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Abstract. We study key agreement in the bounded-storage model, where
the participants and the adversary can use an a priori fixed bounded
amount of space, and receive a large stream of data. While key agreement
is known to exist unconditionally in this model (Cachin and Maurer,
Crypto’97), there are strong lower bounds on the space complexity of
the participants, round complexity, and communication complexity that
unconditional protocols can achieve.
In this work, we explore how a minimal use of cryptographic assumptions
can help circumvent these lower bounds. We obtain several contributions:
– Assuming one-way functions, we construct a one-round key agreement

in the bounded-storage model, with arbitrary polynomial space gap
between the participants and the adversary, and communication
slightly larger than the adversarial storage. Additionally, our protocol
can achieve everlasting security using a second streaming round.

– In the other direction, we show that one-way functions are necessary
for key agreement in the bounded-storage model with large space gaps.
We further extend our results to the setting of fully-streaming adver-
saries, and to the setting of key agreement with multiple streaming
rounds.

Our results rely on a combination of information-theoretic arguments
and technical ingredients such as pseudorandom generators for space-
bounded computation, and a tight characterization of the space efficiency
of known reductions between standard Minicrypt primitives (from distri-
butional one-way functions to pseudorandom functions), which might be
of independent interest.

1 Introduction

Perhaps surprisingly, while cryptographic primitives must typically rely on hard-
ness assumptions in the time-bounded setting (and proving their security un-
conditionally would entail proving P 6= NP), several cryptographic primitives of
interest are known to exist unconditionally in the bounded-storage model (BSM).
In this model, introduced by Maurer [Mau92], the participants and adversary
are space-bounded (with a gap between the space s honest parties need and the
space a the adversary needs) and have one-time read access to a huge random
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string (of length � a). In the BSM, symmetric key encryption [Mau92], signa-
tures [DQW22], key agreement [CM97], and oblivious transfer [Din01], all exist
unconditionally. Yet, unconditional constructions of “public-key-style” primitives
in the bounded-storage model typically suffer from strong efficiency limitations
regarding the space gap between honest parties and adversaries, round complexity,
and communication complexity. For example, the bounded-storage model key
agreement (from now on, BSM-KA) of [CM97] requires the honest parties to use
s = ω(

√
a) bits of storage. More recently, the work of [DQW23] circumvented

this limitation, but at the cost of requiring r = ω(a/s2) streaming rounds and
C = ω((a/s)2) bits of communication. Unfortunately, these limitations are known
to be inherent: the protocol of [CM97] was shown in [DM08] to achieve an op-
timal space gap a = Θ̃(s2) when the BSM-KA uses a single streaming round,
and [DQW23] further proved that the number of rounds must grow with a, and
the communication must grow superlinearly with a, whenever a� s2. Therefore,
achieving unconditional security for BSM-KA requires paying a significant price
either in honest parties space or in rounds and communication.

In this work, we initiate the study of cryptography in the bounded-storage
model beyond the regime where the impossibility results of [DM08,DQW23]
apply. That is, we ask:

Is it possible to circumvent known lower bounds on key agreements in the
bounded-storage model by making a minimal use of cryptographic assumptions?

To study this question, we place ourselves in the streaming variant of the
BSM, introduced in [DQW23], where the participants themselves can stream
long strings (of length C � a � s) to each other. In [DQW23], it was argued
that this captures more adequately the properties one wants from cryptography
with bounded-storage.

1.1 Our Contributions

We provide an affirmative answer to the question. As our first contribution,
we exhibit a key agreement in the streaming model tolerating an arbitrary
(polynomial) gap between the space s of the honest parties and the space a of the
adversary, using a single streaming round and C = Õ(a) bits of communication,
assuming the existence of one-way functions (OWFs).

Theorem 1 (Informal). Let λ be a security parameter and a = a(λ) be an
arbitrary polynomial in λ. Assuming the existence of one-way functions, there is
an BSM-KA protocol in the streaming model secure against an eavesdropper with
space a that uses a single long stream of length a · poly(λ) (followed by a single
poly(λ)-sized short message in the other direction), and where the honest parties
use s = poly(λ) storage.

In the Theorem above, poly(λ) denotes a fixed polynomial independent of
a. The BSM-KA uses two rounds of communication with one stream; it can
alternatively use a single simultaneous round of streaming (in both directions),
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yielding a non-interactive key agreement in the streaming model. Eventually,
the security of the BSM-KA can be strengthened to everlasting security (the
shared key remains protected even if the adversary becomes all powerful after the
completion of the protocol) at the cost of using an additional round of streaming.

Theorem 1 shows that OWFs are sufficient to obtain an (everlasting-secure)
key agreement in the streaming model, which is essentially optimal regarding
space gaps and round complexity. Then, we ask:

Are one-way functions also necessary for obtaining key agreement in the
streaming model in the regime where it cannot exist unconditionally?

To approach this question, we initiate a systematic study of the relations
between various forms of key agreements in the streaming model and the exis-
tence of one-way functions. We make significant progress towards answering the
above question affirmatively. Our work also leaves several natural and intriguing
questions open; we hope that our preliminary findings will motivate their study
in future works.

In the course of our analysis, we observe that answering this question re-
quires tightly characterizing the space efficiency of reductions between various
Minicrypt primitives such as distributional OWFs, weak OWFs, standard OWFs,
pseudorandom generators, and variants of pseudorandom functions. We provide
some preliminary investigation in this direction, characterizing the space effi-
ciency of existing reductions between these primitives, which we believe might
be of independent interest. We believe that our work provides some additional
motivation for the question of designing space-tight reduction between Minicrypt
primitives, a natural question which has not received much attention so far.

Answering the question turns out to require careful considerations regarding
the type of protocols and the type of adversaries that are considered. Before
stating our results, we provide a brief outline of these considerations:

– key agreements in the streaming model can have a single long stream (and
multiple short rounds), or multiple long streams. The distinction between
these two settings was traditionally made on the basis of the desirability of
minimizing the number of long rounds (see for example the discussion on the
“desirable property (a)” in [DQW23]). For the question we raise, it turns out
that another important distinction for single-long-stream protocols is whether
the protocol starts with the long stream (a setting called the “traditional
bounded-storage model” in [DQW23]), or whether it starts with short rounds.

– One can consider two types of space-bounded adversaries (we follow the
naming conventions of [DQW23] for these two models and refers the reader
to [DQW23] for further discussions on the distinction): “fully streaming
adversaries” have space bounded by a throughout the entire protocol, while
adversaries in the “unbounded processing model” are allowed unlimited short-
term storage, and are only subject to keeping an a-bit state in between long
rounds. Of course, building key agreement in the unbounded processing model
is more desirable (our construction of Theorem 1 is in this model), while
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proving impossibility results in the full streaming model yields a stronger
result.

We note that our notion of unbounded processing differs from that of [DQW23]
due to our use of computational assumptions: in [DQW23], an unbounded pro-
cessing adversary has bounded storage during the streaming rounds, unbounded
storage otherwise, and unbounded computational power throughout. We con-
sider here a variant where the adversary remains probabilistic polynomial time
(hence, in particular, always uses a polynomial amount of storage) but has no
further storage bound inbetween the streaming rounds (but can only store an
a-bit state after a long round). To avoid confusion, we will sometime use the
terminologies “fully-streaming PPT adversary” and “unbounded-processing PPT
adversary”, where PPT refers to probabilistic polynomial-time. Eventually, we
also consider everlasting security, where the adversary are (fully-streaming or
unbounded-processing) PPT throughout the protocol, but become all powerful
after the protocol.

In the following, we will write SM-KA to denote key agreement in the stream-
ing model for a fully-streaming PPT adversary, and UP-KA to denote key
agreement in the streaming model for an adversary in the unbounded processing
PPT model. With this terminology in mind, our protocol in Theorem 1 is actu-
ally an UP-KA, secure in the unbounded-processing PPT model (the strongest
adversarial model we consider). We complement this result by showing that
space-bounded OWFs (i.e., functions which are one-way against PPT adversaries
with a fixed polynomially-bounded amount of storage) actually suffice for con-
structing SM-KA (where the adversary is fully streaming) via our construction.
This requires in particular carefully tracking the space efficiency of the tradi-
tional constructions of pseudorandom generators from OWFs [HILL99], and of
pseudorandom functions from pseudorandom generators [GGM84].

Corollary 2 (Informal). Let λ be a security parameter and a = a(λ) be an
arbitrary polynomial in λ. Assuming the existence of space-bounded one-way
functions with space bound poly(a), there is an SM-KA protocol secure against a
fully-streaming PPT eavesdropper with space a that uses a single long stream of
length a · poly(λ) (followed by a single poly(λ)-sized short message in the other
direction), and where the honest parties use s = poly(λ) storage.

We now state our main results towards showing the necessity of OWFs for
streaming key agreement beyond the unconditional regime. We first focus on
protocols which involve a single streaming message and a short answer.

Theorem 3 (Informal). Assume that there exists a streaming key agreement
KA against space-a PPT adversaries consisting of a single long stream from Alice
to Bianca and a short message from Bianca to Alice and using s�

√
a space for

the honest parties. Then,

– if KA is an UP-KA, there exists one-way functions;
– if KA is an SM-KA, there exists space-bounded one-way functions.
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The conclusion of Theorem 3 is the best possible, as it matches exactly our
positive results of Theorem 1 and Corollary 2. However, one may ask whether
it could be possible to relax the requirement of one-way functions if we either
restrict the adversary to be fully streaming, and/or if the protocol can have
additional streaming rounds and short rounds. In this more general setting, we
prove the following theorem:

Theorem 4 (Informal). Assume that there exists a streaming key agreement
against space-a (fully-streaming or unbounded-processing) PPT adversary with r
rounds using s � a1/polylog(r)

r

space for the honest parties, for a suitably large
polylog. Then,

– if KA is an UP-KA, there exists non-uniform, infinitely-often one-way func-
tions;

– if KA is an SM-KA, there exists non-uniform, infinitely-often space-bounded
one-way functions f : {0, 1}n → {0, 1}n with space bound nΩ(polylog(r)r).

The conclusions of Theorem 4 are weaker than that of Theorem 3 on two
aspects: first we only get infinitely-often secure OWFs, and second, the conclusion
requires assuming a larger space gap. The first limitation (infinitely-often security)
is an unfortunate but standard consequence of the use of a disjunction argument
based on the existence of a OWF inverter (a similar limitation appears in many
previous works). As for the last limitation, we observe that when the number
of long streams is 1, assuming only a � s2 (up to polylog factor) suffices to
achieve the weaker conclusion of space-bounded distributional OWFs. We view
as an interesting open question the goal of obtaining space-bounded OWFs from
streaming key agreement with a smaller space gap (ideally a� s2). A natural
starting point to solve this question would be to find a space-tight reduction from
(space-bounded) distributional OWFs to OWFs, a question which we believe to
be also of independent interest. Additionally, we note that the one-way functions
obtained in Theorem 4 are non-uniform; our result can be strengthened to provide
uniform one-way functions in the special case of a single long stream.

Due to the exponential dependency in r, Theorem 4 is only meaningful in the
setting where r is a constant. We leave as an intriguing open question to prove
(or disprove) that SM-KA with a superconstant number of rounds imply OWFs.

1.2 Discussions

One-way functions are known to be a necessary assumption for most cryptographic
primitives [IL89]. Several lines of work have investigated the necessity of one-way
functions for various types of cryptographic protocols, notably in the setting of
zero-knowledge interactive proofs for NP [OW93], single-server private information
retrieval [BIKM99], and constant-bias coin flipping [MPS10,HO11,BHT14]. In
each case, unconditionally secure variants of these protocols can be obtained
by relaxing the constraints, such as using multiple parties or servers [BOL85,
CGKS95] or restricting the class of languages to SZK.
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Our work fits in this broad program by studying another example of crypto-
graphic protocol, streaming-model key-agreements, in the regime where it cannot
exist unconditionally. Similar to constant-bias coin flipping and zero-knowledge
for NP, we actually show that one-way functions are essentially equivalent to
streaming key agreement. Our results nevertheless leave several gaps in the space
gap between the honest parties and the adversary, most notably for protocols
with a large numbers of streaming rounds. Whether these gaps can be closed,
or whether some non-trivial forms of streaming key agreement beyond the un-
conditional regime could possibly exist without one-way functions remains an
interesting open question, the main one left open by our work.

Turning to our positive result, the efficiency achieved by our protocol is
essentially the best possible regarding space requirement for the honest parties
(concretely, using a pseudorandom function with 128 bit keys to instantiate
the protocol, the parties only need a few hundreds bits of storage) and round
complexity (a single long round). However, it still requires a large amount of
communication, larger than the space bound a of the adversary. A natural
question is whether communicating more than a remains necessary if we assume
one-way functions.4 While this is somewhat orthogonal to our work, we still
discuss it briefly.

Intuitively, if the adversary can store the entire stream, we would expect
them to break the key agreement by virtue of the inexistence of key agreement
from one-way functions [IR89]. And indeed, if the total communication c is
below

√
a, the protocol can be broken in time roughly quadratic in the honest

parties’ runtime by the attack of Barak and Mahmoody [BM09] (the attack is
only efficient in the number of oracle queries, but it can be made concretely
efficient given a one-way function inverter, see e.g. [CFM21]). However, if the
total communication c is much closer to a (e.g. δ · a for some constant δ < 1),
the question becomes equivalent to the following problem: is it possible to build
key agreement from one-way functions against polynomial-time linear space
adversaries? Interestingly, this question remains wide open as of today, even
if we model the one-way function with a random oracle: all known attacks on
key agreements from random oracles [IR89,BM09] appear to inherently require
a quadratic amount of space (in the runtime of the honest parties, hence in
particular in the communication overhead of the protocol), yet all known variants
of Merkle’s seminal key agreement protocol in the ROM [Mer74,Mer78] can be
broken in linear space.

1.3 Our Techniques

OWFs are sufficient for streaming key agreement. We start with our constructive
results. Our construction of gap-optimal and round-optimal UP-KA from OWFs
4 Of course, in the unbounded processing model, the question is meaningless as the
adversary can store everything and get unbounded space afterwards, which makes
it essentially an unbounded-space polytime adversary. The question makes sense,
however, in the fully-streaming model where the adversarial storage remains bounded
after the computation.
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is suprisingly simple and conceptually quite natural in hindsight. Our starting
point is the unconditional key agreement protocol of Cachin and Maurer [CM97]:
in this protocol, Alice streams C > a bits to Bianca, who stores s ≈

√
C bits of

the stream while Alice does the same. By the birthday paradox, the parties get a
collision with noticeable probability, and after exchanging the positions of the
bits they stored, agree on a key.

We observe that if Alice has the ability to recompute the stream, then the
parties can store considerably less data: Bianca can store s ≈ λ bits (where λ
is a fixed security parameter) and send her positions to Alice, who recomputes
the stream and stores the same bits. The common key is extracted from these
bits. This suggests a simple methodology: in our protocol, Alice stores a pseu-
dorandom function (PRF) key k ∈ {0, 1}λ and then streams C > a many bits
PRF(k, 1), ..,PRF(k,C). Bianca receives the stream and stores λ many of the bits
at random locations `1, .., `λ which she sends to Alice once her streaming phases
ended. They both set their key to be

key := Ext(PRF(k, `1)‖..‖PRF(k, `λ)). (1)

Except for an additional game-hop based on the PRF, the security analysis of this
protocol is analogous to [CM97] and, conceptually, captures that in space a� C,
the adversary only has a small probability p to have stored the information about
PRF(k, `i) and thus, its advantage is upper-bounded by pλ. Furthermore, the
protocol can be made everlasting secure using the bounded storage extractor of
Vadhan [Vad04]: instead of outputting the key, Alice creates a stream of length
2a and both parties use the key k obtained from the computational protocol as
extraction seed.5

Eventually, in the fully-streaming PPT model (where the adversary remains
space-bounded after the protocol), it is clear that it suffices for the PRF above
to be secure against space-bounded PPT adversaries. However, while PRFs are
known to be equivalent to OWFs [HILL99,GGM84], it is not immediately obvious
that space-bounded PRFs should be equivalent to space-bounded OWFs – and
indeed, this does not appear to follow from existing reductions! Nevertheless,
by carefully tracking down the space efficiency of the OWF-to-PRG and PRG-
to-PRF reductions, we oberve that space-bounded OWFs are actually sufficient
(albeit with a loss in space) to build space-bounded consecutive PRFs, a simple
variant of PRF which restricts the queries to be consecutive integers (which
clearly suffices to instantiate our protocol above).

OWFs are necessary for stream-first UP-KA. Conversely, we show that the
existence of UP-KA beyond the unconditional
5 This is very close in spirit to the hybrid-BSM approach discussed in [DM04], where
a similar idea is used to convert a “standard” computational key exchange into an
everlasting one. However, several works [DM04,HN06] have pointed out that this
strategy fails in general. Our setting is slightly different, and is in particular not
captured by the impossibility results in [DM04,HN06], and our concrete instantiation
can actually be proven secure formally.
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fIL(b, rA, rB , key
′)

(transcript, key)← KA(rA, rB)

if b = 1 :

key← key′

return (transcript, key)

Fig. 1. fIL

regime implies a one-way function. We start with
stream-first UP-KA, and show that any such proto-
col implies a OWF. Our OWF construction follows
Impagliazzo and Luby’s approach [IL89] who, given
a key agreement protocol KA, construct a distri-
butional OWF (dOWF), i.e., a OWF where it is
hard to sample a uniformly random pre-image, see
Fig. 1. fIL generates a (transcript, key) from the
distribution induced by the key agreement protocol, and then replaces key with
a uniform key with probability 1

2 . fIL is a dOWF because a uniformly random
pre-image of (transcript, key) would reveal the bit b, i.e., whether the key key is
real or random. Unfortunately, when KA is a streaming key agreement, we cannot
claim that fIL is a dOWF, since accessing the entire protocol transcript might
allow trivial inversion attacks: For example, in our protocol, described in and
before Equation (1), given the entire transcript, one can simply take the indices
`1, .., `λ which Bianca sent to Alice and then look up the values of PRF(k, `i) for
all 1 ≤ i ≤ λ in Alice’s message.

To circumvent this issue, we rely on the information-theoretic attacker of
Dziembowski and Maurer [DM08] (we call it Eve). At a high level, the attacker
sample O(s) views for Bianca consistent with the long stream. The main Theorem
of Dziembowski and Maurer (stated in a re-phrased, weaker version as Theorem 21
in our work) states that the view of Eve has large mutual information with the
shared key. Equivalently, the distributions induced by the sampling of Eve’s
view (for a random stream) together with the short message (after the long
stream) and either the shared key or the random key are statistically far. If the
protocol is secure, these distributions must be computationally indistinguishable;
this suggests a modified distributional OWF fDM (represented on Figure 2)
that replaces Alice’s stream by the adversary’s E ′DMs view. Here, short-transcript
denotes the short message from Bianca to Alice.

fDM(b, rA, rB , (rB,1, .., rB,s), key
′)

(stream, short-transcript, key)← KA(rA, rB)

for i = 1..400s :

stateB,i ← B1(stream, rB,i)

if b = 1 :

key← key′

return (short-transcript, key, stateB,1, .., stateB,400s)

Fig. 2. The dOWF candidate fDM

By Dziembowski-Maurer, when
state and key come from
a real protocol execution,
f(0, rA, rB , (rB,1, .., rB,400s),
key′) and f(1, ..) are statisti-
cally far from one another, so
that a uniform inverter of fDM

directly yields a distinguisher
for the key agreement proto-
col. Now, given a dOWF, we
obtain a PRF via a sequence
of MiniCrypt reductions:

distributional OWF
[IL89,Yao82]⇒ OWF

[HILL99]⇒ PRG
[GGM84]⇒ PRF

It remains to argue that the resulting PRF is space-efficient, e.g., in addition to
storing the key k, the PRF uses only uses |k| bits additional space. Since the
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original dOWF internally computes the stream of an UP-KA, a straightforward
implementation of dOWF might indeed consume a lot of space and so might the
PRF constructed from it. However, given any pseudorandom function PRF with
key length λ, we know that it consumes at most space poly(λ) for some fixed
polynomial poly. Now, based on PRF, define the following space-efficient PRFSE

with key-length λSE := λ+ poly(λ)

PRFSE(k, x) := PRF(k1..λ, x),

where k1..λ are the first bits of key k. In addition to space |k| to store the key k,
PRFSE indeed only uses space |k| ≥ poly(λ). .

To obtain SM-KA (i.e. KA in the fully-streaming PPT model), it suffices
to assume a space-bounded one-way function (SB-OWF) that is secure against
space-bounded PPT adversaries. In order to prove that SM-KA implies SB-OWF,
we need to further modify fDM once more for this purpose. Namely, if Alice
and Bianca use a lot of randomness, they receive this randomness as a stream6.
However, the function fDM needs to take all of this randomness as input – which
can be potentially larger than the space bound a of the adversary! In contrast, a
SB-OWF should be computable using much less space than the space a allocated
to the adversary.

A natural idea to circumvent this limitation is to derandomize the input of fDM

via a pseudorandom generator. Of course, since we seek to prove the existence of
a SB-OWF, we cannot assume a PRG which is already a stronger primitive. For-
tunately, it turns out that in this setting, it suffices to rely on a non-cryptographic
pseudorandom generator for space-bounded algorithms, such as Nisan’s PRG for
read-once branching programs [Nis90]. A slight technicality remains: we need
to argue that the distribution {fDM(b, rA, rB , (rB,1, .., rB,400s), key

′) : (rA, rB)←$

{0, 1}∗} is statistically close to the distribution obtained by replacing (rA, rB)
by the output of a PRG for space-bounded algorithms. Unfortunately, this is
not implied by the security of the PRG, since PRG security only implies that it
fools distinguishers outputting a single bit – that is, it only guarantees that the
marginal distributions of each of the output bits are statistically close, but not that
the distributions themselves are statistically close (a property called non-boolean
pseudorandomness in [DI06]). Fortunately, a closer look at the security analysis
of Nisan’s PRG [Nis90] (with minor modifications of the parameters of the proof)
reveals that it actually already is an unconditionally secure non-boolean PRG
for space-bounded algorithm, which allows us to conclude.

OWFs versus general streaming key agreement. Eventually, we turn to our last
result, summarized in Theorem 4. We follow the round-reduction method in-
troduced in DQW [DQW23] to prove a lower bound on multi-round streaming
protocols. Essentially, their approach recursively uses (a variant of) the uncondi-
tional attacker of Dziembowski and Maurer [DM08] to convert an `-long-round

6 this is equivalent to having one-time read access to their random tape, which is the
standard way to model probabilistic space-bounded algorithms.



10 Chris Brzuska, Geoffroy Couteau, Christoph Egger, and Willy Quach

UP-KA KA` into an (` − 1)-long-round streaming key agreement KA`−1, as
follows:

– One party, say, Bianca, locally samples s+1 states (stB1 , · · · , stBs , stBs+1) consis-
tent with her state after the first long round of KA`. She sends (stB1 , · · · , stBs )
to Alice.

– Alice samples an “Alice view” stA of KA` consistent with the s states
(stB1 , · · · , stBs ) received from Bianca.

– Both parties execute the rest of KA` using stA and stBs+1 as their state.

It is easy to see that the above yields a correct (`− 1)-long-round protocol
KA`−1; the crux in the analysis of DQW lies in showing that this round-reduction
also preserves security.

Now, to show that a streaming key agreement beyond the unconditional
regime implies OWFs, we show that a one-way function inverter can be used to
make the DQW round-reduction efficient. At a high level,

– Bianca locally samples a valid transcript T for all the short rounds of KA`.
Then, she samples (s+ 1) pre-long-round states (prestateB1 , · · · , prestateBs+1)
consistant with T (using the efficient inverter for distributional OWFs), locally
simulates the long stream, and computes in parallel the s+ 1 resulting states
(stB1 , · · · , stBs , stBs+1), and sends the s first states to Alice.

– Alice samples stA consistent with (stB1 , · · · , stBs ), using again the distributional
OWF inverter, and both parties execute the rest of KA` using stA and stBs+1

as their state.

Using a dedicated analysis (building upon the methods of DQW), we prove
that the above protocol is an (`− 1)-long-round secure streaming key agreement
KA`−1, with the same adversarial space bound. However, there is a degradation
in the honest parties space, which increased from s in KA` to Ω(s2) in KA`−1.
After ` rounds of round-reduction, we obtain a protocol KA0 with space bound
s′ = s2

`

and no long rounds. If s′ < a, this yields a contradiction. One intuitively
expects this strategy to rule out the existence of KA` with adversarial storage
a > s2

`

, which is polynomial as long as ` is a constant.
The above high-level sketch leaves several important details under the rug. In

particular, for technical reasons, the space loss of our reduction actually grows
with the total number r of rounds of the protocol rather than the number ` of
long rounds; the loss is of the form spolylog(r)

r

< a, which remains polynomial
as long as r is a constant. Eventually, in the fully-streaming setting, we rely on
the inexistence of space-bounded OWFs to perform the round-reduction and use
in addition an information-theoretic PRG of Nisan [Nis90] to derandomize the
space-bounded OWF constructed, which introduces additional technicalities and
yields a worse gap (though still polynomial when r is a constant).

1.4 Related Works

The bounded storage model has received significant attention since its introduc-
tion by Maurer [Mau92], both in the symmetric setting [Lu02,DR02,ADR02,
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DM02,Vad04] and in the public-key setting [CM97, CCM98,Din01, DHRS04,
HCR02,DQW23]. Recently, a breakthrough result of Raz on space lower bounds
for learning parities [Raz16, Raz17] has led to a renewal of interest for the
model [KRT17,GRT18,GZ19,DQW22].

A closely-related, but distinct model compared to our work is the hybrid
bounded-storage model (hybrid BSM), introduced in [DM04] and further studied
in [HN06]. In the hybrid BSM as in our model, the adversary is space-bounded
and computationally bounded throughout the execution of the protocol. However,
the setting and goal are quite different: in the hybrid BSM, the parties first
agree on a shared key via a “standard” computational key-exchange (e.g. the
Diffie-Hellman key exchange), and then use the shared key K to agree on which
positions to read from a long stream to generate a new key K ′. The hope is that
even if the standard key-exchange is only computationally secure, since the long
stream disappears afterwards, the scheme will enjoy everlasting security, and K ′
will remain private even if the adversary becomes all powerful afterwards. The
work of [DM04] showed (via a contrived counter-example) that this intuition fails
to hold in general, and [HN06] proved a general black-box impossibility result for
the hybrid-BSM, as well as a positive result in the bounded-storage + random
oracle models. We note that, while we also consider everlasting security and
computationally bounded adversaries, our setting is different in that we do not
use a classical (computational) key agreement combined with an unconditional
BSM key agreement; rather, we directly build a streaming key agreement from
one-way functions. Other works that discuss combinations of the bounded-storage
model with computational assumptions in a different setting include [MST04]
(on timestamping in the BSM), [GZ21] (achieving primitives that are impossible
to achieve classically by combining the BSM with computational assumptions),
and [BS23] (combining BSM with grey-box obfuscation to obtain simulation-
secure functional encryption).

Eventually, as we discussed earlier, our work fits in the general program of
demonstrating the necessity of one-way functions for various cryptographic proto-
cols in the regime where they cannot exist unconditionally, such as zero-knowledge
interactive proofs for NP [OW93] and constant-bias coin flipping [MPS10,HO11,
BHT14].

1.5 Organization

In Section 2, we introduce some technical definitions and lemmas. Section 3
introduces our models for streaming key agreement, with either fully-streaming
PPT adversaries (SM-KA) or unbounded processing PPT adversaries (UP-KA).
Section 4 introduces our construction of UP-KA with small honest space re-
quirement from pseudorandom functions, using a single streaming round, and
extends this construction to show a stream-first SM-KA from space-bounded
(consecutive) pseudorandom functions. Section 5 provides two converse of our
construction, showing that stream-first UP-KA beyond the unconditional regime
implies one-way functions, and that general UP-KA with a constant number of
streaming rounds imply infinitely-often OWFs. Section 6 extends our analysis to



12 Chris Brzuska, Geoffroy Couteau, Christoph Egger, and Willy Quach

SM-KA using information-theoretic pseudorandom generators for space-bounded
computations, obtaining space-bounded OWFs and infinitely-often space-bounded
OWFs for stream-first and general SM-KA respectively; it relies on a derandom-
ization lemma which had been observed before, but without a precise quantitative
statement. A self-contained proof of this derandomization lemma is included in
Appendix C of the full version of this paper Eventually, in Section 7, we fill the
remaining gap with respect to our construction by proving that space-bounded
one-way functions imply space-bounded consecutive pseudorandom functions.

2 Preliminaries

Definition 5 (Infinitely Often Distributional One-Way Functions). A
function f is a ε infinitely often distributional one-way functions (ε-io-dOWF),
if it can be computed in time polynomial in its input size and for infinitely many
λ1 < λ2 < .., it holds that for all PPT algorithms A and large enough j

SD
(
(Uλj , f(Uλj )), (A(1λj , f(Uλj )), f(Uλj ))

)
> ε(λj),

where Uλj denotes the uniform distribution over {0, 1}λj .

Remark. We will also use non-uniform ε-io-dOWFs where f can be computed by
a non-uniform sequence of polynomial-size circuits.

2.1 Information-Theoretic Tools

Definition 6 (Extractor [NZ96]). We say that an efficient function Ext :
{0, 1}SEED × {0, 1}n → {0, 1}` is an (α, ε)-extractor if for all random variables
(X,Z) such that X is supported over {0, 1}n and H∞(X |Z ) ≥ α we have
SD((Z, S,Ext(S;X)), (Z, S, U`)) ≤ ε where S,U` are uniformly random and inde-
pendent bit-strings of length d, ` respectively.

Lemma 7 (Extractor [ILL89]). For α ≥ ` + 2 log(1/ε) and SEED ≥ n + `,
there exist an (α, ε)-extractor Ext : {0, 1}SEED × {0, 1}n → {0, 1}`. Furthermore,
such an extractor can be computed in O(n) time and space.

Let h(p) be the binary entropy function and h−1 its inverse s.th. p ≥ 1
2

Lemma 8 (Bit-Entropy [DQW23] Lemma 3.1). For 1 ≤ δ ≤ 1, assume
X,Y are random variables, where X is distributed over {0, 1}k. Let X[i] denote
the i’th bit of X. If H∞(X |Y ) ≥ δk, and I is uniformly random over [k] and
independent of X, Y then H∞(X[I] |Y, I ) ≥ − log(h−1(δ))

Lemma 9 (Jensen). For all random variables X, E[X2] ≥ E[X]2.
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3 Key Agreement in the Streaming Model

In this section, we will introduce the notion of key agreement in the streaming
model. We start by introducing the notion of streaming algorithm we will use
throughout the paper as well as some notational conventions. We further provide
security notions both in the fully streaming setting—all parties remain space-
restricted at all times—and the unbounded processing setting where parties may
temporarily use arbitrary (polynomial) space for processing messages.

λ : security parameter
s : space bound for honest parties
C : Communication stream length
r : rounds, i.e., nbr. of messages
a : adversary’s space bound

Table 1. Conventions on variable names

Notation and Conventions. An algo-
rithmAmay have input to one or more
streamed inputs. We write A(a, b) to
indicate (streaming) access to the or-
dered tuple (a, b) and A(a; b) if A can
read independently from streams a and
b. Concretely, A(st, x; r) indicates that
A can read from a stream containing
first the state st and then the tran-
script x as well as independently read
random coins from r. Additionally, we
annotate inputs which exceed the memory limit and thus need to be read in a
streaming fashion by superscript str, e.g., rstr. We write strstr.read(len) for reading
len bits from a stream and strstr.write(val) for writing the value val to the stream.
Finally, throughout this paper we stick to the conventions on variable names
outlined in Table 1. As is the tradition in key agreement, we denote the adversary
by E (Eve) to avoid confusion with Alice who is abbreviated with A. Note that
we often omit the security parameter for succinctness of notation.

3.1 Fully Streaming Model

In the streaming model, algorithms are restricted in the space they use throughout
their executions. They can still read from input streams and write to output
streams larger than their space bound.

Definition 10 (Streaming algorithm). Let s : N → N and c : N → N be
polynomials in λ. An algorithm A is an (s, C)-streaming PPT, if it gets the
security parameter 1λ, some input x with |x| ≤ C(λ) as well as two parallel
streams (strstr; rstr) with |strstr| ≤ C(λ), outputs a value y and a stream strstrA such
that

Efficiency. A runs in time polynomial in λ,
Space-bound. A uses at most s(λ) bits of storage at any point of time and, in

particular, |y| ≤ s(λ), and
Stream-bound. |strstrA | ≤ C(λ).

Note thatA does not have further randomness beyond the randomness received
as a rstr. Further, as A receives multiple streams as input, it can independently
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read from the randomness and is not required to fully read any of the streams it
receives.

Definition 11 (Key Agreement in the Streaming Model (SM-KA)). Let
s, C, and r be polynomials in λ. A (s, C, r)-SM-KA protocol KA consists of r
(s, C)-streaming PPT (A1, B1, . . . , Ar/2, Br/2), such that each of the PPT P has
syntax

(st′, x′
str
, key)← P (st, xstr; rstr)

with |key| = λ and together, they satisfy correctness (cf. Definition 12).

When running a (s, C, r)-SM-KA protocol, A1 and B2 take as input an empty
state, and since A1 sends the first message, A1 also takes as input an empty xstr.
Only the last stages Ar/2 and Br/2 return a key, but for uniformity of syntax
and w.l.o.g., we let all protocol stages return a key. With this understanding of
the syntax, we define a protocol as follows:

KA(rA
str, rB

str) = (rstrA,1, ..r
str
A,r/2, r

str
B,1, .., r

str
B,r/2)

stA ← []; stB ← []; xstrB,0 ← []

for i = 1, .., r/2 do

(stA, x
str
A,i, keyA,i)← Ai(stA, x

str
B,i; r

str
A,i)

(stB , x
str
B,i, keyB,i)← Bi(stB , x

str
A,i; r

str
B,i)

keyA ← keyA,r/2

keyB ← keyB,r/2

xstr ← (xstrA,1, x
str
B,1, .., x

str
A,r/2, x

str
B,r/2)

return (xstr, keyA, keyB)

Definition 12 (Correctness). Let s, C, and r be polynomials in λ. An
(s, C, r)-SM-KA is εKA-correct if for all but finitely many λ

Prrstr
[
keyA = keyB : (xstr, keyA, keyB)← KA(rstr)

]
= 1− εKA.

If εKA is negl we sometimes omit it.

Security of a (s, C, r)-SM-KA protocol has an additional parameter a which
bounds the length of the adversary’s storage and requires that Alice’s key is
indistinguishable from random (and thus, by correctness, so is Bianca’s key).

Definition 13 (Fully Streaming Security). Let s, C, r and a be polynomials
in λ. KA is a (s, C, r, a)-SM-KA δKA-secure protocol if it is a (s, C, r)-SM-KA
and for all but finitely many λ and all (a,Cr)-streaming PPT E, the advantage
AdvstreamKA,E (λ) :=∣∣∣∣ Prrstr,rE str

[
1 = E(1λ, keyA;xstr; rE) : (xstr, keyA, keyB)← KA(rstr)

]
−Prrstr,rE str,key

[
1 = E(1λ, key;xstr; rE) : (xstr, keyA, keyB)← KA(rstr)

] ∣∣∣∣
is upper bounded by δKA. If δKA is negl in λ we sometimes omit it.
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3.2 Unbounded Processing Model

In addition, we relax the space-bound and define unbounded processing algorithms.
Unbounded processing algorithms may use arbitrary (polynomial in λ) space,
however their output y still has to satisfy |y| ≤ s(λ).

Definition 14 (Unbounded Processing Protocol). Let s : N → N and c :
N→ N be polynomials in λ. An protocol Π is an (s, C)-unbounded-processing PPT,
if it consists of rounds (st, strstr, x) ← send(1λ, st), (st, x) ← receive(1λ, st, strstr)
where Alice and Bianca alternate in running the send and receive algorithms such
that

Efficiency. send and receive run in time polynomial in λ,
Stream-bound. |strstr| ≤ C(λ).
Small State and Output. The state st and output x is bounded by s(λ)

Definition 15 (Key Agreement in the Unbounded Processing (UP-
KA)). Let s, C, and r be polynomials in λ. A (s, C, r)-UP-KA protocol KA con-
sists of r UP round functions PPT (sendA,1, receiveB,1), . . . , (sendB,r, receiveA,r),
with syntax

(st′, x′
str
, key)← send(st; rstr)

(st′, key)← receive(st, xstr; rstr)

with |key| = λ and together, they satisfy correctness (cf. Definition 12). Re-
grouping, we also consider the sequence (A1 := (receiveA,1, sendA,1), B1 :=
(receiveB,1, sendB,1)), . . . , (Ar/2 := (receiveA,r/2, sendA,r/2), Br/2 := (receiveB,r/2,
sendB,r/2)) where the first receive algorithm and the last send algorithm is empty.

For security in the Unbounded Processing setting, we need to split the
adversary in one instance per round E1, . . . , Er and final distinguishing adversary
E . Similarly to the round algorithms, E are required to be PPT in λ and follow
the syntax st← E(st, strstr; rstr) where |st| ≤ a(λ).

Definition 16 (Unbounded Processing (UP-KA) security). Let s, C,
and r be polynomials in λ. KA is a (s, C, r, a)-UP-KA δKA secure protocol if it
is a (s, C, r)-UP-KA and for all but finitely many λ and for all PPT E1, . . . , Er
outputting a state stEi with

∣∣stEi ∣∣ ≤ a(λ) and all PPT E, the advantage

AdvunboundKA,E~r,E(λ) :=
∣∣Pr[1 = E(1λ, keyA; stEr ; rE)

]
Pr
[
1 = E(1λ, key; stEr ; rE)

]∣∣
is upper bounded by δKA, where the probabilities are taken over sampling

rstr, the (implicit) randomness of E , E1, . . . , Er and, for the second probability,
key, xstr, keyA, keyB)← KA(rstr) and ststrEi ← Ei(stEi−1

, xstri ) and (xstr1 , · · · , xstr2r)←
xstr).If δKA is negl in λ we sometimes omit it.
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Normal Form

We additionally place the following additional constraints on protocols in both
the fully streaming and unbounded processing model:

Short Rounds are Short. In particular, all short messages in a protocol fit
within honest parties space s(λ)

No Consecutive Long Rounds. Between two long (streaming) messages, we
require at least one short message

4 Constructing Key Agreement

In this section we present our (s, C, r = 2)-SM-KA and (s, C, r = 2)-UP-KA
protocols. Recall, that in contrast to [CM97] the stream is generated by Alice
using a PRF. Consequently, Bianca can choose a single index and send it to
Alice who can reconstruct the bit using the (small) PRF key. To produce a large,
uniform key, we parallel compose the basic protocol Õ(λ) times and extract the
key using a seed chosen by Bianca. In our proof, we rely on consecutive PRFs—a
weaker notion of PRFs which can only be accessed on consecutive values—as
this notion suffices for our proofs and can be constructed space efficient from
one-way functions.

4.1 Consecutive PRFs

While the reduction for the GGM construction of PRFS [GGM84] requires
space linear in the number of queries, the reduction can be made space-efficient
under the restriction of only allowing sequential queries. We formally discuss this
reduction in the last section of the full version and use consecutive PRFs in our
construction.

Definition 17. A function f : {0, 1}λ × {0, 1}λ →
{0, 1} is a sequential PRF if for all probabilistic ad-
versaries A running in time poly(λ)∣∣∣∣∣∣ Prk←${0,1}λ

[
1 = AEVAL0

f,k(·)(1λ)
]

−Prk←${0,1}λ
[
1 = AEVAL1

f,k(·)(1λ)
] ∣∣∣∣∣∣ ≤ negl(λ)

EVALbf,k(i)

if ctr = ⊥ then ctr← 0

assert i = ctr + 1

ctr← i

if b = 0 then y ← f(k, i)

else y ←$ {0, 1}
return y

4.2 SB-PRF ⇒ Fully Streaming Key-Agreement

For simplicity we set the desired length of the produced keys to λ matching the
security parameter of the consecutive PRF.
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A1(∅, ∅, rstr)

kPRF ← rstr.read(λ)

for i ∈ [1..C/e] do

si ← PRF(kPRF, i)

xstrout.write(si)

st← kPRF

return (st, xstrout,⊥)

B1(∅, xstr, rstr)

idx← rstrread(log(C/e))

write(idx, xstrout)

for i ∈ [1..C/e] do

si ← readλ(x
str)

if i = idx then

k̃.append(si)

seed← rstrread(33λ)

xstrout.write(seed)

k ← Ext(seed, k̃)

return (∅, xstrout, k)

A2(st, x
str, ∅)

idx← xstrread(log(C/e))

kPRF ← st

for i = idx do

s← PRF(kPRF, idx)

k̃.append(s[idx])

seed← xstr.read(33λ)

k ← Ext(seed, k̃)

return k

Fig. 3. Honest Protocol KA := ((A1, B1), (A2)) where boxed parts are repeated e :=
30λ times in parallel

Theorem 18 (SB-PRFs ⇒ fully streaming key-agreement (SM-KA)).
Let PRF be a Consecutive SB-PRF {0, 1}λ × {0, 1}λ → {0, 1} which can be
evaluated in space sPRF and Ext and (3λ, λ)-extractor {0, 1}30λ × {0, 1}31λ →
{0, 1}λ. Then KAFig.3 is a (s, C, r = 2)-SM-KA protocol with perfect correctness
and honest user space s = O(λ · log(C) + sPRF) and (s, C, r = 2, a = C

60λ )-SM-KA
security

The proof is fairly standard and omitted in the conference version but included
in the full version of this paper.

4.3 PRF ⇒ Unbounded Processing Key-Agreement

Theorem 19 (PRFs⇒ unbounded processing key-agreement (UP-KA)).
Let PRF be a PRF {0, 1}λ × {0, 1}λ → {0, 1} and Ext and (3λ, λ)-extractor
{0, 1}30λ × {0, 1}31λ → {0, 1}λ. Then KAFig.3 is a (s, C, r = 2)-UP-KA protocol
with perfect correctness and honest user space s = O(λ) and (s, C, r = 2, a = C

60λ )-
UP-KA security

Proof Sketch. The unbounded processing model places fewer restrictions on the
honest parties, and thus we can avoid the requirement for the PRF to allow
evaluation in restricted space. For security, observe that the only point where
we used the space restriction on the adversary was to bound the size of the
adversary’s space after receiving the stream from Alice. As Eve is space bounded
between rounds in the unbounded processing model as well, the same argument
applies.
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4.4 Arbitrary Output Length and Everlasting Security

[DQW23] show that it is possible to obtain large keys at the cost of one additional
round: Alice streams C uniform bits and both parties use their derived key k as
seed to extract a large keyK using a bounded storage extractor [Vad04] with good
locality. This transformation applies directly to our construction as well, with
additional space cost O(|K|) for the honest parties. We further observe that this
step is secure against unbounded adversaries and the seed k can be published after
the protocol terminates thus resulting in a protocol with everlasting security.

5 Unbounded Processing: UP-KA implies dOWFs

5.1 Stream-first key agreement ⇒ dOWF

We start by considering the stream first setting, where Alice first sends a long
streaming message to Bianca, and afterwards, Bianca sends a short message to
Alice. As outlined in Section 1.3, if KA is a strong stream-first UP-KA protocol
that is secure against adversaries with large enough space, then fDM (cf. Fig. 2)
is a dOWF.

Theorem 20 (Stream-first UP-KA ⇒ dOWF). Let KA be a stream-first
(s, C, r, a)-UP-KA protocol with a ≥ 400s2, correctness error εKA ≤ 1

400 and
security gap δKA ≤ 1

5 , then fDM is an εI-dOWF for any constant εI ≤ 1
10 .

The proof of Theorem 20 builds on the following Dziembowski-Maurer (DM)
theorem on the function fDM which is induced by a key agreement protocol KA.
For b ∈ {0, 1}, we define the distributions fDM(b, R) by sampling r = (rA, rB ,
rB,1, .., rB,s, key

′) uniformly at random and returning fDM(b, r).

Theorem 21 (Dziembowski-Maurer). If KA is a stream-first (s, C, r, a)-
UP-KA or SM-KA protocol with εKA ≤ 1

400 -correctness error. Then for all large
enough λ,

SD(fDM(0, R), fDM(1, R)) ≥
9

10

Remark. Dziembowski and Maurer prove a stronger version of Theorem 21
which precisely characterizes the entropy of the key rather than only its sta-
tistical distance from a uniformly random key. The above is a re-statement of
Dziembowski-Maurer (DM) in the DQW fully streaming/unbounded processing
model, simplified for our application. A self-contained proof of Theorem 21 is
included in Appendix A of the full version of this paper

In addition to DM, we will use the following useful claim throughout this and
the next section to lower bound the advantage of a distinguisher induced by a
uniform inverter.

Claim 1. For b ∈ {0, 1}, let Xb be two arbitrary distributions, and let Y be the
distribution which samples b uniformly and then returns z ←$ Xb.Then,

Eb,z←$Y [Prb′,z′←$Y [b
′ = b | z′ = z ]] ≥ (SD(X0, X1))2
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We prove Claim 1 in Appendix B of the full version and now use Claim 1 to
prove Theorem 20.

Proof of Theorem 20. Assume towards contradiction that fDM is not an εI-dOWF
for εI = 1

10 . Then, there exists a PPT inverter I such that for infinitely many
security parameters

SD((B,R, fDM(B,R)), (I(fDM(B,R)), fDM(B,R))) < εI , (2)

where R is the uniform input (rstrA , r
str
B , (r

str
B,1, .., r

str
B,400s), key

′). Let EI be the
distinguisher which given z, runs

(b, r)←$ I(z); return b.

We construct the the following adversary EI against the stream-first (s, C, r, a)-
UP-KA protocol KA: Adversary EI prepares the running of 400s different copies
of Bianca, each with its own randomness stream rstrB,j which EI does not store,
but instead generates (in parallel) on the fly as needed. When EI receives stream,
adversary EI computes stB,j ← B1(stream, r

stream
B,j ) in parallel for all 1 ≤ j ≤ 400s

and stores stB,1, .., stB,400s. Next, EI receives short-transcript, key, runs

(b∗, r)←$ I(stB,1, .., stB,400s, short-transcript, key)

and returns b∗. In the proof, we denote by EU the analogous (inefficient) adversary
which, instead of the (efficient) I, runs U that returns a perfectly uniform pre-
image of z under fDM.

Space. The adversary EI samples 400s Bianca states, each of which requires
space s. Thus, in the streaming phase, EI runs in space 400s2. Note that I is run
after receiving the stream has terminated, so that its space consumption does
not affect E ’s space limitation while receiving.

Advantage. Now, we can lower bound the advantage AdvunboundKA,EI (λ) as follows:

|PrrAstr,rB str,rEI
str,key

[
1 = EI (1λ, key;xstr; rEI ) : (xstr, keyA, keyB)← KA(rA

str, rB
str)
]

−PrrAstr,rB str,rEI
str

[
1 = EI(1λ, keyA;xstr; rEI ) : (xstr, keyA, keyB)← KA(rA

str, rB
str)
]
|

= |Prr,I [(1, ∗) = I(fDM(1, r))]− Prr,I [(1, ∗) = I(fDM(0, r))]|
(†)
≥ |Prr,U [(1, ∗) = U(fDM(1, r))]− Prr,U [(1, ∗) = U(fDM(0, r))]| − 4ε

= |Prr,U [(1, ∗) = U(fDM(1, r))] + Prr,U [(0, ∗) = U(fDM(0, r))]− 1| − 4ε

≥ 2Eb,r[Prr′,b′ [b′ = b | fDM(b
′, r′) = fDM(b, r) ]]− 1− 4εI

Cl. 1
≥ 2SD(fDM(1, R), fDM(0, R))

2 − 1− 4εI

T. 21
≥ 2

(
9

10

)2

− 1− 4εI > 2

(
9

10

)2

− 1− 4

10
>

3

5
− 2

5
=

1

5
≥ δKA

where (†) follows, because I approximates the uniform distribution ε well, but
since the statistical distance in (2) is over the choice of b as well, the loss is
doubled, and then, it is further doubled since we have a loss for each term.
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5.2 Sampling st conditioned on q copies of itself

Let us open up one of the ideas of Dziembowski-Maurer (DM) underlying their
proof of Theorem 21, since it is a useful tool for generalizing Section 5.1 to key
agreement protocols with multiple streaming rounds.

DM show that q equally distributed Bianca states already contain most of
the information of Bianca’s actual state. Using DM’s ideas, Dodis, Quach and
Wichs (DQW) strengthen the lemma into stating that, in fact, sampling a Bianca
state conditioned on q of his own states will yield an almost equally distributed
state. Both DM and DQW state their lemmas in more general terms and we
follow their tradition here. Namely, consider a pair of jointly distributed random
variables (Z, Y ). First sample Y and then q random variables Z1, .., Zq, each of
which is sampled according to the distribution of Z conditioned on Y . Now, the
claim is that if we sample Z ′ according to Z conditioned on Z1, .., Zi (rather
than on Y ) for a suitable 1 ≤ i ≤ q, then these two distribution are close. In the
lemma below, X is equal to f(Y ) for some (potentially probabilistic) function f .

Lemma 22 (DQW). ∃i : 1 ≤ i ≤ q such that

SD((X,Z,Z1, .., Zi), (X,Z
′, Z1, .., Zi)) ≤

√
H(X)

2(q + 1)

Remark. Intuitively, sampling Z ′ conditioned on more information about Y
should be useful to decrease the statistical distance and hence, one might think
that choosing i = q is always a valid choice. However, the proof of Lemma 22
currently just relies on the chain rule for mutual information and only shows that
such an i exists. Note that we stated Theorem 21 with 400s instead of i, because
statistical distance can only increase when adding more variables, but the same
argument does not directly apply here.7

When we apply Lemma 22 in Section 5.3, X is Alice’s state, Z1, .., Zq are Bianca
states and Z and Z ′ are also Bianca states. Since Alice’s state size is upper-
bounded by s, we also have H(X) ≤ s, and choosing q = s1+2m

2 yields an upper

bound of
√

H(X)
2(q+1) ≤

√
s

s1+2m ≤ 1
sm .

5.3 dOWFs via round reduction

Section 5.1 shows that stream-first UP-KA (with large enough space gap) implies
a dOWF. This result is of interest on its own and didactically meaningful, since
all subsequent analyses of success probability follow a similar template, but have
additional steps or additional conceptual ideas. Nevertheless, the most important

7 More precisely, for any function g, SD((X,X ′), (Y, Y ′)) ≥ SD(g(X,X ′), g(Y, Y ′)) and
choosing g to be a projection on the first variable shows SD((X,X ′), (Y, Y ′)) ≥
SD(X,Y ). Unfortunately, (X,Z′, Z1, .., Zi) is not a projection of (X,Z′, Z1, .., Zq),
since Z′ is conditioned on Z1, .., Zi and Z1, .., Zq, respectively.
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role of the result for stream-first UP-KA is that it establishes as base case for an
inductive argument that we carry out in this section.

Concretely, we follow the DQW round reduction template: DQW prove that if
there is an r-message UP-KA/SM-KA protocol, then there is also an r−1-message
UP-KA/SM-KA protocol with slightly worse parameters. Arguing by induction,
we then obtain that any r-message UP-KA/SM-KA protocol with large enough
parameters implies a stream-first UP-KA/SM-KA protocol (possibly with an
empty first stream, if all messages end up being short), which we already know
implies a dOWF.

The DQW round reduction technique operates in the information-theoretic
setting, and we would like to adopt their technique to the computational setting.
Unfortunately, several sampling operations in the DQW round reduction are
inefficient. Thus, we prove that an r-message UP-KA/SM-KA protocol can be
transformed into an r−1-message SM-KA protocol with slightly worse parameters
or that an infinitely-often dOWF exists. Applying the argument iteratively, we
obtain that an r-message UP-KA/SM-KA protocol implies an or statement over
r + 1 possible candidates for an infinitely often (io) dOWF.

Conceptual idea. To present the conceptual idea behind the DQW round reduction
technique and our variant of it, we now describe the protocol transformation
using inefficient reverse sampling and then subsequently replace inefficient reverse
sampling by an inverter I similarly as in the previous section.

We denote A1, B1, A2, B2, .. the code of Alice and Bianca in the original
protocol and add an overline for the transformed protocol A1, B1, A2, B2, ...
Assume w.l.o.g. that Alice sends the first message xA.

Short messages. If the message xA is short, then we can just “move it into
Bianca’s computation” and have Alice perform reverse sampling to compute
her state later, i.e., we obtain a protocol where Bianca sends the following first
message:

B1

(stA, xA)←$ A1

// The randomness rA is implicit.

(stB , xB)←$ B1(xA)

xB ← (xA, xB)

return (stB , xB)

A1(xB)

parse (xA, xB)← xB

rA
str ←$ (Amess

1 )−1(xA)

(stA, xA)← A1(rA)

(st′A, x
′
A)←$ A2(stA, xB)

return (st′A, x
′
A)

Amess
1 (rA

str)

(stA, xA)← A1(rA
str)

return xA

We now prove that the function Amess
1 which maps Alice’s randomness to

Alice’s message xA is a dOWF—or that we have a protocol with one round less.
Namely, if Amess

1 is not a dOWF, then we obtain a new r − 1 message protocol
where we replace the inefficient inverse sampling rAstr ←$ (Amess

1 )−1(xA) of Alice’s
state by an efficient sampler. W.l.o.g., we consider protocols in a normal form,
where no two streaming rounds follow onto each other, but rather, there are
always short rounds in between.
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Lemma 23 (Short messages). Let m > 0 be a constant. Let KA be a
(s, C, r, a)-UP-KA with a > s2+2m

2 , correctness error εKA, security δKA, where
the length of the first message is bounded by s2+2m

2 . Then, either Amess
1 is an

εI-io-dOWF, or there exists an inverter I for Amess
1 such that for all but finitely

many λ,
SD((Amess

1 (R), R), (Amess
1 (R), I(Amess

1 (R)))) < εI , (3)

where R is a uniform sample of rAstr. Moreover, KA defined by A1 (replacing
(Amess

1 )−1 by I), B1 and Aj := Aj+1, Bj := Bj for j > 1 is a (s2+2m, C, r−1, a)-
UP-KA with correctness error εKA = εKA + εI and security δKA = δKA + εI .

Remark. We only obtain an infinitely often (io) dOWF rather than a dOWF,
because we need I to successfully invert Amess

1 on all but finitely many λ for
security and correctness to hold.

Proof. Communication length C. Note that for KA, the transcript

(xB,1, xA,1, xB,2, ..)

is equal to
((xA,1, xB,1), xA,2, xB,2, ..

and thus, the communication complexity of the two protocols are identical (we
omit constant costs for bracketing (xA,1, xB,1)).

Normal form. The protocol is still in normal form: If xB,1 in KA was a stream,
then xA,2 is short. Now, xB,1 = (xA,1, xB,1) is a stream, too, and xA,1 = xA,2 is
still short. If xB,1 in KA was short, then xB,1 = (xA,1, xB,1) is still short, since
|xA,1|+ |xB,1| ≤ s2+2m

2 + s < s2+2m.

Space bounds of honest parties. Since we only modified the behaviour of the
parties on non-streaming rounds, their behaviour in streaming rounds remains
the same, using the same space bounds as before. Moreover, the B1 only stores a
state stB = stB of size s. Finally, for A1, the receiveA1

can just store the message
xB,1 = (xA,1, xB,1) because |xA,1|+ |xB,1| ≤ s2+2m

2 + s < s2+2m is lower than its
space bound.

Correctness. The distribution of Bianca’s key in KA and KA is identical, but
the distribution of Alice’s key might change by at most εI due to the statistical
distance of the sampler.

Security. Let E be a PPT adversary against KA and assume towards contradiction
that E ’s advantage δE > δKA + εI . Since the transcript (xB,1, xA,1, xB,2, ..) of
KA is equal to ((xA,1, xB,1), xA,2, xB,2, ..) and since |xA,1| ≤ a, the reduction RE
against KA can store xA,1 and then run the first stage of E only once RE also
receives xB,1. Subsequently, RE proceeds exactly as E .
RE ’s simulation of KA is up to εI-far from the distribution of KA, since Alice’s

state in KA has statistical distance at most εI from her state in KA. Hence, we
obtain that RE has advantage

δRE ≥ δE − εI > δKA − εI + εI = δKA
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against KA and we reach a contradiction.

Long messages. Now, in the case that Alice’s first message xA is long, Bianca
cannot generate Alice’s first message xA, send it to her together with his own
message xB and then Alice performs reverse sampling given xA, because this
would destroy the normal form of the protocol, since xB is a short message and
might be followed by a long message. Therefore, we would like to replace xB by
a message which is also short.

Lemma 22 gives us a tool how Alice can sample an almost well-distributed
state given something short, namely s copies of her own state. Indeed, Bianca
could sample s copies of Alice’s state in the unbounded pre-processing model
(and assuming a suitably efficient inverter). However, for consistency with the
next section, we implement a different strategy here that will also work in the
fully streaming setting.

As we have already seen in fDM, Bianca can efficiently sample several of
her own states. Very surprisingly, DQW show that if Alice samples her state
conditioned on i copies of Bianca’s state stB,1,..,stB,i, her state is actually well-
distributed, yielding the following transformed protocol, where i is the index
guaranteed by Lemma 22.

B1

(stA, x
str
A )←$ A1

// Running Alice.

for j = 1..i :

(stB,j , xB,j)←$ B1(x
str
A )

// Sampling i ≤ sa+2c Bianca states.

z ← (stB,1, xB,1, .., stB,i, xB,i)

(rstrA ,_)←$ (B1 ◦A1)
−1(z)

// Re-sample conditional

// randomness for Alice.

(st′A, x
′str
A )← A1(r

str
A )

// Running Alice.

(stB , xB)←$ B1(x
′,str
A )

// Sampling a fresh Bianca state.

xB ← (z, xB)

return (stB , xB)

A1(xB)

(z, xB)← parse xB

(rstrA ,_)←$ (B1 ◦A1)
−1(z) // Re-sample cond.

// rand. for Alice.

(stA, x
str
A )← A1(r

str
A ) // Running Alice.

(st′A, x
′
A)←$ A2(stA, xB)

stA ← st′A

xA ← x′A

return (stA, xA)

(B1 ◦A1)(r
str
A , (rB,1, .., rB,i))

(stA, x
str
A )← A1(r

str
A ) // Running Alice.

for j = 1..i :

(ststrB,j , x
str
B,j)← B1(x

str
A ; rB,j)

// Computing i ≤ s1+2m Bianca states.

return (stB,1, xB,1, .., stB,i, xB,i)

The function (B1 ◦A1) is a natural candidate for a dOWF since the above
protocol transformation only works if (B1 ◦A1) is not an (infinitely often) dOWF.
Before turning to an efficient implementation of the protocol using an efficient
inverter for B1 ◦A1, let us briefly consider why these inefficient versions of A1

and B1 would yield a good joint distribution of Alice and Bianca states. The
DQW key idea here is that both Alice and Bianca, sample their state conditioned
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on xB,1, stB,1,..,xB,i, stB,i only. Therefore, Alice’s state is perfectly distributed as
in the original protocol by the definition of conditional sampling. Now, to argue
that the joint distribution of Alice’s and Bianca’s state is close to the original
distribution, we invoke Lemma 22 on Bianca’s state to conclude that sampling
conditioned on xB,1, stB,1,..,xB,i, stB,i yields a sample that is statistically close
to the original distribution. We now make these arguments formal.

Lemma 24 (Long messages). Letm > 0 be a constant. Let KA be a (s, C, r, a)-
UP-KA with a > s2+2m, correctness error εKA and security δKA, where the length
of the first message is greater than s2+2m

2 . B1 ◦A1 is a non-uniform εI-io-dOWF,
or there exists an inverter I for B1 ◦A1 such that for all but finitely many λ,

SD((B1 ◦A1(R), R), (B1 ◦A1(R), I(B1 ◦A1(R)))) < εI , (4)

where R is a uniform sample of rstrA , (rB,1, .., rB,i) and i is the index guaranteed
by Lemma 22. Moreover, KA defined by A1 (replacing (B1 ◦A1)

−1 by I), B1 and
Aj := Aj+1, Bj := Bj for j > 1 is a (s2+2m, C, r− 1, a)-UP-KA with correctness
error εKA = εKA + 2εI +

1
sm and security δKA = δKA + 2εI +

1
sm .

Remark. The non-uniformity is induced by the need to know the index i, which
cannot be computed efficiently and which might be a different index for each
security parameter. Thus, the non-uniform advice is O(log λ) when Lemma 24 is
applied once and O(r log λ) when Lemma 24 is applied recursively r times.

Proof. Communication length C. Since we assumed that |xA| > s2+2m

2 , the
communication complexity of the protocol decreased, since instead of xA, we now
send up to s1+2m

2 Bianca states each of which has size at most s, so overall, we
replaced a message of size |xA| > s2+2m

2 by a message of size ≤ s2+2m

2 .

Normal form. The protocol is still in normal form. Since xA,1 is long, xB,1 in KA
is short. Now, xB,1 is still short, since it contains |xB,1| ≤ s bits as well as up
to s1+2m

2 many Bianca states, each of which are of size at most s, so the overall
length of xB,1 is bounded by s2+2m

2 + s < s2+2m and thus below the new space
bound for honest parties.

Space bounds of honest parties. Analogously to the short message case, the
parties’ behaviour in rounds other than the first remains the same, using the
same space bounds as before. Moreover, B1 only stores a state stB = stB of
size s. And similarly to before, for A1, the receiveA1

can just store the message
xB,1 = (xA,1, xB,1) because s2+2m

2 + s < s2+2m is lower than its space bound.

Security. Let E a PPT adversary with space-bound a against KA and assume
towards contradiction that E has advantage δKA > δKA + 2εI +

1
sm . We construct

a new PPT adversary RE against KA. As in the previous section, after the
first message of KA, the reduction RE just runs E , we thus now focus on RE ’s
simulation of the first message xB,1 of KA. Upon receiving xstrA as a stream, RE
computes s1+2m

2 many Bianca states in parallel as follows:
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D1(λ)

(stA,1, x
str
A,1)←$ A1

for j = 1..i :

(stB,j , xB,j)←$ B1(x
str
A,1)

z ← (stB,1, xB,1, .., stB,i, xB,i)

(stB , xB)←$ B1(x
str
A,1)

(stA,2, xA,2)←$ A2(stA,1, xB)

return (z, xB , stB,1, stA,2)

D2(λ)

(stA,1, x
str
A,1)←$ A1

for j = 1..i :

(stB,j , xB,j)←$ B1(x
str
A,1)

z ← (stB,1, xB,1, .., stB,i, xB,i)

(rstrA,1,_)←$ (B1 ◦A1)
−1(z)

(_, xstr′A,1)← A1(r
str
A,1)

(stB , xB)←$ B1(x
str′
A,1)

(stA,2, xA,2)←$ A2(stA,1, xB)

return (z, xB , stB,1, stA,2)

perfect

D3(λ)

(stA,1, x
str
A,1)←$ A1

for j = 1..i :

(stB,j , xB,j)←$ B1(x
str
A,1)

z ← (stB,1, xB,1, .., stB,i, xB,i)

(rstrA,1,_)←$ (B1 ◦A1)
−1(z)

(_, xstr′A,1)← A1(r
str
A,1)

(stB , xB)←$ B1(x
str′
A,1)

(rstr′A,1,_)←$ (B1 ◦A1)
−1(z)

(st′A,1, x
str′′
A,1)← A1(r

str′
A,1)

(stA,2, xA,2)←$ A2(st
′
A,1, xB)

return (z, xB , stB,1, stA,2)

D4(λ)

(stA,1, x
str
A,1)←$ A1

for j = 1..i :

(stB,j , xB,j)←$ B1(x
str
A,1)

z ← (stB,1, xB,1, .., stB,i, xB,i)

(rstrA,1,_)←$ I(z)

(_, xstr′A,1)← A1(r
str
A,1)

(stB , xB)←$ B1(x
str′
A,1)

(rstr′A,1,_)←$ I(z)

(st′A,1, x
str′′
A,1)← A1(r

str′
A,1)

(stA,2, xA,2)←$ A2(st
′
A,1, xB)

return (z, xB , stB,1, stA,2)

1
sm

perfect 2εI

Fig. 4. Hybrids for Lemma 24

for j = 1..i :

(stB,j , xB,j)←$ B1(x
str
A )

// Sampling i ≤ s1+2m Bianca states.

z ← (stB,1, xB,1, .., stB,i, xB,i)

Since a > s2+2m

2 , RE can store those. Next, upon receiving receiving Bianca’s
message xB , RE runs E on (z, xB), and from there just runs E . We argue about
the statistical distance of RE ’s simulation by game-hopping. In Fig. 4, the upper-
left column describes how the joint distribution of (z, xB , stB , stA,2) is generated
in E ’s simulation, and the lower-right column describes how the joint distribution
of (z, xB , stB , stA,2) is generated in KA.

From the 1st to 2nd column, we replace sampling of Bianca’s state and
message by conditional inverse sampling. By Lemma 22, the statistical distance
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is at most 1
sm , cf. discussion in Section 5.2. From the 2nd to 3rd column, we

sample Alice’s state conditionally. This step is perfect. Finally, from the 3rd to
4th column, we replace the 2 perfect inverse samplings by inverse samplings by I;
the statistical distance is < 2εI . Thus, we obtain that RE has advantage greater
than

δKA −
1

sm
− 2εI > δKA +

1

sm
+ 2εI −

1

sm
− 2εI = δKA

and we reach a contradiction.

Correctness. As we analyzed security via a statistical sequence of game-hops, the
analysis implies that the overall distribution of the protocol’s behaviour changes
by 2εI +

1
sm and thus, the correctness error increases by the same amount.

5.4 Conclusion

We proved in the unbounded processing PPT model that, when space gaps are
large enough, r-message UP-KA can be transformed into r−1-message UP-KA, or
an io-dOWF exists. Moreover, we proved that stream-first UP-KA implies dOWFs.
Now, we put these transformations together into the following theorem which
states that r-message UP-KA with large enough space gaps implies io-dOWF.
Note that for the following theorem, no efforts have been made to optimize the
parameters.

Theorem 25 (UP-KA ⇒ io-dOWF). Let r be a constant. Let KA be a
(s, C, r, a)-UP-KA with a ≥ s(3m)r , where m is a constant such that m ≥ logs 10

4r
for large enough security paramters. Then, there exists a non-uniform ε-io-dOWF
with ε = 1

104r .

Proof. Space of honest parties. Lemma 23 and Lemma 24 both increase the space
of honest parties from s to s2+2m. Thus, after r − 1 applications of either of
the lemmas, we obtain space s(2+2m)r−1 ≤ s(3m)r−1

. Now, Theorem 20 requires
the adversary to have space at least (s(3m)r−1

)2. which is indeed lower than
a = s(3m)r .

Correctness and Security. Each application of Lemma 23 and Lemma 24 reduces
correctness and security by at most 2εI+ 1

sm . Theorem 20 requires the correctness
error of the stream-first protocol to be at most 1

400 and the security gap to be at
most 1

5 . The increase of the correctness error and security gap are both dominated
by 2r ·εI = 2

104 . Additionally, we get a term that is upper bounded by r · 1
sm ≤

1
104 ,

and 3
104 <

1
400 , which is also smaller than 1

5 .

6 Fully streaming: SM-KA implies SB-dOWFs

6.1 A derandomization lemma

We start by stating a derandomization lemma, which states (in essence) that
if an algorithm A takes as input a random stream r of length |r| � s (and



On Bounded Storage Key Agreement and One-Way Functions 27

possibly some additional short input), runs in time t, uses space at most s, and
returns an output of size s, then this algorithm can be derandomized into an
algorithm Der(A) that uses slightly larger space Θ(s · log t) but takes as input
only O(s · log t) bits of randomness, such that the output distribution of Der(A) is
statistically close to that of A. Looking ahead, our results in the fully-streaming
model will build upon this lemma to convert the OWFs constructed in Section 5
into SB-OWFs.

Lemma 26 (Derandomization). There exist a global constant c and a trans-
formation Der such that the following holds: Let A be a deterministic algorithm,
taking as input a uniformly random string r ∈ {0, 1}t (its randomness), running
in time t and space s and producing an output of length ≤ s. Then if 2s ≥ 8t2 log t,

SD(A(r),Der(A)(rshort)) ≤ 2−s,

where r ←$ {0, 1}t, rshort ←$ {0, 1}s(log t+c), and Der(A) runs runs in time at
most c · t · log t · s2 and uses space at most 56 log t · s+ c · s

In Appendix C of the full version , we prove Lemma 26. We stress that
the proof is not from us: it basically follows the analysis of Nisan from [Nis90].
However, Lemma 26 does not follow from any Theorem in Nisan’s paper, but
rather follows from the proof of Theorem 1 in Nisan’s paper. For completeness, we
therefore reproduce this proof here, following the presentation given in the lecture
notes of Ryan O’Donnell8, with some suitable adaptation of the parameters to
derive Lemma 26. In essence, the core observation is that Nisan’s pseudorandom
generator for low-space algorithms satisfies a stronger property: it fools non-
boolean distinguishers that output a string x ∈ {0, 1}s (where fooling means that
the output distribution of the distinguishers given outputs of Nisan’s PRG is
statistically close to their output distribution given true random coins). We also
note that this property has been observed before: it was mentioned in passing in
the works of Nisan and Zuckerman [NZ96] and of Dubrov and Ishai [DI06].

6.2 Stream-first key agreement ⇒ SB-dOWF

We now adapt the proof of Theorem 20 to the fully streaming setting. Naturally,
the resulting dOWF is only secure against space-bounded adversaries.

Definition 27 (Space-bounded Distributional One-Way Functions). A
function f : {0, 1}n → {0, 1}m is a (s, a, ε)-space-bounded distributional one way
function (SB-dOWF), if the following conditions hold.

Space-bounded Efficiency. f can be computed in time polynomial in λ and
in space s(λ). Furthermore, we impose m(λ) ≤ s(λ).

Security. For every polynomial-time adversary A which uses at most s(λ) bits
of storage, we have that for all large enough λ,

SD
(
(Un, f(Un)), (A(1λ, f(Un)), f(Un))

)
≥ ε(λ). (5)

8 https://www.cs.cmu.edu/~odonnell/complexity/docs/lecture16.pdf

https://www.cs.cmu.edu/~odonnell/complexity/docs/lecture16.pdf
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Remark. Analogously to infinitely often OWFs (Definition 5), we will later also
use (s, a, ε)-io-SB-dOWFs, where (5) only holds for infinitely many λ. Jumping
ahead, the infinitely often property will later be needed In the long message lemma
(included in the full version), which is the analogous statement to Lemma 24.
Again, we will use a dOWF inverter to construct a protocol, and correctness
requires the inverter to invert correctly on all but finitely many λ. We will also
consider non-uniform versions of (s, a, ε)-io-SB-dOWFs, where f can be computed
by a non-uniform sequence of polynomial-size circuits of width ≤ a. Again, as for
Lemma 24, the non-uniform advice will be the index i guaranteed by Lemma 22.

Different from Theorem 20, we first need to modify fDM, since it encodes the
protocol into a deterministic function and the participants could use (much) more
randomness than space, increasing the input length of fDM beyond the adversary’s
space bound. We thus invoke Lemma 26 (derandomization) and, instead consider
fstream−1st(b, rshort) which is a derandomized version of fDM and has (almost) the
same output distribution despite using significantly less randomness.

Theorem 28 (Stream-first SM-KA ⇒ SB-dOWF). Let KA be a stream-
first (s, C, r, a) SM-KA in with a = O

(
s4+k

)
for some constant k > 0, correctness

error εKA ≤ 1
400 , security gap δKA < 1

103 and A and B running in overall time t.
Additionally, we assume (for convenience) that 56 · 400 log(400ts) + 400c) ≤ s,
and 4003c log(400st) ≤ s. Then,

fstream−1st(b, rshort) :=

{
Der(fDM(0, ·))(rshort) if b = 0

Der(fDM(1, ·))(rshort) if b = 1

with rshort ∈ {0, 1}s
3

, is an (s′, a, εI)-SB-dOWF with space s′ = s3, time ts3 for
any εI ≤ 1

5 .

The proof of Theorem 28 is analogous to the proof of Theorem 20, with an
additional (small) loss for the derandomization inaccuracy as well as an additional
increase in space due to the derandomization. The details can be found in the
full version of this paper.

6.3 Conclusion

We proved in the fully streaming PPT model that, when space gaps are large
enough, r-message SM-KA can be transformed into r − 1-message SM-KA,
or a non-uniform io-SB-dOWF exists. Moreover, we proved that stream-first
SM-KA implies SB-dOWFs. Now, analogously to Theorem 25, we put these
transformations together into the following theorem which states that r-message
SM-KA with large enough space gaps implies a non-uniform io-SB-dOWF. Note
that for the following theorem, no efforts have been made to optimize the
parameters.

Theorem 29 (SM-KA ⇒ io-SB-dOWF). Let r and w be constants. Let
KA be a (s, C, r, a)-SM-KA with a ≥ s(3mw)r , where m is a constant such that
m ≥ logs 10

4wr for large enough security parameters. Then, there exists a non-
uniform (sf , af , εf )-io-SB-dOWF f with af = swf and with εf = 1

104r .
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Discussion. DQW use a (short) common reference string (CRS) as a technical tool
in their round reduction arguments for the fully streaming protocol, which allows
them to rely on setup routines that are not necessarily space-bounded—note that
this is the only reason that the CRS is useful, because else, the CRS could just be
generated and sent by the party who generates the first message. In addition to
being a technical tool, including a CRS makes their result stronger, since DQW
also rule out protocols where the CRS is not (space-)efficiently computable. We,
in turn, do not achieve such a stronger result, since we seek to build (space-
)efficiently computable SB-dOWF. Thus, we cannot use a CRS as a technical tool
where we move (space-)inefficient computations that the transformation incurs.
However, using derandomization (Lemma 26) as well as efficient inverters (which
exist assuming that a certain function is not an SB-dOWF), our results also show
that in our setting, all transformations can be implemented in a space-efficient
manner. It is conceivable that analogous derandomization arguments also apply
to DQW (using inefficient inverters), but we did not investigate this question in
sufficient depth to make this claim.

7 SB-dOWFs implies SB-PRFs

Impagliazzo and Luby (IL [IL89]) show that distributional OWFs imply weak
OWFs via universal hashing, and that Yao shows that weak OWFs imply stan-
dard OWFs via parallel repetition, cf. [Yao82,Gol01], then several constructions
transform OWFs into PRGs [HILL99,HRV13,VZ12], and finally, Goldreich, Gold-
wasser and Micali transform PRGs into PRFs [GGM84]. The goal of this section
is to show that the aforementioned reductions are sufficiently tight in space so
that, together with Theorem 29, we obtain the following theorem for SM-KA.

Theorem 30 (SM-KA ⇒ SB-PRFs). There exists a universal constant u
such that the following holds: let r and w be arbitrary constants. Let KA be
a (s, C, r, a)-SM-KA with a ≥ su·(3mw)r , where m is a constant such that m ≥
logs 10

4wr for large enough security parameters. Then, there exists a non-uniform
(sf , af )-io-SB-consecutive-PRF F with af = swf .

Theorem 30 follows mainly by inspection, and observing that the reductions
mentioned above preserve the fine-grained space hardness of the notions pretty
well. Due to space constraints the proof is only included in the full version of the
paper.
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