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Malliavin∗,¶

†Laboratoire d’informatique de l’École Polytechnique, CNRS UMR 7161
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Abstract6

Protein structure prediction is usually based on the use of local conformational in-7

formation coupled with long-range distance restraints. Such restraints can be derived8

from the knowledge of a template structure or the analysis of protein sequence align-9

ment in the framework of models arising from the physics of disordered systems. The10

accuracy of approaches based on sequence alignment, however, is limited in the case11

where the number of aligned sequences is small. Here we derive protein conformations12
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using only local conformations knowledge by means of the interval Branch-and-Prune13

algorithm. The computation efficiency is directly related to the knowledge of stere-14

ochemistry (bond angle and ω values) along the protein sequence, and in particular15

to the variations of the torsion angle ω. The impact of stereochemistry variations is16

particularly strong in the case of protein topologies defined from numerous long-range17

restraints, as in the case of protein of β secondary structures. The systematic enumer-18

ation of the conformations improves the efficiency of the calculations. The analysis of19

DNA codons permits to connect the variations of torsion angle ω to the positions of20

rare DNA codons.21

November 3, 202422

Introduction23

The approaches for predicting protein structures from the knowledge of their primary se-24

quence have undergone enormous developments during the last decades.1–3 One of the most25

recent steps of this progress is the use of deep learning approaches.4–7 These in silico pre-26

dictions pave the way towards protein function prediction and drug design and can be thus27

considered as founding steps towards a reasoned interference with physiological processes,28

health problems, or plant engineering.29

In the domain of protein structure prediction, template-free in silico approaches uses30

local structural information coupled to long-range proximities.8 The relative importance of31

these two pieces of information is essential for a successful prediction, as pointed out by32

Skolnick et al9 already long ago. As the development of covariance approaches for multiple33

sequence alignments10–12 permits the prediction of long-range restraints, a consensus was34

found on the fact that prediction methods must be based on the local and long-range pieces35

of information.1336

The recently flourishing deep learning approaches4–7 have followed the same path, cap-37

italizing on the availability of huge databases of protein structures and sequences.14,15 The38
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success of all prediction methods is thus quite dependent on the availability of long-range39

restraints and consequently on the availability of multiple sequence alignment. Prediction40

methods for the torsion angles ϕ and ψ, however, may rely on a unique protein sequence.16–2041

Consequently, local structure prediction can be inferred independently of alignment infor-42

mation.43

In several cases, long-range proximity information cannot be obtained because the size of44

the corresponding sequence alignments is insufficient. An obvious case arises in the presence45

of disordered regions involving many conformations, which prevents the determination of46

precise proximities. Besides, for some protein families, the number of aligned sequences is47

too small for statistically determining the long-range restraints.21 Proteins for which expres-48

sion frameshift conducts to the expression of various polypeptides are also cases where the49

multiple sequence alignment does not provide reliable information.2250

We investigate here whether local structure information is sufficient to determine the51

protein fold. Of course, local and global structural pieces of information are closely linked:52

we are aware of the artificial nature of their separation. The present work should be con-53

sidered a geometric investigation of the relative importance of local and global information54

for calculating protein conformations. In a previous analysis,23 it was shown that the use55

of distances restraints based on local geometry permitted to calculate protein conformations56

closer to the target protein structures. In addition, some initial investigations in line with57

the present work have been conducted.2458

For our purpose, we employ a purely geometric approach, the interval Branch-and-Prune59

(iBP) algorithm, proposed some years ago to solve the problem of distance geometry in the60

frame of protein structure.25–28 The adaptation of iBP to intrinsically disordered proteins61

and regions is known as Threading-Augmented interval Branch-and-Prune (TAiBP).28,29 It62

systematically enumerates protein conformations while heuristically overcoming the intrinsic63

combinatorial barrier. Since then, TAiBP has been shown to allow the analysis of the64

conformational space of various flexible or disordered proteins.30–3265
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In the present work, we test several variants of the iBP algorithm with different levels of66

knowledge of the local geometry information on a database of 308 protein structures smaller67

than 100 residues (Table S1 and Figure 1B). These high-resolution X-ray crystallographic68

structures were selected in particular because they contain at least two secondary structural69

elements, α helices or β strands. In the following, the torsion angles ϕ and ψ will be assumed70

to be known within 5◦ intervals (or within 40◦ for loops in enumerating iBP runs), and the71

focus will be put on the variations of the torsion angle ω and of the bond angles. Larger72

variations of ϕ and ψ can be in principle taken into account using TAiBP.2973

The present study shows that the efficiency of reconstructing the protein fold is very74

sensitive to the knowledge of stereochemistry variations, namely the variations of bond an-75

gle values between the heavy backbone atoms and of the torsion angles ω. We will show76

that these stereochemistry variations depend more on the position of the residues in the77

Ramachandran diagram than on the type of individual amino acid residues. From these78

statistics, different types of stereochemistry were investigated, in particular, the case where79

the stereochemistry parameters are averaged on the regions of the Ramachandran diagram80

defined by Hollingsworth et al33 and that we will denote in the following by Hollingsworth81

stereochemistry. Two other stereochemistry types we analyze are the uniform one, in which82

the parameters are taken from Engh and Huber,34 and the pdb one in which the stereo-83

chemistry parameters are extracted from each studied PDB entry. Using the Hollingsworth84

stereochemistry, the exact knowledge of the ω backbone angles allowed us to recover most85

of the protein folds. Even a discretized knowledge of ω allowed us to achieve decent recon-86

struction levels. The enumeration of conformations using the iBP approach improves the87

fold reconstruction whenever uniform stereochemistry is used. The calculations performed88

here have been summarized in the flow chart described in Figure 1. Looking at the origin89

of ω variability, some connection with the position of rare DNA codons was emphasized, in90

agreement with recent literature results.35–3791
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Materials and Methods92

Preparation of the protein database93

The list of PDB entries of X-ray crystallographic structures with identity between sequences94

smaller than 20%, resolution better than 1.6 Å and R factor better than 0.25, has been95

downloaded from the server dunbrack.fccc.edu/pisces38 providing 3757 protein chains.96

From this list, 308 protein chains were selected, smaller than 100 residues, not containing97

cis peptide bonds, and for which more than two secondary structure elements (α-helix or98

β-strand) are present (Table S1 and Figure 1A).99

The proteins forming the database display a size mostly in the range of 60-90 residues,100

with a smaller number of proteins containing 20 to 60 residues (Figure S1). The percentage101

of α helices is uniformly distributed among the proteins, whereas the β-strand and the loops102

display more concentrated distributions in the 0-20% for β strands and 20-40% for loops.103

interval Branch-and-Prune approach104

The interval Branch-and-Prune approach (iBP) algorithm was initially proposed by Mucherino105

and coworkers25,26,28,39–42 to enumerate the conformations of proteins verifying sets of dis-106

tance constraints. The space of all possible protein structures is described as a tree and the107

available geometric information permits tree branching and pruning. Each time a branch of108

the tree is pruned, the iBP calculation is stopped and resumed at the previous positioned109

atom. This branch-and-prune description of the problem makes possible a discrete enu-110

meration of solutions, and consequently strongly contrasts with most of the optimization111

approaches usually employed for the determination of biomolecular structure.112

If not otherwise stated, the conformations of the proteins have been recalculated using113

one-shot iBP runs, in which the run was stopped after producing the first solution. The114

branching part was performed on ϕ and ψ torsion angles using intervals of 5◦ centered115

around the true ϕ and ψ values. The torsion angles are converted into distance intervals,116
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which are discretized with a maximum of four branches separated by at least 0.1 Å, which117

defines the discretization factor ϵ.118

The ω values of the torsion angle of peptidic planes were used as pruning restraints as119

well as the χ1 torsion angle defining L amino acid residues. A last pruning restraint is related120

to all interatomic distances which should be larger than the sum of van der Waals radii of the121

atoms, using a scale factor of ρ = 0.8 on the radii if not otherwise stated. This approach is122

reminiscent of the reduction of the van der Waals interactions during the simulated annealing123

procedure in NMR structure calculation.43124

Variations of stereochemistry during iBP calculations125

Several definitions of protein stereochemistry focusing on the backbone bond angles and ω126

torsion angles were used as inputs for the calculations. Uniform stereochemistry was de-127

fined using the values from the force field PARALLHDG (version 5.3)34 (Table S2). Two128

variations of the stereochemistry are explored: (i) pdb stereochemistry in which the bond129

angles and ω torsion angle were extracted from the PDB conformation of the considered pro-130

tein, (ii) Hollingsworth stereochemistry in which the bond angles and the ω torsion angle are131

taken as the average stereochemistry values calculated from the regions of the Ramachandran132

diagram defined by Hollingsworth et al from the analysis of high-resolution X-ray crystal-133

lographic structures.33 The correspondence between the regions displayed in Figure S2 and134

the definition of Ref44 is given in Table S3.135

For pdb stereochemistry, each protein residue is defined by a 3-letter name, the alphabetic136

order of the names coding for the positions of the residues in the primary sequence, the first137

residue being AAA, the second one AAB, and so on. The topology files in CNS format45138

were modified by using this residue code to define the amino acid residues along the primary139

sequence as well as the different atom types for each residue. Using these atom types, and140

the stereochemistry values in the PDB structure, values of bond lengths and angles are then141

generated for each residue along the sequence and stored in the CNS parameter file. This142
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allows us to take into account any possible variations of protein stereochemistry (pdb or143

Hollingsworth) along the protein sequence.144

Analysis of obtained conformations145

The analysis of protein conformations obtained with iBP has been performed using the146

MDAnalysis package46 and STRIDE.47 Sidechains were added to the protein backbone using147

the Relax procedure48 of Rosetta49 for the refinement of a one-shot iBP run, in the case of148

uniform and Hollingsworth stereochemistry. During the Relax procedure, 10 conformations149

were generated and the procedure was repeated 5 times.150

Results151

Analysis of protein stereochemistry152

The stereochemistry of the 3757 protein chains downloaded from the server dunbrack.fccc.153

edu/pisces38 has been analyzed (Figure 1) by calculating the average values of the backbone154

bond angles N−Cα−C, Cα−C−N, C−N−Cα, Cα−C−O, and O−C−N (Figure 2). The155

negative torsion angles ω were shifted by 360◦ in order to obtain ω value variations around156

180◦. The averaged and standard deviation values of these bond and torsion angles are157

plotted according to the type of amino acid (Figure 3, left column) and to the region of the158

Ramachandran diagram defined by the backbone torsion angles ϕ and ψ (Figure 3, right159

column). The Ramachandran regions were taken from the definition given in the work of160

Hollingsworth et al33 (Figure S2).161

Almost all average angle and standard deviation values display flat profiles along the type162

of amino acid (Figure 3, left column). The standard deviations for ω angles display slight163

variations among the amino acids, especially for Glycine, Tryptophan, and Tyrosine (Table164

S4). Unsurprisingly, the dashed line indicating the Engh and Huber34 values is close to the165

average values of angles. The bond angles Cα−C−N and C−N−Cα display the smallest166
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standard deviations, whereas the bond angles N−Cα−C and Cα−C−O display the largest167

ones. The averaged values of the angle C−N−Cα display one outlier for Proline residues,168

with a shift of around 2◦. The averaged values of the angle N−Cα−C display four outliers,169

all shifted by around 2◦: two are shifted towards larger values for amino acids Glycine and170

Proline, and two are shifted towards smaller values for amino acids Isoleucine and Valine. The171

outliers positions of Isoleucine and Valine have been recently observed50 for the propensity172

scales of the Ramachandran regions. In addition, Proline and Glycines have been known for173

decades to influence local geometry.51,52174

Interestingly, the profiles along the Hollingsworth regions (Figure 3, right column) are175

much more variable for the average as well as for the standard deviation values (Table S4).176

Among the bond angles, the angle N−Cα−C and Cα−C−O display the most variable profiles.177

The large variability of these angles may arise from the involvement of the atoms N and O178

into hydrogen bond network stabilizing the protein secondary structures.179

The angle variability depends on the Ramachandran regions. The region A (Figure S2,180

red), corresponding to the regular α helix, produces angles close to the Engh and Huber val-181

ues, with the smallest standard deviations. The region D (Figure S2, green), corresponding182

to the 3-10 helix, displays standard deviations similar to the region A, but average values183

shifted to upper values for bond angles Cα−C−N and N−Cα−C and to lower values for bond184

angle Cα−C−O. The region B, corresponding to the regular β strand (Figure S2, blue), and185

P, corresponding to the polyproline region (Figure S2, brown), displays also average values186

mostly close to the Engh and Huber values except for the angle N−Cα−C, but the standard187

deviations are larger, especially for the angle ω. The regions g, Z, located between the α and188

β regions of the Ramachandran diagram, the regions G, d, p, located in the loop region of189

positive ϕ value, and the region E, all display large standard deviations and shifted average190

values.191

The right column of Figure 3 permits the definition of protein stereochemistry depending192

on the Ramachandran region by averaging over each Hollingsworth region (Figure S2), the193
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values of bond angles and ω angles. Due to the profile variations of Figure 3, one may194

expect that this Hollingsworth stereochemistry will be more variable than a stereochemistry195

based on the amino-acid type. This is not surprising as the amino acid type is defined196

by the sidechains which are more far apart from the backbone than the ϕ and ψ torsion197

angles. In the following, the protein stereochemistry will be modeled as uniform ie. uniquely198

defined from the atom type, following the measurements of Engh and Huber34 (Table S2),199

as Hollingsworth with averaged values determined from the ϕ, ψ torsion angles (Figure 3200

and Table S4), and as a pdb, using angles measured on the PDB structure of the considered201

protein.202

Effect of stereochemistry on the protein conformations generated203

with iBP204

Several experiments were performed on the database of proteins to reconstruct the confor-205

mations using iBP with the previously chosen types of stereochemistry. First, one-shot runs206

were realized with calculations stopping after obtaining the first conformation (Figure 1C)207

and intervals of 5◦ for ϕ and ψ angles. Then, the protein targets were submitted to a full208

exploration of the tree, using narrow intervals (5◦) of ϕ and ψ in the secondary structure209

elements, and larger intervals (40◦) in the connecting loops (Figure 1D).210

Figure 4 displays the distributions of the root-mean-square deviation (RMSD, Å) between211

the atomic coordinates of the iBP solution and of the initial PDB conformation for the one-212

shot runs using the definitions of stereochemistry described in Table 1. In the present work,213

the RMSD values were calculated on the heavy atoms of the protein backbone. In the case214

where the stereochemistry is defined from the initial PDB conformation (pdb stereochemistry215

in Table 1), coordinate RMSD around 0.5 Å are observed (Figure 4a). This provides a floor216

value for the maximum possible precision which can be obtained using the discretization of217

the ϕ and ψ intervals in iBP. It is interesting to note that if the bond lengths are also taken218

variable from the PDB conformation, the same distribution of RMSD values is obtained (data219
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not shown). The bond length variations have thus much less influence on the variations of220

conformations obtained by iBP than the bond angle variations.221

As soon as the ω angle is set to 178◦ while getting the other parameter values from222

pdb stereochemistry (Figure 4b), the RMSD distributions are switched towards much larger223

values, up to 10-12 Å. Such behavior is also observed for Hollingsworth (Figure 4c,d) or for224

uniform (Figure 4e) stereochemistry. Interestingly, quite different RMSD distributions are225

observed according to the type of secondary structures. The shift is smaller for proteins folded226

mostly as α helices (blue curves) or mostly as loops (red curves), producing an RMSD value227

smaller than 3 Å for at least half of the structures. By contrast, the structures containing228

mostly β strands (green curves) display distributions centered at RMSD values between 5229

and 6 Å.230

The coordinate RMSD values are known to display some limitations for precisely mea-231

suring the accuracy of a protein structure prediction.53 Thus, the TM score distribution54
232

have been calculated (Figure S3) using the software code downloaded from zhanggroup.233

org/TM-score. For pdb stereochemistry (Figure S3a), the TM scores are close to the opti-234

mal value of 1. Similarly to Figure 4, the TM-score values are getting worse if ω values of235

178◦ are used (Figure S3b,d) or in the case of uniform stereochemistry (Figure S3e). Most of236

the calculated conformations display TM-scores larger than 0.5, if the bond angles are taken237

from the PDB entry and the ω values are set equal to 178◦ (Figure S3b).238

An interesting difference between the TM score and RMSD is observed for Hollingsworth239

stereochemistry. Indeed, the TM scores are worse for Hollingsworth stereochemistry (Fig-240

ure S3c,d) than for any other calculation, whereas the RMSD values are similar between241

Hollingsworth (Figure 4c,d) and uniform (Figure 4e) stereochemistry. This is probably due242

to a distortion in interatomic distance distribution, produced by the use of bond and ω243

angles averaged on Hollingsworth regions. Indeed, this distortion deteriorates the TM score244

value as the distance distribution is the main ingredient of the score. Additional distance245

distortions may arise from the use of the van der Waals scaling of ρ = 0.8 used during the246
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iBP calculation to avoid pruning of conformations.247

To investigate more precisely the relationship between stereochemistry variations and the248

efficiency in conformer generation, the global variation of bond angles along a structure has249

been calculated as:250

∆θ =
N−1∑
i=1

|θi+1 − θi| (1)

where | · | stands for the absolute value, and N is the number of residues with residue number251

indexed from 1 to N . A similar global variation for the torsion angle ω was defined as:252

∆ω =
N−1∑
i=1

|δωi+1 − δωi| (2)

where:253

δω =

 180◦ − ω if sgn(ω) > 0,

−180◦ − ω if sgn(ω) < 0,
(3)

with sgn(·) being the sign function, i.e., sgn(x) = 1 if x > 0 or sgn(x) = −1 if x < 0.254

The ∆θ values calculated on bond angles C−N−Cα, N−Cα−C and Cα−C−N and the ∆ω255

values calculated on torsion angle ω were compared to the coordinate RMSD values between256

the iBP and initial conformations (Figure S4). The global variations and the coordinate257

RMSD display an obvious correlation which is also driven by the length of the protein258

chains. In agreement with Figure 3, the largest global variations are obtained for ∆ω (blue259

points) and ∆θ of the N−Cα−C bond angle (green points).260

For the calculations performed using: (i) Hollingsworth stereochemistry (Figure 4c) and261

(ii) uniform stereochemistry (Figure 4e), the protocol Relax48 of Rosetta49 was applied on262

the iBP outputs, to add the residue sidechains. The minimal RMSD value with respect263

to the initial PDB conformations (Figure S5a,b) shifts towards smaller values which is the264

sign of a conformation drift towards the correct solution. Indeed, the comparison of RMSD265
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distribution with Hollingsworth (Figure S5a versus Figure 4c) and uniform (Figure S5b266

versus Figure 4e) stereochemistry reveals a shift of 1-2 Å and even of 4 Å for the mostly β267

folded proteins (green curve). The Rosetta scores have been also plotted along the coordinate268

RMSD and display a similar variation towards more negative values for smaller RMSD values269

(Figure S5c,d).270

The iBP procedure presented here for reconstructing a protein complete fold could also271

have an application for the reconstruction of missing parts of a given protein structure. To272

evaluate this approach, the sub-chains for which coordinate RMSD to initial protein structure273

was smaller than 2.5 Å were extracted and their lengths are plotted as the percentage of the274

length of the full chain (Figure S6a,b,c) as well as numbers of residues (Figure S6d,e,f). The275

distribution of the percentages (Figure S6a,b,c) agrees with the distribution of RMSD values276

(Figure 4), with percentages close to 100% when RMSD values close to 0.5 Å are observed. As277

soon as the stereochemistry becomes less variable, the distributions of percentages become278

wider, but display very similar shapes in all runs, with two maxima located around 50%279

and 90% (Figure S6b,c). The distribution of the numbers of residues are all larger than 30280

residues and are mostly distributed in the range of 20-60 amino acids. These values compare281

well with the results of the literature.55 In addition, similar distributions are observed for the282

different types of secondary structures in protein folds. These results are quite encouraging283

in the perspective of reconstructing non visible regions in protein structures.284

In the presence of Hollingsworth stereochemistry, the effect of different input ω values285

on the reconstruction of protein folds was analyzed (Figure 5). If exact values are known286

for the ω torsion angles (Figure 5a), the majority of structures containing mostly α helices287

or loops display RMSD values smaller than 3 Å, corresponding to a good reconstruction of288

the protein fold. On the other hand, the structures containing mostly β strands display a289

shift in RMSD values, but their RMSD is still mostly smaller than 3 Å. Thus, knowing the290

exact values for torsion angles ω is essential for building the protein structure from local291

information.292
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Then, the effect of several discretizations of ω was tested on the reconstruction of protein293

structures. In that case, the ω continuous values are replaced by ωk values corresponding294

to different discretization classes k. In the first discretization, the absolute value of the295

parameter δω previously introduced in Eq 3 was used to define four classes of ω values:296

ωk =

 173◦sgn(ω) if 5◦ < |δω| < 10◦,

177◦sgn(ω) if |δω| < 5◦
(4)

This discretization induces a shift in RMSD values (Figure 5b). The mostly α and loop297

structures are still correctly reconstructed, and half of the mostly β structures display RMSD298

values larger than 3 Å.299

A more crude discretization is used where ωk is set equal to 178◦sgn(ω). This two-300

class discretization (Figure 5c) shifts the RMSD distribution to values larger than 3 Å for β301

structures, but about the two third of α and one-half of loop structures display RMSD values302

smaller than 3 Å. But, even this crude discretization allows us to obtain better RMSD values303

than those observed for uniform stereochemistry (Figure 4e). The effect of ω discretization304

on the fold reconstruction proves that classification approaches56 could be interesting for305

predicting protein conformations.306

Effect of the enumeration by iBP to the reconstruction of protein307

fold308

The iBP approach has the advantage of allowing a systematic enumeration of all possible309

solutions. This enumerating scheme was thus used here to improve the coordinate RMSD310

of solutions with respect to the initial PDB structure. The inputs of the iBP runs were311

intervals around the ϕ and ψ angles with intervals widths of 5◦ in α helices and β strands,312

and of 40◦ in other protein regions. The number of branches is 4.313

A disadvantage of the iBP approach is that execution can take a very long time and314

ultimately prune all solutions. In order to quickly determine input values avoiding the full315
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pruning of solutions, short iBP runs were launched with an upper limit of 2 minutes, varying316

systematically the values of the discretization factors ϵ and of the van der Waals scaling317

ρ. Two stereochemistry inputs were used: uniform and Hollingsworth stereochemistry. A318

conformation was stored only if the coordinate RMSD between the newly generated and the319

previous solution was smaller than 3.5 Å.320

The number of accepted solutions is mostly around 104 and increases up to 105 (Fig-321

ure S7a). Around 20% of the calculations display no solutions. The number of solutions322

rejected because of the RMSD criterion (Figure S7b) is in the range of 106-107, much larger323

than the range of accepted solutions. An RMSD of 3.5 Å is thus quite discriminating for324

selecting solutions. The tree size is mostly in the range of 105 to 1010 (Figure S7c). Inter-325

estingly, previous experiments realized with TAiBP showed29 that a tree size of about 109326

permits systematic enumeration of the tree solutions for protein fragments. The size of the327

trees, as well as the numbers of accepted and rejected solutions, display the same distribution328

for the Hollingsworth or the uniform stereochemistry. Similarly, the discretization factors ϵ329

vary uniformly in the range 0.15-0.17 (Figure S7d) for Hollingsworth (black curve) as well as330

for uniform (red curve) stereochemistry. By contrast, the van der Waals scaling ρ varies in331

the 0.2-0.6 range for Hollingsworth stereochemistry and in the 0.3-0.6 range for the uniform332

stereochemistry (Figure S7e). This shows that smaller ρ values were sometimes used to avoid333

pruning in the case of Hollingsworth stereochemistry and agrees with the worse TM score334

observed for the one-shot run with Hollingsworth stereochemistry (Figure S2).335

Based on the fast exploration described above, input values for enumerating runs were336

selected using the following rules: (i) the largest possible van der Waals scaling ρ for max-337

imizing the pruning by steric hindrance, (ii) the largest possible discretization factor ϵ for338

obtaining the smallest possible tree size to facilitate its full exploration. The corresponding339

trees were then completely parsed using iBP. During the enumeration, the number of asked340

conformations was set to 109. All calculations produced a smaller number of conformations,341

which proves that the corresponding trees were fully explored. Tree sizes centered around342

14



104, discretization factors ϵ around 0.17, and van der Waals scaling factors ρ around 0.5 were343

used for these full runs (Figure S8). The discretization factor displays similar distributions344

for Hollingsworth and uniform stereochemistry. In contrast, the tree size and the van der345

Waals scaling factor ρ are slightly shifted towards higher values for Hollingsworth stereo-346

chemistry. Indeed, the larger tree observed for this stereochemistry requires greater van der347

Waals scaling to reduce the number of solutions by pruning.348

The effect of the enumerating scheme for calculating structures was evaluated using349

the distribution of coordinate RMSD between iBP and PDB target conformations (Figure350

6). For each processed protein, the smallest RMSD value between the iBP solution and the351

initial structure was selected and the corresponding RMSD distribution was compared to the352

corresponding RMSD distributions for the one-shot runs (Figure 4c,e). For both uniform353

(Figure 6a) and Hollingsworth (Figure 6b) stereochemistry, the use of enumeration induces a354

shift of the RMSD values towards smaller values. Interestingly, this shift is more pronounced355

in the case of uniform stereochemistry, as shown by the comparison of Figures 6b and 4e.356

Thus, using the enumeration of conformations potentially improves the efficiency of the fold357

reconstruction.358

A possible origin of the variability of stereochemistry359

During the previous sections, the effect of variability of stereochemistry on the calculation of360

protein conformation based on local conformational restraints has been examined in various361

situations. In this section, we intend to investigate the relationship between the distribution362

of synonymous DNA codons and the variability of stereochemistry.363

We first focused on the variability of bond angle values. The standard genetic code57364

was used to determine the number of synonymous codons for each amino acid residue. The365

number of possible synonymous codons for each residue was summed along each of the 308366

protein primary sequences to produce the cumulative number of synonym codons. Plotting367

the global variations ∆θ of the bond angles C−N−Cα, N−Cα−C and Cα−C−N compared368
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to this cumulative number (Figure S9) reveals a correlation between the stereochemistry369

variation and the number of synonymous codons similar to those previously observed in370

Figure S4. As in Figure S4, the correlation is driven by the protein size. The 13 proteins371

from E coli and expressed in E coli for structure determination are marked with green crosses372

and display the same tendency as the whole set of proteins.373

These 13 E coli proteins are drawn in cartoon and the residues displaying global variations374

∆θ of bond angles larger than 6◦ are drawn in licorice and colored in green (Figure S10).375

Most of these protein structures display a topology inducing interactions between secondary376

structure elements located apart in the protein sequence. Also, the residues with the largest377

local variation of bond angles are mostly located in loops or at the extremity of secondary378

structure elements. In several structures (1C4Q, 1GYX, 1Q5Y, 3CCD, 4MAK, 4Q2L), most379

variable residues are close to each other in the 3D structure, displaying even long-range380

physico-chemical interactions. The variations of bond angle stereochemistry can be thus381

related to the long-range interactions participating to the fold definition. The positions of382

variable residues in the loops might be related to the importance of loop conformations for383

orienting the protein backbone with the folded topology. In addition, the long-range inter-384

actions of some variable residues suggest a cooperative effect between bond angle variations385

arising during the protein folding.386

In the second step, we focused on the relationship between the ω torsion angle variability387

and the individual corresponding DNA sequences. Among the 308 protein structures, the388

proteins issued from the organisms Homo sapiens, Escherichia coli and Saccharomyces cere-389

visiae were selected using the descriptor SOURCE: ORGANISM SCIENTIFIC. The relative390

codon usage observed in three organisms: Escherichia coli, Saccharomyces cerevisiae and391

Homo sapiens (Table 1 of Ref58) was used to extract the different numbers of synonymous392

codons for each amino-acid residue of these proteins. The PDB entries were then entered as a393

query to the European Nucleotide Archive (ENA) www.ebi.ac.uk/ena. The corresponding394

DNA sequences were programmatically downloaded and filtered to keep those corresponding395
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to the considered protein chain in the PDB entry.396

The DNA sequence codons were then analyzed using the statistics on codons from Ref58397

calculated on the organisms Homo sapiens, Escherichia coli and Saccharomyces cerevisiae.398

From each amino acid, the codons displaying statistics of presence smaller than the average399

presence of all codons coding for the amino acid were considered rare codons. Then, the ω400

angle values of all protein residues were analyzed (Figure 7) by calculating their average µ401

and standard deviation σ2 values on each considered protein sequence. The ω angle values402

were centered and normalized using µ and σ2, producing a global averaged ω value on each403

protein equal to zero. The ω values averaged on protein residues corresponding to rare404

codons, as well as to protein residues corresponding to neighbors or second-neighbors of405

rare codons were centered and normalized using the µ and σ2 values obtained for the full406

sequence of the corresponding PDB entry. The distributions of these centered and normalized407

ω values display slight shifts towards positive or negative values (Figure 7a). Looking at these408

distributions, the ω values are more apart from zero for residues corresponding to rare codons409

than for neighbor and second-neighbor residues (Figure 7a). All standard deviation values410

(Figure 7b) are centered around 1◦, similarly to the standard deviation values normalized411

on the whole primary sequence.412

The rare codons have been pointed out to be related to the kinetics of protein folding413

during the protein synthesis in the ribosome.57,59,60 In addition, recent bioinformatics analysis414

has established a relation between the genetic code and the protein structure.35,36 In that415

frame, the relationship put in evidence here between the variability of ω values, the rare416

codons, and the reconstruction of the protein structure connects the protein folding and the417

kinetics of protein synthesis in the ribosome.418

In that respect, it is interesting to observe that mostly β folded proteins are specifically419

sensitive to the variability of ω values. Indeed, their folding requires intricate cooperation420

between the establishment of long-range interactions forming the β sheets. This may be421

related to the analysis of Figure S10 performed above.422
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The analyses performed here point out the importance of mRNA in the variability of423

stereochemistry in proteins. They complement the relationships put in evidence in the424

literature35 between the mRNA sequence and populations of α and β regions, as we have425

also shown here that the variations of stereochemistry are related to the Hollingsworth regions426

of the Ramachandran diagram (Figure 3).427

Discussion428

The present work has been investigating the exclusive use of local conformational informa-429

tion, namely the values of the torsion angles ϕ and ψ for calculating protein conformations.430

The results obtained here were made possible in an essential way by the development of431

the interval Branch-and-Prune approach (iBP),40 providing a framework for the systematic432

enumeration of conformations. The analyses performed here have put in evidence the essen-433

tial impact of the variability in stereochemistry and represent, to the best of our knowledge,434

the first attempt to relate these stereochemistry aspects to the calculation and prediction of435

protein conformations.436

The variations of stereochemistry are certainly influenced by the refinement protocols437

used for determining X-ray crystallographic structures, in which the application of long-438

range restraints can produce effects in variations of local stereochemistry, in a way that is439

not mastered in the details. During the last decades, the stereochemistry aspects have not440

been taken into account during the protein structure prediction thanks to the use of long-441

range distance/angle restraints.61 On the other side, the use of long-range restraints might442

influence the appearance of stereochemistry outliers. The relative weights of the different443

types of information in the protein structure calculation should be further investigated for444

example using a Bayesian approach.62,63445

To alleviate the impact of variability, a Ramachandran-based definition of the bond446

angle stereochemistry, the Hollingsworth definition, has been proposed. The efficiency of447
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this definition is improved with the use of enumeration during the iBP approach or by the448

knowledge of ω values. The combination of these aspects provides thus a way to overcome449

the variability problem for most of the protein structures examined here, especially in the450

case of α proteins.451

The calculations performed here have been scored with respect to reference protein con-452

formation, using coordinate RMSD and TM-score. In most of the calculations, TM-scores453

display better values than RMSD, in agreement with the general knowledge on this score.54454

But, if Hollingsworth stereochemistry is used, better RMSD values are obtained than the455

TM-score values, probably because the deformation of local stereochemistry impacts the456

distribution of inter-atomic distances used in the TM-score calculations. Indeed, the TM-457

score was derived to correct the bias of coordinate RMSD on structures determined in the458

framework of uniform stereochemistry and should be adapted to the case of Hollingsworth459

stereochemistry.460

Two approaches have been used to reduce the conformational drift produced by the461

lack of precision in the modeling of stereochemistry: the enumeration of conformation in462

the framework of iBP, and the Relax procedure48 of Rosetta.49 Both approaches permit to463

improve the results.464

The analyses carried out here make it possible to propose that the origin of stereochemical465

variations could be linked to the information contained in the mRNA sequence. The finer466

investigation of this aspect is out of the scope of the present work but could provide a more467

integrated modeling of protein structure and folding.468
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✔ identity between sequences smaller than 20%,

✔ X-ray crystallographic resolution better than 1.6 Å

✔ crystallographic R factor better than 0.25

✔ smaller than 100 residues,

✔ not containing cis peptide bonds and 

✔ more than two secondary structure elements 

(α-helix or β-strand)
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Figure 1: Flow-chart of the calculations. A. Obtaining the statistics of stereochemistry from
a protein database. B. Generating a subset of 308 protein chains which will be the targets for
iBP calculations. Using the torsion angle values measured on the protein target conforma-
tions along with different hypotheses on stereochemistry (Table 1) , protein conformations
were recalculated using iBP, selecting the first generated conformation (one-shot iBP run)
(C) or enumerating all possible conformations (D).
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Figure 2: Scheme of the succession of protein backbone heavy atoms N, Cα, C, and O along
with definitions of angle parameters. a. Bond angles are: N−Cα−C (θ1, grey), Cα−C−N
(θ2, orange) and C−N−Cα (θ3, blue), Cα−C−O (θ4, green) and O−C−N (θ5, magenta). b.
The backbone torsion angles ϕ, ψ, and ω are indicated by circular arrows.
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Figure 3: Average and standard deviation values calculated on the bond angles and ω
dihedral angle, defining the stereochemistry of protein backbone. The bond angles labels
are the same than those displayed on Figure 2. The regions of the Ramachandran diagram
were taken from Ref33 and are displayed in Figure S2. The dashed lines correspond to the
angle values in the parameter set of Engh and Huber34 (Table S2). Asterisk indicate the
most variable bond angles along the amino acid type.
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Figure 4: Distribution of the root-mean-square deviation (RMSD, Å) of atomic coordinates
between the initial PDB conformation and the conformation reconstructed using iBP. The
following stereochemistry inputs (Table 1) were used: (a) pdb stereochemistry taken from
the PDB input, (b) pdb stereochemistry with ω values of 178 deg, (c) Hollingsworth stereo-
chemistry with bond and ω angles averaged along the Hollingsworth regions (Figure S2), (d)
Hollingsworth stereochemistry with ω values of 178 deg, (e) uniform stereochemistry34 (Ta-
ble S2). The vertical dashed line indicated the RMSD value of 3 Å. The curves are colored
depending on the percentage of residues belonging to α-helices, to β-strands, or to loops as
described in the legend. The secondary structures were determined using STRIDE.47
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Figure 5: Distribution of the root-mean-square deviation (RMSD, Å) of atomic coordinates
between the initial PDB conformation and the conformation reconstructed using iBP with
the Hollingsworth stereochemistry for bond angles along with various definitions of the ω
angles: (a) ω values taken from the PDB initial conformation, (b) discretization of ω values
among four classes (Eq 4), (c) discretization of ω to 178◦sgn(ω), where sgn(ω) is the sign of
ω in the initial PDB structure.
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Figure 6: Distribution of the root-mean-square deviation (RMSD, Å) of atomic coordinates
between the initial PDB conformation and the conformation reconstructed using enumerating
iBP runs with Hollingsworth (a) or uniform (b) stereochemistry. The coordinate RMSD was
taken as the smallest RMSD value obtained among all iBP solutions.
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Figure 7: Distribution of the variations of δω (Eq 3) (a) and of the standard deviations
σ2(δω) (b) for various positions in the protein sequences: at the residues for which the rare
codons are observed (black curve), at the residues neighboring the rare codon (green curve)
and at the residues second neighbor of the rare codon (blue codon).
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Table 1: Definitions of stereochemistry inputs.

name origin of
stereochemistry

pdb initial conformation from the Protein Data Bank
Hollingsworth averaged angle values from the Ramachandran regions33

uniform stereochemistry parameters from Engh and Huber34 (Table S2)
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