic acid (1d) formed in 71% yield.

• The reaction was screened on a variety of olefins and
sulfides using 100mM substrate, 1.5 M H2O2, 500mM
methyl hexanoate, 100 mM phosphate buffer at pH 6.5,
H2O, and CpLIP2 Y179F at 0.4 mg mL-1 (0.008 mM).

Left and above: Epoxide products 2b-27b and rearranged
epoxides 6c, 6d, and 8c were prepared by oxidation of alkenes
2a-27a. Sulfone 28b and sulfoxides 29b-32b from sulfides 28a-
32a were also prepared using this chemoenzymatic method.

Below: NMR analyses of the relative efficacy of lactones as
peracid surrogates, showing the recycling of acid to lactone as
a means to reduce the co-catalyst requirement to 300 mM.
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