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Abstract
This paper describes the joint participation of Inria Défense et
Sécurité and Storyzy to the ASVspoof5 challenge. We partic-
ipated in the closed conditions of the audio deepfake detection
and of the spoofing-aware speaker verification tracks with the
goal of evaluating the performance of countermeasures with
a fixed set of training attacks. The proposed countermeasure
system is the combination of three models with different archi-
tectures and training algorithms, including the exploration of
a self-supervised learning pretraining approach. Specific data
augmentation strategies are introduced to increase robustness to
data transmission and generalization to unknown attacks. The
submitted system achieves a minDCF of 0.297 for track1 and
a min a-DCF of 0.295 for track2. It has a very small calibra-
tion error (actDCF of 0.298) despite the presence of unknown
codecs and adversarial attacks within the evaluation corpus.

1. Introduction
The ASVspoof series of challenges [1] fosters the development
of audio deepfake detection systems. The poor generalization
of current countermeasures to in-the-wild data [2] highlights
the need for more realistic datasets. The ASVspoof 2021 edi-
tion marked a significant advancement towards simulating more
realistic scenarios, including the use of low-quality recordings
and codec compression [3]. In the latest ASVspoof5 edition,
the challenge has been elevated further by introducing more
demanding conditions, such as crowdsourced adversarial at-
tacks [4].

The main objective of an audio deepfake detection task is
a generalised countermeasure, that is spoofing detection solu-
tions which perform reliably in the face of utterances generated
with new or previously unseen spoofing attack algorithms and
methods [1]. We took part in the two tracks of the closed con-
dition (audio deepfake detection and spoofing-aware automatic
speaker verification) in order to evaluate the generalization of
different models with a fixed gap between the training and eval-
uation attacks, independently of the problem of collecting a rep-
resentative dataset of existing attacks.

1.1. Motivation

An ideal deepfake detection system would process as an
anomaly detection mechanism, broadly applicable to im-
agery [5, 6]. Such a system would enhance generalization to
novel attacks by modeling only the normal behavior, which in
this context is from bonafide speech. Any spoofed utterances
would then be identified as outliers by the system.

Recent studies [7] suggest that current countermeasure sys-
tems do not sufficiently model the bonafide class, whereas self-
supervised learning (SSL) front-ends can be effectively used to
design countermeasures [8]. Motivated by this claim, we inves-
tigated using SSL for deepfake detection.

In the solution we propose, this SSL detection approach is
supplemented by fully supervised approaches based on well es-
tablished architectures of the domain. Integrating the potential
strengths of the different approaches, the final decision is made
by combining the scores using a fusion technique.

1.2. Combination of systems

A combination of several different systems is expected to be
more robust to new attacks or conditions thanks to the comple-
mentarity of the sub-systems. As a consequence, we explored
three families of models for audio deepfake detection.

Two families of models were trained end-to-end for binary
classification. ResNet models are well-known speakers verifi-
cation architectures [9] and have been successfully applied to
the audio deepfake detection task [10, 11]. AASIST [12] is an
end-to-end architecture which constituted one of the baselines
of the ASVspoof5 edition.

The third system is an SSL-based approach. We chose the
Vision Transormer Masked AutoEncoder (Vit-MAE) [13, 14]
approach, which has been shown to work efficiently on small
datasets such as CIFAR10 [15]. After the SSL pretraining
phase, a binary classifier is trained for audio deepfake detec-
tion.

The combination of these systems is then calibrated with a
simple logistic regression [16], achieving a very small calibra-
tion error on the evaluation corpus for the target operating point
of track1. In order to actually evaluate the effectiveness of this
system as a CM for SASV, we also submitted it to the track2
closed condition. We thus trained an ASV system abiding by
the rules of the challenge. The score fusion of CM and ASV
was performed with the recently introduced non linear fusion
method [17], with the script provided by the organizers of the
challenge.

1.3. Data augmentations

Data augmentations are a key component of the training of au-
dio deepfake detection systems [3]. In addition to standard
speech data augmentations, we adopted a two-fold data aug-
mentation strategy with the twin goals of increasing robustness
to numerical transmission degradations and of improving gen-
eralization to unknown attacks.

In the context of numerical transmissions, an audio signal
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Table 1: Subsets of the asvspoof5 corpus.

Dataset Usage # speakers # bonafide utterances # spoofed utterances # trials attacks
asvspoof5-train-train training 327 15156 130440 - A01-A08
asvspoof5-train-dev validation 73 3613 32858 - A01-A08
asvspoof5-dev-cal calibration 392 15527 53560 138514 A09-A16
asvspoof5-dev-eval evaluation 393 15807 56056 143942 A09-A16

can be altered in several ways. Codecs are an essential func-
tion in networks, with the objective of adapting the signal to the
available bandwidth, which results in an alteration of the audio
signal. Their effects can accumulate depending on the networks
they pass through. To increase robustness to numeral transmis-
sions, we explored a set of data augmentations with different
codecs [18]. Based on the performance on the progress set, we
picked a set of various codecs with moderate degradation of
the audio. In spite of a competitive pooled performance, our
submission on the evaluation corpus suffers from a significative
drop in performance for several codecs. This suggests that more
aggressive codec augmentations could have performed better,
maybe with the need of adapting the training recipe of the mod-
els.

Beyond their performance evaluated on a specific dataset,
countermeasure systems are also sensitive to the performance
of the attack systems intended to circumvent them. During
system development, early experiments with the ASVspoof5
development dataset showed a drop in performance due to a
concatenation-based attack. From human perception, this at-
tack sounds different from the attacks of the training set and il-
lustrates how difficult it is to generalize to new attacks. For this
class of attacks, we decided to design a specific data augmenta-
tion strategy to enhance the global performance of our detection
system.

1.4. Organization of the paper

Section 2 presents data usage and data augmentation tech-
niques, our two main contributions in this part being codec
augmentation and concatenation-based augmentation. Section
3 describes our implementation of the CM systems. Section 4
describes our ASV system. Experimental results are presented
in Section 5 and discussed in Section 6.

2. Data
In this section, we describe how the available data has been
used. Indeed, we took part in the closed condition of the chal-
lenge where the data is restricted to the ASVspoof5 corpus, and
VoxCeleb2 for track2. Notably, we leveraged three kinds of
data augmentation: standard speech processing augmentations,
codec augmentations and a concatenation-based augmentation.

2.1. Dataset usage

One CM system was trained for track1 using only the
ASVspoof5 corpus. It was also used for track2, in combina-
tion with an ASV system that was trained on VoxCeleb2 [19].
The split of the ASVspoof5 corpus is presented in Table 1.

The ASVspoof5 corpus contains a train and a dev
subset. Each set is composed of eight attacks. We
split the asvspoof5-train corpus into two subsets:
asvspoof5-train-dev containing 20% of the speakers
and used for validation, and asvspoof5-train-train

with the remaining ones.
The CM systems were calibrated on unknown at-

tacks to be more representative of the task. To this
end, we split the asvspoof5-dev corpus into two sub-
sets: asvspoof5-dev-cal used for calibration and
asvspoof5-dev-eval used for evaluation on unknown at-
tacks. Since these datasets were also used for track2, the split
was based on the asvspoof5-dev trial list for track2, with
the constraint that speakers belonging to a same trial should be-
long to the same subet. There is exactly one split with this con-
straint and this split is perfectly balanced, with 392 and 393
speakers within each subset.

2.2. Data augmentations

2.2.1. Standard data augmentations

All CM and ASV systems were trained with a subset of the
following standard speech data augmentations:

• additive noise with artificial white noise and MU-
SAN [20] (noise subset only), with an SNR between 0
and 15 dB ;

• reverberation with both artficial and real room impulse
response (RIR corpus) ;

• speed perturbation (×0.9 or ×1.1) ;

• pitch perturbation (between −400 and +400 cent) ;

• specaugment [21].

2.2.2. Codec data augmentations

One of the main objectives of the ASVspoof5 challenge is to
test the robustness of the systems to different acoustic codecs.
Accordingly, we designed an augmentation strategy which con-
sists of passing a signal through the encoding and decoding pro-
cesses of a codec [18].

Two lists of codecs have been tested:
light-codec-list and full-codec-list. The

Table 2: Codec data augmentations. The first two columns
show which codecs are included in full-codec-list and
light-codec-list.

full light Codec Bit rate range (kb/s)
x x AAC 20.0, 60.0
x AAC 10.0
x x Opus 2.0
x x AMR wide band 14.25, 32.05
x AMR wide band 6.60, 14.25
x AMR narrow band 4.75, 6.70, 12.20
x x GSM
x VOIP 15.0, 20.0
x CODEC2 0.45, 1.4, 3.2
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Table 3: Audio deepfake detection performance on development sets. The submitted CM system is system 9.

N° Model Data augmentations dev-eval no-A12 only-A12 progress
EER EER EER minDCF actDCF Cllr EER

1 AASIST (baseline) 15.38 7.80 73.21 0.4451 0.4781 0.6573 17.13
2 light-codec + B12 4.60 4.83 2.53 - - - -
3

ResNet

nocodec 11.78 1.52 51.0 0.1818 0.4102 0.5817 7.37
4 light-codec 11.37 1.31 54.8 0.1319 0.1450 0.2725 5.14
5 full-codec 12.03 3.90 42.95 0.2143 0.2147 0.2838 8.13
6 light-codec + B12 (cal on aug) 0.96 0.86 1.56 0.0783 0.1837 0.2194 2.98
7 ViT-MAE full-codec 13.52 5.30 59.22 0.3889 0.4650 0.6146 17.44
8 fusion 6 + 2 0.89 0.85 1.18 0.0767 0.0794 0.1165 2.96
9 6 + 2 + 7 0.74 0.64 1.49 0.0764 0.0848 0.1177 2.93

second is an extension of the first including more degradations,
particularly in terms of acoustic bandwidth reductions. Codec
details and repartition in the two lists are given Table 2.

2.2.3. Concatenation-based augmentation

Guided by the poor performance of our models on the A12 at-
tack, we designed another augmentation first to tackle this kind
of attacks and to further improve the models. A quick inspec-
tion of this aforementioned attack suggested a different spoofing
strategy preserving local speech naturalness.

To mimic this attack, we defined a process for modifying a
natural audio signal. The signal is divided into segments with
random durations following a normal distribution with mean
µ and variance σ2. Each sequence is then modified by a ran-
dom permutation. Finally, the transformed signal is simply
composed by concatenating the elementary signals from each
segment. This transformation, which we named B12, was ap-
plied offline and should be considered more as an attack used
for training detection models rather than a strict augmentation
applied on the fly. We excluded from this process the audio seg-
ments whose mean amplitudes are below 5e−2 on a normalized
scale between [-1.0, 1.0]. Two sets of parameters were used to
define two different kinds of transformations closed enough to
A12: (µ = 8e−2, σ2 = 2.5e−5) and (µ = 0.2, σ2 = 2.5e−5)

3. Countermeasure systems
Three kinds of countermeasure (CM) models were considered.
First, we trained a ResNet model, replicating a speaker identi-
fication recipe for the audio deepfake detection task. We also
trained the AASIST model [12], an end-to-end architecture for
audio deepfake detection. Finally, our focus shifted toward Self-
Supervised Learning and a ViT-MAE [13, 14] was pretrained
on the training data of the challenge. The model was then fine-
tuned for binary classification. This strategy is a first step to-
wards an anomaly detection system not relying on binary clas-
sification, which has been shown to generalize poorly [2, 22].

3.1. ResNet

This model is an adaptation of a VoxCeleb speaker identification
recipe with ResNet34 model [9]. ResNet models have been suc-
cessfully applied to the audio deepfake detection task [10, 11].

In our implementation, the input features are log-
melspectrograms extracted using 40 filterbanks, 25ms window
and 10ms shift durations. The model has a ResNet34 architec-
ture with 2d convolutions. It is followed by an attentive statis-
tical pooling layer (mean and standard deviation) and a classi-

fication head. It has 15.8M parameters. It is trained for binary
classification, with the cross-entropy loss. The model is trained
on balanced minibatches of size 32 with segments of fixed du-
ration (3s). We use the Adam optimizer with a fixed learning
rate of 10−3. The model with best validation loss is selected.

3.2. AASIST

AASIST [12] is a state-of-the-art architecture for audio deep-
fake detection. Our implementation is very similar to the base-
line model provided by the challenge organizers. The main dif-
ference is that we do not restrict inference to the first four sec-
onds of each utterance but run inference on the total duration of
each utterance.

The model takes raw waveforms as input and is trained for
binary classification to minimize the cross-entropy loss. We
train it with the Adam optimizer with a learning rate of 10−4

and a cosine annealing scheduler. We use balanced minibatches
of size 24 and of segments of fixed duration (3s). The model
with best validation loss is selected.

3.3. ViT-MAE

The amount of data of the challenge being limited, we had to
rely on a pretraining strategy that could work in the low-data
regime. We chose the ViT-MAE [13, 14] approach, which has
been shown to work on small datasets such as CIFAR10 [15]

This model takes as input the log-melspectrogram of an in-
put waveform of 500 ms duration. The mels are extracted using
128 filterbanks, a 32 ms window length and a 8 ms shift du-
ration. The ViT-MAE consists in training a ViT as a masked
variational autoencoder. Its input is split into non-overlapping
patches among which 75% are discarded. The task of the au-
toencoder is to reconstruct the missing patches based on the re-
maining ones.

To circumvent the difficulties naturally arising when train-
ing ViTs [23, 24], we modified the architecture to use Layer-
Scale [25] and discarded the learning of the normalization lay-
ers [26]. We also carefully initialized the network to ensure its
output is standardized when its input is. Lastly, we used the
ConvViT approach [24] to further ensure the stability and re-
producibility of trainings.

The model pretrained from scratch using SSL is the
ConvViT-base [24]. Then, a three-layer MLP with a hidden
dimension of 512 was trained on top of the frozen encoder to
classify segments of 500 ms. The utterance-level prediction
was computed using the average of the logposteriors of all non-
overlapping segments of 500 ms.

The pretraining was performed over 800 epochs using the
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AdamW optimizer [27] with a learning rate of 8 × 10−4 and
a weight decay of 5 × 10−2. We used linear warmup [28] for
5% of the steps and cosine annealing for the rest of the training.
The model was pretrained with an effective minibatch size of
16000 segments of 500 ms without data augmentation on both
bonafide and spoofed utterances. The training of the MLP fol-
lowed the same recipe except that the model was trained for
50 epochs, the loss was the cross-entropy and data augmen-
tation was used, including the codec augmentation using the
full-codec-list.

3.4. Fusion and calibration

All the three models’ final layers are trained using the cross-
entropy loss. We assimilate the logit activations of the output
layer as loglikelihood values for the hypotheses bonafide and
spoofed. The resulting LLRs are then calibrated with a logistic
regression[16] which is trained on the asvspoof5-dev-cal
dataset. The same logistic regression model is used for score-
level system fusion.

4. Spoofing-aware automatic speaker
verification

4.1. Automatic Speaker Verification system

Abiding by the rules of the track2 closed condition, we trained
an Automatic Speaker Verification system on the VoxCeleb2
corpus [19], without the MUSAN speech and music subsets for
data augmentation. It is trained without the codec data augmen-
tations. The model is a r-vector system from the Wespeaker
recipe on VoxCeleb2 [29].

The input features are log-melspectrograms extracted using
80 filterbanks, 25ms window and 10ms shift durations. Cepstral
Mean and Variance Normalization (CMVN) is applied. We use
a ResNet34 architecture [9] with a temporal statistical pooling
layer (mean and standard deviation). The model is trained for
150 epochs with an Arc-margin objective [30].

Embeddings of dimension 256 were extracted from the
trained ResNet model and were centered with the mean vector
obtained from the asvspoof5-train-dev corpus. Then,
scoring was performed with cosine similarity between test
and enrollment embeddings. Verification scores were normal-
ized with adaptive symmetric score normalization (top n=300)
with a cohort extracted from VoxCeleb2 [31]. Finally, the
speaker verification LLRs were calibrated with a logistic re-
gression trained on target and non target trials of the subset
asvspoof5-dev-cal, excluding spoofed trials.

4.2. ASV and CM score fusion

Non linear fusion of the CM and ASV scores was performed
with the score fusion script provided by the challenge organiz-
ers [17] to produce Spoofing-aware Automatic Speaker Verifi-
cation scores. The distribution of the CM and ASV scores was
learned on the asvspoof5-dev-cal subet of the dev trial
list.

5. Experimental results
Performances of the countermeasure models on the
asvspoof5-dev-eval and progress datasets are
reported in Table 3.

For easier reading we only report EER on the
asvspoof5-dev-eval corpus but report all challenge

metrics on the progress set. The DCF is computed with an op-
erating point given by the challenge, πspf = 0.05, Cmiss = 1,
Cfa = 10, and is normalized [1]. All systems are calibrated
on the asvspoof5-dev-cal dataset, with the exception of
system 4 which is calibrated on an augmented version of the
dataset and which suffers from a high calibration error on the
progress set. System 2 has not been evaluated on the progress
set during the progress phase of the challenge.

The models have also been evaluated on the
asvspoof5-train-dev corpus. All models exhibit
an EER below 1 % on this corpus, confirming that detection of
known attacks is an easy task.

5.1. Effect of data augmentation on countermeasure sys-
tems

Data augmentation techniques have been selected based on
experiments with the ResNet architecture. We observe that
the different versions of codec augmentation (nocodec,
light-codec-list and full-codec-list) do
not have a significant impact on performance on the
asvspoof5-dev-eval corpus. The impact is different on
the progress set where the light-codec-list augmen-
tation achieves a significant improvement over nocodec. We
assume that the low performance of the full-codec-list
augmentation on the progress set may be explained by the bad
convergence of the model. Better generalization of a model
with full-codec-list augmentation may be achieved
with a careful tuning of the optimization hyperparameters.

The codec augmentations during the model training phase,
nonetheless, improves calibration of the model. The difference
between actDCF and minDCF for the nocodec model (0.4102
vs 0.1818) is reduced for the light-codec-list (0.1450 vs
0.1319) and full-codec-list (0.2147 vs 0.2143). It is im-
portant to note that data augmentation was applied exclusively
to the training set of the model and not to the calibration dataset.

During the system development phase, we performed per-
attack evaluation of the systems. We noticed that the high er-
ror rates on the asvspoof5-dev-eval corpus was mainly
due to the A12 attack where the systems 1, 3, 4 and 7 achieve
worst than random performance. To illustrate this effect, we
provide performance metrics separately for the A12 attack and
for the set of all other attacks excluding A12. We observe that
the introduction of the B12 augmentation (system 6) drastically
improves performance on the A12 attack.

The best combination of augmentations,
light-codec-list augmentation and B12 augmen-
tation, has been selected to train the ResNet model. Applied to
the AASIST architecture, it achieves a significant improvement
(comparison of systems 1 and 2). Because of time constraints

Table 4: Automatic Speaker Verification Equal Error Rate (%)
on VoxCeleb1 and ASVspoof5 development sets with and with-
out speech used in data augmentation. Only the ASV system
trained without MUSAN speech and music is used for scoring.

vox1-O
clean

vox1-E
clean

vox1-H
clean

asvspoof5-dev
(no spoof)

w/ MUSAN
speech & music

0.787 0.964 1.726 -

w/o MUSAN
speech & music

0.851 0.990 1.787 1.285
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Table 5: Performance on progress and on dev track2. The submitted system corresponds to the last row.

CM model ASV model asvspoof5-dev-eval progress
min a-DCF min t-DCF t-EER min a-DCF min t-DCF t-EER

6 ResNet 0.0221 0.1070 0.90 0.0986 0.1826 4.11
9 0.0210 0.1005 0.85 0.1006 0.1859 4.17

during the challenge, only the full-codec-list augmen-
tation has been applied to the ViT-MAE model (system 7) for
the binary classification phase (not pretraining). The submitted
countermeasure system for both tracks is the system 9, fusion of
systems 6 (resnet with light-codec-list and B12 aug-
mentations), 2 (AASIST with light-codec-list and B12
augmentations) and 7 (VITMAE with full-codec-list
augmentation).

5.2. Spoofing-aware automatic speaker verification

Table 4 reports indicative performance of the ASV system on
VoxCeleb1 when the model is trained with and without MU-
SAN speech and music splits for data augmentation. As ex-
pected, when MUSAN speech and music splits are used, the
model performs better than when they are not used (0.787 vs
0.851 on vox1-O-clean). However, the increase in perfor-
mance is modest, suggesting that the ResNet34 does not heavily
depend on MUSAN speech and music splits to achieve proper
performance. On the asvspoof5-dev set, with spoofed tri-
als removed from scoring (classic EER with target and non-
target pairs), the ASV model performs well with an EER of
1.285 %, indicating that the speaker verification task is rela-
tively easy on the dev set.

In Table 5, we evaluate the SASV systems constituted of the
combination of the ASV system with two CM systems: the best
single system (system 6) and the fusion of ResNet, AASIST
and ViT-MAE (system 9). For consistency between tracks 1
and 2, we submitted the combination with the fusion system,
even though its performance is slightly worse on the progress
dataset.

5.3. Performance on the evaluation corpus

In Tables 6 and 7, we report the performance of the submitted
systems on the evaluation corpus for tracks 1 and 2 closed con-
dition. This level of performance looks reasonable but shows
a drop in comparison with the dev and progress corpora. We
notice that the system is remarkably well calibrated for the tar-
get operating point of track1, with a very small gap between
actDCF and minDCF.

The evaluation dataset is described in [4] where our submis-
sion is referred as T24. In Figures 1 and 2, we plot the actDCF
of the submitted system for track1 for each attack and condi-
tion, and the min a-DCF for track2. First, we observe that the
system performs well in the absence of codec. The pooled act-
DCF result with nocodec (0.186) is only twice the value on the
progress set (0.085) despite the presence of unknown adversar-
ial attacks.

There is no catastrophic behavior comparable to the A12
attack observed in the dev corpus. Additionally, the normal-
ized actDCF remains below 1.0 across all attacks and condi-
tions (not worst than a default system). For the nocodec con-
dition, the system achieves an actDCF below 0.05 for eight of
the sixteen evaluation attacks. The adversarial attacks such as
Malafide [32] (A18 and A20) and Malacopula [33] (A27, A30,

A31, A32) are very effective on the submitted system and are
responsible of the majority of errors on the nocodec condition

On the contrary, the system suffers from a significative
drop in performance for most codecs, until a three-fold increase
of the actDCF for codec-7 compared to the nocodec condi-
tion. 8kHz bandwidth conditions (codec-8, codec-9, codec-10,
codec-11) are challenging but the worst actDCF values are ob-
tained when the Encodec [34] neural audio compression is ap-
plied (codec-4 and codec-7).

6. Discussion
6.1. Generalization to unknown attacks

The generalization to a priori unknown attacks is the main
challenge of deepfake detection. The difficulty to detect the
A12 attack of the development corpus is a perfect illustra-
tion of this problem. Our solution was to introduce a specific
concatenation-based data augmentation, which basically solves
this problem on the development corpus and seems useful on
the progress dataset. Fortunately, the proposed countermeasure
systems generalize quite well to the attacks of the evaluation
corpus, with no catastrophic behavior comparable with attack
A12.

But we had no guarantee that this approach would gener-
alize. The proposed solution was to add augmented spoofed
utterances more representative of a class of new target attacks
to the training set. This approach exposes the practitioner to
a potential catastrophic behavior when exposed to new attacks
being very different from the attacks of the training set. We be-
lieve that a simple binary classification approach is insufficient
to establish the level of trust required for effectively handling
new attacks in practical applications. We plan to explore addi-
tional anomaly detection methods that focus on a more detailed
modeling of bonafide speech. This was the main motivation of
our work on the ViT-MAE system presented in subsection 3.3,
even though we were unable to implement an efficient anomaly
detection CM within the challenge timeline.

6.2. Robustness to codec degradation

Robustness to codec degradation can be partially achieved with
codec data augmentation of the training set. This approach
achieved significant gains on the development and progress sets,
and may be responsible of the competitive performance of the
submitted system on the evaluation corpus.

We selected a set of codec augmentations with moderate
degradations, most of them do not operate a frequency band
reduction, which have been successfully applied to the CM
systems without the need to modify the optimization hyper-
parameters. The observed performance drop on the evaluation
set for various codecs suggests that more aggressive codec data
augmentation methods could have been necessary. Even though
these kind of augmentations were explored during the develop-
ment phase of our solution, we did not select them due to their
lower performance on nocodec conditions. Their effective ap-
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Figure 1: actDCF of the submitted system on track1 evaluation
corpus. Attacks and codecs are described in [4].

plication to the CM systems seems reachable but will probably
need an adaptation of the optimization hyperparameters. More-
over an increased performance for spoofing-aware speaker ver-
ification can be expected from the application of codec specific
data augmentations on the speaker verification system.

6.3. Calibration

Practical use of a countermeasure system requires scores to be
calibrated. For the first time the ASVspoof5 challenge encour-
aged participants to submit calibrated LLRs [4]. We calibrated
the system with a simple logistic regression and obtained a very
low calibration error on the evaluation corpus. However, there
is an inherent difficulty in calibrating a countermeasure system,
due firstly to unknown attacks, but also to ensemble-based ar-
chitectures, where different subsystems may be trained on dif-
ferent subsets of attacks and react differently depending on the
attack. We hope that there will be more interest in the calibra-
tion of countermeasure systems, and we plan to study this issue
in greater depth over the coming months.

Table 6: Performance on the evaluation dataset of the submit-
ted system for track1

minDCF actDCF Cllr EER
0.297 0.298 0.418 10.43

Table 7: Performance on the evaluation dataset of the submit-
ted system for track2

min a-DCF min t-DCF t-EER
0.295 0.618 9.58

Figure 2: min a-DCF of the submitted system on track2 evalua-
tion corpus.

7. Conclusion
This paper describes the joint submission of Inria Défense et
Sécurité and Storyzy for the ASVspoof5 challenge closed con-
dition. The submitted countermeasure system is the combina-
tion of three models trained for binary classification: ResNet,
AASIST and ViT-MAE. The ViT-MAE model is pretrained
with a masked autoencoder objective. Data augmentations are
applied to enforce robustness to data transmission and to im-
prove performance on concatenation attacks. For track2, the
system is combined with a custom automatic speaker verifica-
tion system, trained on VoxCeleb2 without MUSAN speech and
music subsets to abide by the rules of the challenge. The sub-
mitted system achieves a competitive performance on the evalu-
ation corpus of both tracks, which is constituted of challenging
adversarial attacks and codec conditions. It is particularly well
calibrated for the target operating point of track1.
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[31] Pavel Matějka, Ondřej Novotný, Oldřich Plchot, Lukáš
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