
HAL Id: hal-04770551
https://hal.science/hal-04770551v1

Submitted on 7 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FOLEAGE: F 4 OLE-Based Multi-Party Computation
for Boolean Circuits

Maxime Bombar, Dung Bui, Geoffroy Couteau, Alain Couvreur, Clément
Ducros, Sacha Servan-Schreiber

To cite this version:
Maxime Bombar, Dung Bui, Geoffroy Couteau, Alain Couvreur, Clément Ducros, et al.. FOLEAGE: F
4 OLE-Based Multi-Party Computation for Boolean Circuits. ASIACRYPT 2024, Dec 2024, Kolkata,
India. �hal-04770551�

https://hal.science/hal-04770551v1
https://hal.archives-ouvertes.fr

FOLEAGE: F4OLE-Based Multi-Party Computation for
Boolean Circuits

Maxime Bombar1, Dung Bui2, Geoffroy Couteau3,2, Alain Couvreur4,5, Clément Ducros2,4, and
Sacha Servan-Schreiber6

1 Cryptology Group, CWI, maxime.bombar@cwi.nl
2 IRIF, Université Paris Cité, bui@irif.fr

3 CNRS, IRIF, Université Paris Cité, couteau@irif.fr
4 INRIA, École Polytechnique, Institut Polytechnique de Paris, alain.couvreur@inria.fr

5 IRIF, INRIA, Université Paris Cité, cducros@irif.fr
6 MIT, 3s@mit.edu

Abstract. Secure Multi-party Computation (MPC) allows two or more parties to compute
any public function over their privately-held inputs, without revealing any information be-
yond the result of the computation. Modern protocols for MPC generate a large amount of
input-independent preprocessing material called multiplication triples, in an offline phase. This
preprocessing can later be used by the parties to efficiently instantiate an input-dependent
online phase computing the function.
To date, the state-of-the-art secure multi-party computation protocols in the preprocessing
model are tailored to secure computation of arithmetic circuits over large fields and require
little communication in the preprocessing phase, typically O(N ·m) to generate m triples among
N parties. In contrast, when it comes to computing preprocessing for computations that are
naturally represented as Boolean circuits, the state-of-the-art techniques have not evolved since
the 1980s, and in particular, require every pair of parties to execute a large number of oblivious
transfers before interacting to convert them to N -party triples, which induces an Ω(N2 · m)
communication overhead.
In this paper, we introduce F4OLEAGE, which addresses this gap by introducing an efficient
preprocessing protocol tailored to Boolean circuits, with semi-honest security and tolerating
N−1 corruptions. F4OLEAGE has excellent concrete performance: It generates m multiplication
triples over F2 using only N ·m+O(N2 · logm) bits of communication for N -parties, and can
concretely produce over 12 million triples per second in the 2-party setting on one core of a
commodity machine. Our result builds upon an efficient Pseudorandom Correlation Generator
(PCG) for multiplication triples over the field F4. Roughly speaking, a PCG enables parties to
stretch a short seed into a large number of pseudorandom correlations non-interactively, which
greatly improves the efficiency of the offline phase in MPC protocols. This is achieved by intro-
ducing a number of protocol-level, algorithmic-level, and implementation-level optimizations on
the recent PCG construction of Bombar et al. (Crypto 2023) from the Quasi-Abelian Syndrome
Decoding assumption.

mailto:maxime.bombar@cwi.nl
mailto:bui@irif.fr
mailto:couteau@irif.fr
mailto:alain.couvreur@inria.fr
mailto:cducros@irif.fr
mailto:3s@mit.edu

Table of Contents

1 Introduction . 3
1.1 Our focus and contributions . 4
1.2 Organization . 6

2 Technical Overview . 6
2.1 Background: Secure MPC from PCGs . 7
2.2 Constructing programmable PCGs . 8
2.3 F2-triples from F4-triples . 9
2.4 An improved protocol from F4-OLEs for N = 2 . 10
2.5 A fast programmable PCG for F4-OLEs . 10
2.6 Distributed seed generation . 12
2.7 Concrete cryptanalysis of F4OLEAGE . 14

3 Preliminaries . 15
3.1 Function secret sharing . 16
3.2 The Quasi-Abelian Syndrome Decoding Problem . 16

4 A Fast PCG for F4-OLEs . 18
4.1 PCGs over F4 from the QA-SD assumption . 18
4.2 Optimizing the FSS evaluation via early termination . 19
4.3 Fast evaluation over F4[X1, . . . , Xn]/(X

3
1 − 1, . . . , X3

n − 1) . 21
5 Distributed Seed Generation . 22

5.1 A ternary distributed point function . 22
5.2 Distributed DPF key generation . 23

6 Cryptanalysis and Parameter Selection . 25
6.1 Model of attack . 27
6.2 Generic decoding algorithms . 29
6.3 Analysis of Folding attacks . 30
6.4 Improving the attack: Folding for several subgroups . 32

7 Implementation and Evaluation . 32
A PCGs from the QA-SD assumption . 39
B N-party MPC with Preprocessing from F4-OLEs . 39

B.1 Secure computation in the FcBT-hybrid model . 39
B.2 An improved protocol for N = 2 parties . 42

C Complexity of Informations Set Decoding algorithms over Fq . 43
C.1 Stern/Dumer . 44
C.2 MMT . 45
C.3 BJMM . 47

D Faster seed expansion from hashing (application to silent OT) . 48
D.1 Faster seed expansion . 49
D.2 Application of OLE over F4 to silent OT extension . 52

E Deferred Proofs . 53
E.1 Proof of Proposition 10 . 53
E.2 Proof of Lemma 11 . 55
E.3 Proof of Proposition 12 . 56
E.4 Proof of Proposition 13 . 57

1 Introduction

A secure multiparty computation (MPC) protocol for a public functionality f allows N parties with
private inputs (x1, · · · , xN) to securely compute f(x1, · · · , xN), while concealing all other information
about their private inputs to coalitions of corrupted parties. MPC was introduced in the seminal work
of Goldreich, Micali, and Wigderson [GMW87] (GMW), and has since led to a rich body of work
developing the foundations of MPC, and even practical open-source libraries [Kel20].

Two of the leading paradigms in secure computation are garbled circuits [Yao86] and secret-
sharing-based secure computation [GMW87]. The seminal GMW protocol is of the latter type. In a
secret-sharing-based MPC protocol, the parties hold shares of the inputs and iteratively compute the
circuit representing the function, gate-by-gate. Because addition gates can be computed locally by
the parties holding the input shares, only multiplication gates require interaction between the parties
to evaluate. As such, the major bottleneck of MPC protocols is due to the communication required
to evaluate the multiplication gates in a circuit. (Note that this is also true of the garbled circuit
approach where addition gates are “free” and only multiplication gates need to be garbled [KS08].)

However, a core advantage of secret-sharing-based MPC, first identified in the work of Beaver [Bea92],
is that secure multiplications can be preprocessed in an input-independent precomputation phase. In
particular, the parties can securely generate additive shares of many “Beaver triples” (a, b, a · b) ∈ F3.
Then, for each multiplication gate that needs to be computed in the online phase, the parties can
run a fast information-theoretically secure multiplication protocol that consumes one Beaver triple
and involves communicating just two elements of F per party. This model of secure computation with
preprocessing forms the basis for modern MPC protocols due to the efficiency of the online phase.
However, this preprocessing paradigm only serves to push the inefficiency bottleneck of MPC to the
offline phase that consists of generating many Beaver triples. We briefly survey the different tech-
niques that have been developed in the last couple of decades for the efficient generation of Beaver
triples in an MPC setting.

Modern secure computation protocols. The traditional approach for securely generating Beaver
triples relies on Oblivious Transfers (OT) [Rab81,EGL82]: an N -party Beaver triple over F is generated
by letting each pair of parties execute log |F| oblivious transfers [Gil99], and thanks to OT extension
protocols [Bea96, IKNP03], generating a large number of OTs requires only cheap symmetric-key
operations. This OT-based approach is very competitive with a small number of parties, but becomes
very inefficient with many parties. Specifically, because each pair of parties needs to perform OTs, the
communication and computation costs are on the order of Ω(N2), which quickly becomes impractical
as N grows large.

Over the past decade, the practicality of secure computation has increased tremendously [DPSZ12,
KOS16,Kel20,DNNR17,HOSS18a,KPR18]. This is especially true in the setting of secure computation
of arithmetic circuits over large fields. Starting with the celebrated SPDZ protocol [DPSZ12], a
sequence of works has developed fast protocols that use Ring-LWE-based somewhat homomorphic
encryption, or even linearly homomorphic encryption, to generate m Beaver triples with only O(m·N)
communication and computation per triple. These approaches significantly improve over the “naïve”
Ω(m ·N2) cost of the OT-based approach. Over sufficiently large fields (e.g., larger than 2λ), when
generating many triples, state-of-the-art protocols such as Overdrive [KPR18] achieve very good
concrete efficiency.

More recently, following the line of work on silent secure computation initiated in [BCGI18,
BCG+19b, BCG+19a], Boyle et al. [BCG+20b] have shown how to generate a large number m of
pseudorandom (as opposed to truly random) Beaver triples under the Ring-LPN assumption. Their
approach uses O(logm · N2) communication, followed solely by local computation, with good con-
crete efficiency (the authors estimated a throughput of around 105 triples per second on one core
of a standard laptop). For sufficiently large values of m, this is highly competitive with Overdrive.
However, both Overdrive and the existing PCG-based approach share a common restriction: they are
only usable over large fields.

Secure computation of Boolean circuits. In contrast to the secure computation of arithmetic
circuits over large fields, the fastest way to run N -party MPC protocols for Boolean circuits remains
the “naïve” method of generating many pairwise OTs, at a cost of Ω(m ·N2) bits for m Beaver triples.
This is in contrast to the two-party setting, where two-party Beaver triples can be generated very
efficiently thanks to a recent line of work [BCGI18,BCG+19b,BCG+19a] on silent OT extension. In

3

silent OT extension, two parties can generate m Beaver triples using only O(logm) communication.
The state-of-the-art protocols in this area [CRR21,BCG+22,RRT23] achieve impressive throughputs
of several million Beaver triples per second on one core of a standard laptop. Furthermore, the recent
SoftSpoken OT extension protocol [Roy22] yields even faster OTs at the cost of increasing communica-
tion. For example, SoftSpoken can generate nearly 30M OT/s on localhost at the cost of increasing
the communication to 64m bits to generate m Beaver triples; other communication/computation
tradeoffs are possible [Roy22, Table 1].7

The situation, however, is much less satisfying for the setting of secure computation of Boolean
circuits with a larger number of parties. Protocols such as SPDZ [DPSZ12] and Overdrive [KPR18]
do not perform well when generating Beaver triples for Boolean circuits, even in the passive set-
ting. This is due to the high overhead of embedding F2 in an extension field compatible with the
number theoretic-transform used in efficient instantiations of the BGV encryption scheme [BGV14].
Furthermore, silent OT extension techniques build on Pseudorandom Correlation Generators (PCGs),
which typically work only in the two-party setting [BCG+19b]. To handle more parties, one needs the
stronger notion of programmable PCG [BCG+20b], which, informally, allows partially specifying parts
of the generated correlation. Unfortunately, while efficient programmable PCGs over large fields were
introduced in [BCG+20b], building concretely efficient, programmable PCGs over F2 has remained
elusive thus far, making N -party PCGs for F2 primarily of theoretical interest. The state-of-the-art
is the recent work of Bombar et al. [BCCD23], which generates Beaver triples over any field Fq with
q ≥ 3. However, Bombar et al. [BCCD23] leave analyzing the concrete efficiency for future work.

In light of this state of affairs, to the best of our knowledge, the current most efficient approach for
N -party secure computation of Boolean circuits remains the classical OT-based approach. In a little
more detail, to generate each Beaver triple, each party Pi samples a random pair (ai, bi) of bits, and
each pair (Pi, Pj) of parties executes two oblivious transfer protocols to generate additive shares of
aibj and ajbi. Then, all parties aggregate their shares to obtain shares of

∑
i,j aibj = (

∑
i ai) ·(

∑
j bj).

When generating m Beaver triples, this approach requires N ·(N−1)·m oblivious transfers in total (to
be compared with the O(N2 · logm) communication of [BCG+20b], or the O(N ·m) communication
of Overdrive [KPR18], for the case of arithmetic circuits over large fields). While there has been
tremendous progress in constructing efficient OT protocols [IKNP03, Roy22], even using silent OT
extension (which has the lower communication overhead) requires 3N ·(N−1)·m bits of communication
(ignoring some o(m) terms). Using SoftSpoken OT [Roy22] instead, which appears to be the most
computationally efficient solution, and setting the “communication/computation tradeoff” parameter
k to k = 5, the communication increases to 32N · (N −1) ·m bits. When the number of parties grows,
this soon becomes very inefficient.8

1.1 Our focus and contributions

In this paper, we focus on secure computation of general Boolean circuits with multiple parties in the
semi-honest setting. Our main contribution is F4OLEAGE, a novel F4-OLE-based protocol for secure
computation in the preprocessing model that significantly outperforms the state-of-the-art approach
in both the two-party and multi-party setting. In particular, F4OLEAGE enjoys much lower commu-
nication in the preprocessing phase than all known alternatives and has a very low computational
overhead. We expect F4OLEAGE to be the fastest alternative for large enough circuits on almost any re-
alistic network setting, for any number of parties between two and several hundred. F4OLEAGE builds
upon recent results constructing efficient PCGs and introduces several protocol-level, algorithmic-
level, and implementation-level optimizations to make these PCG constructions blazing fast (see
Section 7 for a performance evaluation).
In the two-party setting (N = 2), F4OLEAGE enjoys a silent preprocessing (generating m multi-
plication triples requires O(logm) communication), and significantly outperforms all previous silent
protocols. In particular, our implementation generates around 12.3 million Beaver triples per second
on one core of an Amazon c5.metal server. Compare this to the state-of-the-art silent OT proto-
col RRT [RRT23] which generates 3.4 million Beaver triples per second with the same setup. This
7 Note that we need two calls to the OT functionality to generate one Beaver triple.
8 For a very large number of parties, the linear scaling in N of Overdrive should become favorable. However,

after private communication with the authors of Overdrive, the break-even point for communication seems
to happen only for values of N in the range of 400+, due to the high overhead of using BGV and embedding
F2 elements.

4

makes RRT more than 3.5 times slower compared to F4OLEAGE. The fastest non-silent OT protocol,
SoftSpoken OT, generates around 26 million multiplication triples per second on localhost in its
fastest regime (using k = 2 [Roy22, Table 1]), while requiring around 128 ·m bits of total communi-
cation. However, while our approach does achieve a blazing-fast throughput, it has some limitations.
In particular, the preprocessing phase of F4OLEAGE requires more rounds (16 rounds instead of 3
for generating 26M triples compared to [Roy22]). Additionally, our seed size is roughly 130× larger
compared to [RRT23], and 2× larger compared to [BCG+20b]. This makes F4OLEAGE less suitable
for generating a small number of triples. Eventually, our protocols are tailored to the generation of
multiplication triples over F2 in the semi-honest setting: their efficiency scales less favorably in other
settings, such as generating string OTs or authenticated triples.

In the multi-party setting (N > 2), F4OLEAGE achieves almost-silent preprocessing: to securely
compute a circuit with m AND gates, following a silent phase with O(N2 · logm) communication,
our preprocessing phase requires a single broadcast of N · m bits (one bit per AND gate and per
party), and the online phase is the standard GMW protocol. As N grows, this represents a drastic
reduction in communication compared to the ∼ 3 ·N2m communication obtained when using silent
OT extension, or the ∼ 32 · N2m communication obtained with SoftSpoken OT, while remaining
highly competitive in terms of computation.

Comparison with the state of the art. In Table 1, we provide a comparison between F4OLEAGE,
SoftSpoken, and RRT, for N = 10 and N = 2 parties. In the multiparty setting, due to the very low
bandwidth requirement of F4OLEAGE, we observe that computation is systematically the bottleneck
when evaluated on one core of a commodity server. This indicates that F4OLEAGE is likely to stand
out even more whenever more computational power is available, e.g., when evaluated in parallel on
multiple cores.

The numbers in Table 1 have been computed using the running time T measured for generating
316 OLEs (Table 5, using the noise parameter t = 27 and c = 3) on one core of AWS c5.metal, and
estimating the per-party cost to generate 109 N -party Beaver triples as 2 · (N − 1) · T · (109/316).
When N = 2, the cost is estimated as T · (109/316), accounting for the factor-2 saving tailored to
the 2-party setting. For communication, we computed an estimate of C = 13MB of communication
for our distributed protocol for generating a seed for 318 OLEs. While one could in principle directly
generate a seed that stretches to 109 OLEs, this would significantly slow down the computation as
the 109 OLEs must be expanded all at once, and would not fit in memory. Hence, we estimate the
communication as 2·(N−1)·(318/109)·C for generating 109 N -party Beaver triples (as 318 OLEs is the
maximum expansion size we could fit in the memory), and an additional 109 bits of communication
per party (in the setting N > 2).

Security. The security of F4OLEAGE relies on the Quasi-Abelian Syndrome Decoding (QA-SD) as-
sumption, a variant of the syndrome decoding assumption that was recently introduced in [BCCD23].
QA-SD is a generalization of the standard quasi-cyclic syndrome decoding assumption (used in many
previous works [ABD+16,AMBD+18,BCG+19a,AAB+22b]) which was shown to asymptotically resist
all known attacks against LPN and syndrome decoding in [BCCD23]. As a contribution of indepen-
dent interest, we complement their preliminary analysis with thorough concrete cryptanalysis of the
security of QA-SD against all state-of-the-art attacks. Our analysis covers in full detail the distribu-
tion of the noisy coordinates under folding attacks and the cost of attacking folded QA-SD instances
using tailored Information Set Decoding (ISD) algorithms over F4. We include the SageMath script
used to select our parameters from this analysis. As a byproduct, our precise analysis yields an attack
undermining the claimed security of the parameters from [BCCD23]. Specifically, with our attack and
a set of parameters c = 4, t = 16 (see Section 6.4.1 for details), [BCCD23] can only achieve a security
level of 118 bits instead of 128 bits. This could probably be improved.

Implementation. We provide an open-source prototype implementation of our PCG construction in
C. Our implementation is covered in detail in Section 7. It includes, in particular, a new implementa-
tion of distributed point functions that work with a ternary input domain (providing faster evaluation
at a slightly increased key size), and optimized FFT over F4. We cover all these contributions in more
detail in Section 2.

5

Communication localhost LAN WAN
Multi-party setting (N = 10)

SoftSpoken (k = 2) 134 GB 342s 1192s 12207s
SoftSpoken (k = 4) 67 GB 405s 596s 6104s
SoftSpoken (k = 8) 34 GB 1900s 1900s 3052s

∗298s
RRT 6.3 GB 2619s 2619s 2619s

∗50.3s ∗515s
F4OLEAGE 0.7 GB 1463s 1463s 1463s

∗5.6s ∗57.9s

Two-party setting (N = 2)

SoftSpoken (k = 2) 15 GB 38s 119s 1221s
SoftSpoken (k = 4) 7.5 GB 45s 60s 610s
SoftSpoken (k = 8) 3.7 GB 211s 211s 211s
RRT 258 KB 292s 292s 292s
F4OLEAGE 33.5 MB 81s 81s 81s

Table 1: Comparison of state-of-the-art protocols to generate N -party Beaver triples over F2 for N = 10
and N = 2 parties. The localhost column reports the runtimes (ignoring communication) for generating
109 triples. All protocols run on one core of AWS c5.metal (3.4GHz CPU); all runtimes averaged across ten
trials. “Communication” denotes the number of bits communicated per party for 109 triples. LAN and WAN
refer to the theoretical time required to generate 109 triples over a 1 Gbps and 100 Mbps network respectively,
with respective delays 1ms and 40ms. Numbers in bold red indicate that the bottleneck cost is the local
computation. ∗Maximum theoretical throughput with more computational power (e.g., using multiple cores).
Since each party computes 2 · (N − 1) expansions for the PCG in parallel for an N -party Beaver triple, the
running time is divided by C when using C cores whenever C ≤ 2 · (N − 1).

1.2 Organization

We provide a detailed technical overview of our results in Section 2. We introduce necessary prelim-
inaries in Section 3, and describe our optimized PCG for OLEs over F4 in Section 4. In Section 5,
we describe our distributed seed generation protocol. In Section 6, we describe our cryptanalysis
of the QA-SD assumption and our parameter selection algorithm. In Section 7, we report on our
implementation and evaluate the performance of our scheme.

Appendices. We defer most of the technical details to the appendices. Appendix A contains addi-
tional preliminaries on PCGs. Appendix B covers the formal statement of our information-theoretic
MPC protocols given access to a functionality for F4-OLEs.

The full technical details of our analysis are provided in C. Eventually, Appendix D covers an even
faster PCG for generating OLEs using Cuckoo hashing, suitable in contexts where a trusted entity
generates and distributes the PCG shares, and Appendix E contains all deferred proofs.

2 Technical Overview

In this section, we provide a detailed description of our results and the main technical ideas underlying
them. In Section 2.1, we provide background on secure multi-party computation realized from PCGs
for OLE correlations. In Section 2.2 we describe the PCG construction of [BCCD23], which forms
the basis for our preprocessing protocol. In Section 2.3, we describe our idea for converting F4 triples
into F2 triples, which we tailor to the two-party case in Section 2.4. In Section 2.5, we describe our
optimized PCG construction. In Section 2.6, we explain how we can obtain an efficient distributed
seed generation protocol for our PCG construction. Finally, in Section 2.7, we overview our improved
analysis of the QA-SD assumption.

6

Notations. Unless otherwise stated, an N -party linear secret shares of a value v is denoted [[v]] =
([[v]]1, . . . , [[v]]N), where the i-th party obtains share [[v]]i. To disambiguate shares over F4 and shares
over F2, we denote the field size with a superscript, i.e., [[·]]4 and [[·]]2, respectively. We identify F4 with
F2[X]/(X2 +X + 1) and let θ denote a primitive root of X2 +X + 1. Given an element x ∈ F4, we
write x(0) and x(1) to denote the F2-coefficients of x viewed as a polynomial over F2[X]/(X2+X+1);
that is, x = x(0) + θ · x(1). Additional notation can be found in Section 3.

2.1 Background: Secure MPC from PCGs

We start by describing prior approaches to realizing MPC in the preprocessing model from PCGs for
OLE correlations.

PCGs for the OLE correlation. Our starting point is the template for generating N -party pseu-
dorandom Beaver triples put forth by Boyle et al. [BCG+20b]. At the heart of their framework is the
use of a programmable PCG [BCG+20b] for the OLE correlation. Concretely, a PCG for a target
correlation C (i.e., a distribution over pairs of strings) is a pair of algorithms (PCG.Gen,PCG.Eval)
such that

– PCG.Gen generates a pair of succinct keys (k0, k1) jointly encoding the target correlation, and
– PCG.Expand(σ, kσ) produces a string Rσ corresponding to party σ’s secret share of the target

correlation.

At a high level, a PCG must satisfy two properties: (1) pseudorandomness (or correctness) which
states that (R0, R1) must be indistinguishable from a random sample from C, and (2) security which
states that Rσ should appear random conditioned on satisfying the target correlation with R1−σ =
PCG.Expand(1− σ, k1−σ) even given k1−σ, for σ ∈ {0, 1}.

We focus on the OLE correlation over a finite field F. For a length-m OLE correlation, the string
R0 (which we call the sender output) is a list of m tuples (ui, vi)i≤m ∈ (F2)m, and the string R1

(which we call the receiver output) is a list of m pairs (xi, wi)i≤m ∈ (F2)m such that wi = ui · xi + vi
for every i. Observe that, we can equivalently view vi and −wi as additive shares of ui · xi, which
we will denote as [[ui · xi]]. Informally, security for the OLE correlation amounts to showing that the
following two properties hold:

– Sender security: from the viewpoint of the receiver (who has k1 and generates (xi, wi)), the
distribution of (ui, vi) is computationally indistinguishable from the distribution of (ui, wi−ui ·xi),
for a uniformly random ui ←R F.

– Receiver security: from the viewpoint of the sender (who has k0), the distribution of each xi

is computationally indistinguishable from a random field element.

Going from OLE to Beaver triples. As shown in [BCG+19b], given a PCG for the OLE correlation
(or a PCG for OLE for short), two parties can generate many pseudorandom Beaver triples over F as
follows. First, the parties compute PCG.Gen via a two-party secure computation protocol to obtain
PCG keys k0 and k1, respectively. Then, using PCG.Expand, the two parties locally obtain many
correlations of the form (ui, [[uixi]]0) and (xi, [[uixi]]1), respectively. Given two such OLE correlations,
where one party has (u0, u1, [[u0x0]]0, [[u1x1]]0) and the other party has (x0, x1, [[u0x0]]1, [[u1x1]]1), the
two parties can locally derive one Beaver triple of the form ([[a]], [[b]], [[ab]]) by computing:

([[u0 + x1]]

[[a]]

, [[u1 + x0]]

[[b]]

, [[u0x0 + u1x1]] + u0u1 + x0x1 = [[(u0 + x1) · (u1 + x0)]]

[[ab]]

).

In a little more detail, the sender computes their share of the Beaver triple as (u0, u1, [[u0x0]]0 +
[[u1x1]]0 + u0u1) and the receiver computes their share as (x1, x0, [[u0x0]]1 + [[u1x1]]1 + x0x1). While
this technique works well in the two-party setting, in the multi -party setting, things are not so simple.

Going from two parties to many parties. As first discussed by Boyle et al. [BCG+20b], to
generate N -party Beaver triples using a PCG for OLE, the parties need to ensure consistency among
the OLE correlations generated by each pair of parties. That is, to generate one multiplication triple
([[a]], [[b]], [[ab]]), we need each pair of parties (Pi, Pj) to hold respective values (ai, bi) and (aj , bj)
(viewed as an individual share of a and b), together with two-party shares [[aibj]] and [[ajbi]]. Then,
all parties can combine their shares to get

[[(
∑

i ai) · (
∑

j bj)]] =
∑

i ̸=j [[aibj]] +
∑

i aibi.

7

Observe that this requires party Pi to have OLEs of the form (ai, [[aiaj]]i), with every other party
Pj (who in turn has share (aj , [[aiaj]]j)), where Pj’s value ai remains the same across all OLEs.
This is precisely what the notion of a programmable PCG for OLE achieves: it allows the parties to
specify seeds (ρ0, ρ1) such that PCG.Gen(ρ0, ρ1) outputs keys k0, k1 that, informally speaking, have
all the pseudorandom (ai, bi) deterministically generated from the seeds ρ0 and ρ1 respectively (while
still maintaining the required security properties). By reusing the same seeds across executions with
multiple parties, the parties can ensure the required consistency across their outputs.

2.2 Constructing programmable PCGs

In addition to defining the notion of programmable PCGs, the work of Boyle et al. [BCG+19b,
BCG+20b] introduced a construction from a variant of the LPN assumption over rings. At a high
level, the ring-LPN assumption they introduce states that (a, as + e) is hard to distinguish from
(a, b), where a, b are random polynomials from a suitable ring R = Fq[X]/(P (X)), where P splits
into deg(P) linear factors and s, e are random sparse polynomials from R. The construction of Boyle
et al. proceeds by generating a single large pseudorandom OLE correlation over a polynomial ring
R = Fq[X]/(P (X)), assuming the hardness of the ring-LPN assumption over R. When P splits into
D = deg(P) linear factors, the Chinese Remainder Theorem makes it possible to convert this large
OLE correlation over R into D OLE correlations over Fq (by reducing it modulo each of the factors
of P). Unfortunately, the condition that P splits requires |Fq| ≥ D, which restricts the construction
to only work over large fields. This makes the resulting OLE correlations only suitable for generating
Beaver triples over Fq, which limits their applications. Moreover, other existing efficient (non-PCG-
based) protocols for generating Beaver triples are also restricted to large fields [DPSZ12, KPR18].
However, for the Boolean circuit case, the state-of-the-art remains the basic OT-based approach
originally proposed in the GMW protocol.

A programmable PCG for F4-OLE. The large-field restriction of the Boyle et al.’s PCG construc-
tion was recently overcome by Bombar et al. [BCCD23]. At a high-level, the authors of [BCCD23]
manage to replace the polynomial ring R by a suitable Abelian group algebra F[G] (that is, the set
of formal sums

∑
g∈G agg for ag ∈ F, where G is an Abelian group; endowed with the convolution

product), which identifies to some ring of multivariate polynomials. Moreover, they show that an
appropriate choice of Abelian group algebra can simultaneously satisfy the following properties, for
almost every choice of finite field F:

1. F[G] is isomorphic to many copies of F (note that this property is necessary to convert an OLE
correlation over F[G] into many OLEs over F),

2. The assumption that (a, as+e) is indistinguishable from random over F[G]×F[G], with a
$← F[G]

and (s, e) two random sparse elements of F[G] (with respect to the canonical notion of sparsity
over the group algebra, i.e., sparse formal sums

∑
g∈G agg) is a plausible assumption,

3. Operations over F[G] can be computed efficiently using a Fast Fourier Transform (FFT) algorithm
[Obe07,BCCD23].

The second property is a new variant of the syndrome decoding (or LPN) assumption which the
authors called Quasi-Abelian Syndrome Decoding. It naturally extends to a “module”-variant, i.e.,
the indistinguishability of pairs (a, ⟨a, s⟩ + e) where s and e are drawn from a sparse distribution,
and generalizes both the quasi-cyclic syndrome decoding (when G is a cyclic group), and the LPN
or syndrome decoding assumption (when G = {1}). The work of Bombar et al. [BCCD23] also
provides extensive support for this assumption by showing that it resists all linear attacks, a class of
attacks capturing the most known attacks on the LPN assumption and its variants, and proposes a
set of parameters resisting all concrete attacks known at that time. The combination of these three
properties allowed them to build an efficient programmable PCG for OLEs over F.

Despite the progress made in [BCCD23], their programmable PCG construction is limited in
that it applies only to generating OLE correlations over all finite fields F except for F2. This stems
from the fact that there does not exist any group G such that F2[G] is isomorphic to Fn

2 for n > 1
(see [BCCD23, Theorem 47]). In contrast, the case of F2, is precisely the case that we are interested
in when considering Boolean circuits, which require generating Beaver triples over F2.

Additionally, the concrete efficiency of an FFT computed over the group algebra remains unclear,
since Bombar et al. left estimating the performance of FFTs on F[G] for future work. As such,

8

the concrete efficiency of their programmable PCG construction is unknown, making it difficult to
determine whether or not it is sufficiently efficient to be applied in practical applications (all other
components of their construction consist of standard tools used in the PCG literature, which are
known to have concretely efficient implementations).

Our contribution. Looking ahead, our main contribution is to build upon the work of Bombar et
al. through a number of simple yet powerful observations that allow us to arrive at an efficient PCG
for Beaver triples, suitable for use in secure multi-party computation of Boolean circuits.

– First, we show that we can use their programmable PCG for generating OLEs over F4 to generate
multiplication triples over F2, sidestepping the “F2 barrier” of their PCG construction, at the
cost of a single bit of communication per triple and per party in the preprocessing phase, or even
without any communication when N = 2.

– Second, we introduce a number of concrete optimizations to the PCG construction of Bombar
et al. [BCCD23] that are tailored to the special case of F = F4, which gives us an incredibly
efficient programmable PCG over F4. Compared with the fastest previous programmable PCGs
of [BCG+20b], our optimized implementation shows that our construction is two orders of mag-
nitude faster.

– Third, we give a much more in-depth cryptanalysis of the QA-SD assumption, closely analyzing
all known attacks in the literature, and showing that the set of parameters proposed in [BCCD23]
should be reduced by at least 10 bits. To facilitate future cryptanalysis of the QA-SD assumption,
in Section 6 we carefully overview all known attacks and assumptions, and provide a script for
automatically calculating parameters.

In the next few subsections, we provide more details on the above contributions.

2.3 F2-triples from F4-triples

Since F4 is an extension field of F2, a Boolean circuit can be viewed as an F4-arithmetic circuit.
Hence, using an OLE correlation over F4 to construct N -party Beaver triples over F4 directly yields
an MPC protocol for Boolean circuits in the preprocessing model via the GMW template [GMW87].
Unfortunately, compared to using F2-Beaver triples, the communication in the online phase is doubled,
because each party has to send two elements of F4 per AND gate, hence 4 bits instead of 2 with GMW.

Our core observation is that one can make much better use of these N -party multiplication triples
over F4: we show how to convert an F4-multiplication triple into an F2-multiplication triple using
a single bit of communication per party. Once converted into F2-triples, these triples can be used
within the standard GMW protocol that communicates two bits per party and per AND gate in the
online phase. To explain the observation, let ([[a]]4, [[b]]4, [[ab]]4) be a Beaver triple over F4. Writing
x = x(0) + θ · x(1) for any x ∈ F4, with θ a root of the polynomial X2 +X + 1 (hence θ2 = θ + 1),
we have

a · b =a(0)b(0) + a(1)b(1) + θ · (a(0)b(1) + a(1)b(0) + a(1)b(1))

=⇒ (ab)(0) = a(0)b(0) + a(1)b(1).

Now, assume that the parties reconstruct b(1), which can be done using a single bit of commu-
nication per party from their shares [[b]]4 = [[b(0)]]

2
+ θ · [[b(1)]]2. Given b(1), the parties can locally

compute shares of a(0)b(0) as follows:

[[a(0)b(0)]]
2
= [[ab]]4(0) + b(1) · [[a]]4(1).

Therefore, all parties output ([[a(0)]]2, [[b(0)]]2, [[ab]]4(0)+ b(1) · [[a]]4(1)), which forms a valid Beaver
triple over F2. Security is straightforward: the only communication between the parties is the re-
construction of b(1), which is a uniformly random bit independent of a(0), b(0). From there, one
immediately gets an improved protocol in the preprocessing model: in the preprocessing phase, given
one F4-Beaver triple for each AND gate of the circuit, the parties broadcast one bit per gate, and
then locally derive the F2-Beaver triples. In the online phase, the parties run the standard GMW
protocol.

9

2.4 An improved protocol from F4-OLEs for N = 2

In the setting of N = 2 parties, we obtain a much more efficient alternative: we observe that two
parties can directly convert a single OLE over F4 into a Beaver triple over F2. (In contrast, recall
that the standard approach requires two oblivious transfers for each triple.) We consider two parties,
Alice and Bob, holding respectively (a, [[ab]]4A) and (b, [[ab]]4B) for a and b ∈ F4. We have

a · b = [[ab]]4A(0) + [[ab]]4B(0) + θ · ([[ab]]4A(1) + [[ab]]4B(1))

= (a(0)b(0) + a(1)b(1)) + θ · (a(0)b(1) + a(1)b(0) + a(1)b(1)),

where θ is the primitive root of X2 + X + 1. Considering only the (a · b)(0) term from the above
equation (i.e., the parts not multiplied by θ), we get that

(a · b)(0) = [[ab]]4A(0) + [[ab]]4B(0) = a(0)b(0) + a(1)b(1), and therefore,

a(0)a(1) + [[ab]]4A(0)

known by A

+ b(0)b(1) + [[ab]]4B(0)

known by B

= (a(0) + b(1))

shared by A,B

· (a(1) + b(0))

shared by A,B

.

Above, the values a(0)a(1) + [[ab]]4A(0) (known by Alice) and b(0)b(1) + [[ab]]4B(0) (known by Bob)
form additive shares of the product (a(0)+b(1))·(a(1)+b(0)), which Alice and Bob hold additive shares
of. It is also easy to check that if the input is a random F4-OLE, the output is a random multiplication
triple over F2. Therefore, following the local conversion procedure outlined above, Alice and Bob can
transform a random F4-OLE instance into a random Beaver over F2 without having to communicate.

2.5 A fast programmable PCG for F4-OLEs

In light of the above observations, the only missing piece of the puzzle is an efficient way of generating
a large number of F4-OLEs. In the N > 2 setting, if the OLEs are additionally programmable, the
parties can afterward locally convert N · (N − 1) F4-OLE instances into an F4-Beaver triples.

Here, we build on the recent general programmable PCG construction of [BCCD23]. Because we
are targeting OLEs over F4, we set the group G to Fn

3 , and the underlying group algebra becomes
isomorphic to

F4[G] ≃ F4[X1, . . . , Xn]/(X
3
1 − 1, . . . , X3

n − 1) ≃ F3n

4 .

Before delving into the optimizations we develop for their construction, we describe the high-
level ideas and main building blocks behind the PCG construction of Bombar et al. [BCCD23] when
instantiated over F4.

The PCG construction of Bombar et al. As with previous constructions of PCGs [BCGI18,
BCG+19b], the construction of Bombar et al. uses Distributed Point Functions (DPF) [BGI15,BGI16,
GI14] as a core building block. Informally, a DPF with domain [D] allows a dealer to succinctly secret
share a unit vector over [D]. The most efficient DPFs have shares of size roughly λ · logD [BGI16],
for some security parameter λ, and the cost of decompressing the shares is dominated by D calls to
a length-doubling pseudorandom generator.

Public parameters. For a fixed compression factor c (typically a small constant, e.g., c = 3) and noise
parameter t (e.g., t = 27), the public parameters contain a length-c vector a of n-variate polynomials.

Distributing PCG seeds. In their construction, PCG.Gen does the following:

– it samples two length-c vectors (e0, e1) of t-sparse polynomials over F4[G];
– outputs keys (k0, k1) that contain e0 and e1, respectively, as well as succinct shares of e0 ⊗ e1,

encoded using a DPF.

The tensor product e0⊗e1 contains c2 polynomials, each with at most t2 nonzero coordinates. Hence,
the vectors of coefficients of all polynomials in e0 ⊗ e1 can be succinctly secret shared using (ct)2

DPFs with domain 3n, which requires roughly (ct)2 · λ log(3n) bits using the state-of-the-art DPF
constructions [BGI15,BGI16].9

Generating correlations. To output a vector of OLE correlations, PCG.Eval proceeds as follows for
party 0 (the evaluation for party 1 is similar):
9 Using noise vector with a regular structure, the domain size of the DPFs can be reduced to 3n/t.

10

– evaluate all the DPFs to obtain a secret share of [[e0 ⊗ e1]]0;
– set x0 ← ⟨a, e0⟩ and z0 ← ⟨a⊗ a, [[e0 ⊗ e1]]0⟩; ▷ Note: z0 = [[⟨a⊗ a, e0 ⊗ e1⟩]]0
– using the isomorphism F4[G] ≃ F3n

4 , project (x0, z0) ∈ F4[G]2 onto 3n pairs (xi
0, z

i
0) of elements

of F4.

Above, the projection amounts to evaluating the multivariate polynomials over F4[X1, . . . , Xn]/(X
3
1−

1, . . . , X3
n − 1) on the 3n tuples of elements of (F×

4)
n. Observe that

z0 + z1 = ⟨a⊗ a, [[e0 ⊗ e1]]0⟩+ ⟨a⊗ a, [[e0 ⊗ e1]]1⟩
= ⟨a⊗ a, e0 ⊗ e1⟩ = ⟨a, e0⟩ · ⟨a, e1⟩ = x0 · x1.

Since the isomorphism preserves additions and multiplications, it follows that all pairs (xi
0, z

i
0) and

(xi
1, z

i
1) form OLEs over F4. Security boils down to the Quasi-Abelian Syndrome Decoding assumption

(QA-SD) [BCCD23], which states (informally) that given the random vector a, the element ⟨a, e⟩+e0
(where (e0, e) are formed by random sparse polynomials) is indistinguishable from a random element
of F4[G].

We now describe several observations that we make about their construction and how these ob-
servations allow us to significantly optimize the concrete efficiency of the PCG. While simple in
retrospect, these observations allow us to turn a theoretical construction into a concretely efficient
PCG for F4-OLEs (see Section 7 for our implementation and evaluation).

Early termination. The DPF construction of [BGI16] generates shares of a unit vector using a
construction à la GGM [GGM19], generating a full binary tree of PRG evaluations starting from a
root seed. The children of each node are computed by evaluating a length-doubling PRG on the node,
and then adding some correction words. In this construction, each leaf of the tree is a λ-bit string
(where typically λ = 128). In contrast, we wish to share unit vectors over F4. Hence, we can apply
the early termination technique from [BGI16] that shaves several levels of PRG expansions. With
early termination, to obtain a D = 2d-long vector over F4, we use a tree of depth 2D/λ = 2d−6 (using
λ = 128) and parse each of the 128-bit leaves as a 64-tuple of F4-elements. This immediately yields
a 64-fold runtime improvement for each of the DPFs required in the PCG construction.

We note that while other constructions share a similar blueprint to the construction of Bombar
et al., and in particular also require evaluating many DPFs under-the-hood, this early termination
technique does not apply to them. The reason is that in silent OT extension protocols [BCG+19b,
BCG+19a,CRR21,BCG+22,RRT23], the DPFs are used to compress secret shares of ∆ ·e, where ∆ is
a 128-bit element from a suitable extension field, and in the previous PCG construction of [BCG+20b],
the OLEs can only be generated over a large field F (chosen equal to |F| ≈ 2λ in their implementation).
As such, early termination optimization appears to apply exclusively when specializing the PCG
of [BCCD23] to work over small fields.

Using a single multi-evaluation step. Computing ⟨a ⊗ a, [[e0 ⊗ e1]]b⟩ (for b = 0, 1) requires c2

polynomial multiplications. Fast polynomial multiplication is typically done using a multi-evaluation
(i.e., an FFT) followed by a local product and an interpolation (i.e., an inverse FFT).

The above produces a single OLE over F4[G]. When the end goal is to obtain OLEs over F4, the
result is projected back onto F3n

4 using a multi-evaluation. In this case, we show that we can reduce the
sequence multi-evaluation → interpolation → multi-evaluation down to just a single multi-evaluation
step. Concretely:

– Given that a is a random vector of polynomials (and part of the public parameters), it can
directly be generated as c random length-3n vectors over Fn

4 , corresponding to the vectors of the
multi-evaluations of a over all n-tuples in (F×

4)
n.

– The multi-evaluation of a ⊗ a can be computed once for all using pairwise products of elements
of (the multi-evaluation of) a, and included in the public parameters.

– Computing the multi-evaluation of ⟨a⊗a, [[e0⊗e1]]b⟩ amounts to computing the multi-evaluation
of [[e0 ⊗ e1]]b followed by component-wise inner products.

It follows that after expanding the shares [[e0⊗e1]]b, the cost of PCG.Expand is then dominated by
c2 instances of a multi-evaluation (i.e., an FFT). However, upon slightly closer inspection, we observe
that it actually suffices to compute c(c + 1)/2 FFTs (since the terms ei0e

j
1 and ej0e

i
1 share the same

“coefficient” aiaj in ⟨a⊗ a, e0 ⊗ e1⟩, hence the FFT can be evaluated on terms ei0e
j
1 + ej0e

i
1 directly).

11

Blazing fast FFT. Our next observation is that the FFT over the group algebra F4[G] is actually
extremely efficient. Indeed, given a polynomial P (X1, · · · , Xn), one can rewrite P as

P0(X1, · · · , Xn−1) + XnP1(X1, · · · , Xn−1) + X2
nP2(X1, · · · , Xn−1).

Let us denote FFT(P, n) the functionality that evaluates P on all n-tuples over (F×
4)

n, and outputs a
multi-evaluation vector v. By the above formula, computing FFT(P, n) reduces to

– computing vi ← FFT(Pi, n− 1) for each i ∈ {0, 1, 2}, and
– setting v← (v0 + v1 + v2 || v0 + θv1 + (θ + 1)v2 || v0 + (θ + 1)v1 + θv2).

Denoting C(n) the cost of running FFT(P, n), we therefore have C(n) = 3 · C(n − 1) + ℓ · 3n−1,
where ℓ denotes the number of vector operations (naïvely, 6 additions of vectors and 4 scalar-vector
products—but some additions and products can be reused). This yields a cost of C(n) = n · ℓ · 3n−1,
where all operations are very fast: either additions of F4-vectors or multiplications by θ. Looking
ahead, our implementation and evaluation (Section 7) confirm that, even with the straightforward
recursive algorithm, the FFT results in minimal overhead compared to the cost of the DPFs.10

Stepping back: comparison with silent OT extension. To give an intuition about the efficiency
of this construction, we provide a brief comparison with constructions of silent OT extension. In
short, to get (say) 3n OTs, these constructions run c · t DPFs on a domain of size 3n/t, followed by
a multiplication with a compressive mapping. In the most efficient silent OT extension protocol to
date [RRT23], this compressive mapping requires computing 21 · c · 3n XORs, followed by 3n XORs
of random size-21 subsets of the bits of the resulting vector. Due to the overhead of many random
memory accesses, the cost of computing this mapping dominates the overall runtime.

In contrast, we need (c · t)2 DPFs with domain size 3n/t, but get a 64× speedup from the early
termination optimization. The cost of our DPFs should be essentially on par with that of [RRT23].
However, the FFT cost in our construction is largely dominated by the cost of the DPFs. Therefore,
we expect (and this is confirmed by our implementation) that this PCG should produce F4-OLEs
at a much faster rate compared with the rate at which [RRT23] produces OTs. In the two-party
setting, when the goal is to generate Beaver triples over F2, we get an additional 2× speedup from
the technique of Section 2.4, as we generate one triple from one F4-OLE (whereas [RRT23] requires
two OTs). We provide an optimized implementation of our scheme and evaluate how it compares to
previous works in Section 7. Our implementation is about 6× faster than the state of the art [RRT23].

2.6 Distributed seed generation

So far, we have only discussed the cost of expanding the PCG keys (k0, k1). To obtain a full-fledged
secure computation protocol, we need an efficient way for the parties to securely evaluate PCG.Gen
procedure in a distributed fashion. In the following, as in all previous works on PCGs [BCG+19b,
BCG+19a,BCG+20b,BCG+20a,CRR21,BCG+22,BCCD23,CD23], we assume that the noise follows
a regular distribution. That is, a noise vector e is a vector of c polynomials (e1, · · · ec), where each
polynomial ei is regular : its coordinates are divided into t block of (approximately) equal length 3n/t,
and it has a single nonzero coefficient in each block. For any integer h, let [h] denote the set {1, · · · , h}.
The previous work of [BCG+20b] outlined the following methodology to securely distribute PCG seeds
for generating D OLEs (in our context, D = 3n):

– Sampling the noise vectors. Each party Pb generates its noise vector eb locally, by sampling c
t-sparse regular polynomials. We write eb = (e1b , · · · , ecb). For each i ∈ [c], we let (pib,1, · · · , pib,t) ∈
[3n/t]t denote the t positions of the nonzero entries in eib, and (vib,1, · · · , vib,t) ∈ Ft

4 denote the
value of these nonzero coefficients.

– Sharing the positions and values. For every i0, i1 ∈ [c], for every j0, j1 ∈ [t], the parties run
a distributed protocol with respective inputs pi00,j0 and pi11,j1 (i.e., the position of the j0-th and
j1-th nonzero coefficients in ei00 and ei11 , respectively) which securely computes bitwise shares of
the (j0 + j1)-th nonzero coefficient of ei00 ei11 . In parallel, they also run a distributed protocol with
respective inputs vi00,j0 and vi11,j1 (the corresponding values of the nonzero coefficients) and securely
compute bitwise shares of vi00,j0 · v

i1
1,j1

(the value of the (j0 + j1)-th nonzero coefficient of ei00 ei11).

10 Our implementation also exploits vectorized operations to perform a batch of multiple FFTs for essentially
the cost of one, which further reduces the impact of FFTs on the overall runtime.

12

– Distributing the DPF keys. For every i0, i1 ∈ [c], for every j0, j1 ∈ [t], the parties run the
Doerner-shelat protocol [Ds17] with their bitwise shares of the position and value to securely
obtain DPF keys forming succinct shares of the point function fα,β which evaluates to β :=
vi00,j0 · v

i1
1,j1

on the index α of the (j0 + j1)-th nonzero coefficient of ei00 ei11 , and to 0 on all other
inputs.

Communication-wise, the Doerner-shelat protocol requires 2 · log(D/t) oblivious transfers for each
DPF, for a total of 2(ct)2 log(D/t) oblivious transfers. Distributing the shares of the coefficients
vi00,j0 ·v

i1
1,j1

is relatively straightforward: it involves two OLEs over F4 for each of the (ct2) coefficients. As
in [BCG+20b], these OLEs can be obtained at a minimal cost by running the PCG in a “bootstrapping
mode”: whenever two parties use the PCG to generate D F4-OLEs, they can instead use a marginally
larger instance to generate D + (ct)2 F4-OLE, and store the (ct)2 extra OLEs for use in the next
distributed PCG seed generation.

In the work of Boyle et al. [BCG+20b], an important overhead comes from the (ct)2 instances of
a distributed protocol to generate bitwise shares of the noise positions: each such instance requires
securely running a Boolean adder to compute, from the bit decomposition of pi00,j0 and pi11,j1 , the bit
decomposition of the position of the corresponding entry in ei00 ei11 . In the construction of [BCG+20b],
this contributes to a large portion of the (communication and computation) overhead of the seed
distribution procedure: about half of the communication, computation, and rounds of the full protocol.

An improved seed distribution from ternary DPFs. We now introduce an optimization that
removes the need to distribute shares of noise positions altogether by working directly in the ternary
basis. Our improved protocol is tailored to the setting of noise vectors with components over F4[G] =
F4[X1, . . . , Xn]/(X

3
1 − 1, . . . , X3

n − 1). Observe that every monomial over F4[G] can be written as
Xp :=

∏n
i=1 X

pi

i , where p = (p1, . . . , pn) ∈ Fn
3 . Therefore, we can uniquely identify the position of

the coefficient cp of a monomial Xp with the F3-vector p ∈ Fn
3 . Now, consider the product of two

polynomials e0, e1 known by P0 and P1, respectively. Let p0 ∈ Fn
3 be the position of a nonzero entry

in e0, and p1 ∈ Fn
3 be the position of a nonzero entry in e1. Then, the corresponding nonzero entry in

e0 · e1 is the coefficient of the monomial Xp0 ·Xp1 = Xp0+p1 mod 3. That is, the corresponding nonzero
position in e0e1 is exactly p0+ p1 (where the sum is taken modulo 3). In other words, the two parties
already hold shares of the noise position in e0e1—but over the ternary basis!

Unfortunately, the Doerner-shelat protocol requires the parties to hold binary shares of the po-
sition, because its binary decomposition corresponds to the path from the root to the leaf in the
(binary) GGM tree underlying the DPF construction of [BGI16, BGI15]. To remedy this situation,
we modify the underlying DPF construction to use a ternary tree. That is, the full tree is obtained by
computing the three children of a node by evaluating a length-tripling PRG G : {0, 1}λ → {0, 1}3λ on
the node value. Adapting the DPF construction of [BGI15,BGI16] to this setting is relatively simple
(though the security analysis becomes slightly more tedious, especially when adapting the Doerner-
shelat protocol to work over a ternary basis), and requires increasing the number of correction words
from 1 to 3 per level of the tree.11 With this change, the path to a leaf is given directly by the leaf
position written as a F3-vector. To securely generate the keys of this modified DPF, we adapt the
Doerner-shelat protocol. Our adaptation requires two 1-out-of-3 oblivious transfers per level (instead
of two 1-out-of-2 OTs as in [Ds17]), for the log3(D/t) levels of the ternary DPF tree. In summary,
we obtain a distributed seed generation protocol with the following pros-and-cons when compared to
the original approach of [BCG+20b]:

+ The parties “natively” hold shares of the nonzero positions and do not have to run a secure protocol
to compute them. In the protocol of Boyle et al. [BCG+20b], this step required 2(ct)2 · log(D/t)
oblivious transfers in log(D/t) rounds (i.e., half of the total number of rounds and OTs).

− The modified Doerner-shelat requires 2(ct)2 log3(D/t) 1-out-of-3 OTs of 3λ-bit strings instead of
2(ct)2 log2(D/t) 1-out-of-2 OTs of 2λ-bit strings, which represents slightly more communication
and computation.

− Due to the use of a ternary DPF, which has more correction words, the PCG seed size is slightly
increased, by a factor ≈ 1.5.

11 Unfortunately, in the ternary tree construction, using the optimization described in [BGI16] for removing
one extra correction word does not immediately apply. We leave open the problem of finding a similar
optimization in the ternary case.

13

+ Expanding the PCG seeds becomes about 20% faster because the total number of PRG evaluations
is reduced when computing a full ternary tree compared to a full binary tree with a similar number
of leaves.

+ The number of rounds of the Doerner-shelat protocol is also reduced, from log2(D/t) to log3(D/t),
by having a more shallow tree.

2.7 Concrete cryptanalysis of F4OLEAGE

The security of F4OLEAGE is based on the QA-SD assumption, as explained in Section 2.2. To derive
our parameters, we conduct a precise analysis of attacks on QA-SD(c, t,G) over the finite field Fq.
The goal of the QA-SD assumption is to distinguish pairs (a, ⟨a, e⟩+ e0) = ((a1, . . . , ac−1), e0+a1e1+
· · · + ac−1ec−1) from random elements of Fq[G]c where ai ← Fq[G], and ei are sparse elements of
Fq[G], with Hamming weight t. In its search version, QA-SD is equivalent to solving the following
decoding problem:

(
I A1 . . . Ac−1

) e0
...

ec−1

 = s

where the matrix Ai represents the multiplication by an element ai, with respect to the basis given
by G (for any ordering), and ei are sparse vectors of weight t. To attack our instance, we consider
state-of-the-art generic decoding algorithms, as well as structural attacks.

Specificity of our instance. In F4OLEAGE, we use very particular parameters: we consider the
parity-check matrix of a code of length c|G|, and dimension (c−1)|G|, with |G| = (q−1)n = 3n in the
millions, together with a sparse vector of errors (typically, there are ct < 100 errors). The problem of
decoding when the number of errors is sublinear in the size of the code was studied in [CTS16], and
the authors showed that in this case, the costs of the best generic algorithm for decoding, namely the
ISD algorithm, are all of the form 2a(ct)(1+o(1)), with a depending only of the code rate 1− 1/c, even
the seminal ISD algorithm by Prange [Pra62]. Consequently, any additional optimizations developed
based on the Prange algorithm proved to be futile within this specific context.

However, this instance of the decoding problem is far from being generic, and there are known
ways in which an attacker can exploit the internal structure. First, since the code is by definition
kept invariant under the action of G, they can use the Decoding One Out of Many (DOOM) strategy
from [Sen11] to get a

√
|G| speed-up in any decoding algorithm. Beyond this approach, an attacker

can try to reduce their sample modulo some ideal of Fq[G], yielding a new instance of the decoding
problem with smaller parameters. In general, this action can significantly increase the noise rate
which may render the problem intractable. Nevertheless, this growth can be mitigated by considering
reductions arising from quotients of G by some subgroup H. The key observation here is that this
operation, known as folding with respect to H, maps a code of length c|G| onto a code of length c|G/H|,
while keeping the code-rate invariant. It was first introduced in the context of the cryptanalysis of
highly structured variants of McEliece’s code-based encryption scheme [FOP+16, CT19], and later
considered in [BCCD23] for the analysis of QA-SD. It works as follows: upon receiving a sample of
QA-SD, an attacker can pick some sufficiently large subgroup H and compute the folding of both the
received code and the syndrome to get a smaller instance of QA-SD, with respect to the subgroup
G/H. On the folded instance, the noise is upper bounded by the original noise, but might be slightly
decreased due to the existence of some collisions. The attacker can then run a generic decoder on
this smaller instance. If they want to actually decode the original instance, they need to lift all
the putative solutions back to the initial decoding problem. In short, this folding process may be
compared to a sub-ISD routine inside a generic decoding algorithm. However, F4OLEAGE only relies
on the decisional variant of QA-SD, and therefore getting a solution on the folded instance is enough
to break the security. There is a caveat, though. Indeed, for the folded instance to be meaningful, its
length should not be too small relative to the noise level. More precisely, if the target decoding distance
is beyond the Gilbert-Varshamov (GV) bound, the folded instance will typically have exponentially
many solutions, even when the original sample came from the uniform distribution [Deb23]. This does
not provide the attacker with any distinguishing advantage.

Improvement over the previous approach. In Section 6, we provide a precise analysis of the
probability distribution of the error weight on the folded instance. This allows us to give a more

14

powerful attack than that of [BCCD23], taking more advantage of our specific QA-SD instance.
Indeed, the group used in our construction, namely G := (Z/(q − 1)Z)n, has a huge number of
subgroups of any given order. For example, in F4OLEAGE we set q = 4, and the subgroups of G of
order 3k are in bijection with the k-dimensional vector subspaces of Fn

3 . Their number is given by the
Gaussian binomial coefficient

(
n
k

)
3
. At a high level, our attack strategy that makes use of this fact is

the following:

1. Pick some subgroup H and compute the folding with respect to H;
2. Guess that the folded error actually has a Hamming weight ω much smaller than expected;
3. Apply the best decoding algorithm corresponding to the size and level of noise;
4. Abort if the number of operations is greater than would be required for the pair (level of noise,

algorithm), and return to Step 1.

The success probability of this procedure is given by the probability that the weight of the error
meets the attacker’s guess. In other words, this attack would cost, on average over the uniform choice
of subgroups H of a given order,

CostDecoding(ω) + CostFolding

Pr [wH(FoldH(x)) = ω]
,

where CostDecoding(ω) indicates the complexity of the best decoding algorithm, for a noise level of ω,
and CostFolding is the cost of the folding operator (which is in fact the length of the original code).
In order to get the most out of this attack, it suffices to choose ω which minimizes this ratio.

Concrete Parameters. We provide a SageMath [S+24] script to determine a set of concrete pa-
rameters. It is available on GitHub.12 Using the script, we estimate that taking c = 3, t = 27 offers
about 128 bits of security, and taking c = 4, t = 27 provides a significant security margin (in both
cases, the script is being quite conservative on the power afforded to the adversary).

Update on the parameters given by Bombar et al. [BCCD23]. In [BCCD23], the authors
propose choosing c = 4, t = 16 when generating 225 OLEs. We find that these parameters are too
optimistic, as the attack described above manages to downgrade the security to about 100 bits as
opposed to the claimed 128 bits of security. Refer to Section 6.4 for the full attack description. To
use the same compression factor c = 4 (as suggested in [BCCD23]), we need to increase the noise
to t = 20, leading to an overall noise equal to ct = 80. Such a noise level is somewhat larger than
the ct = 64 given in the previous work. Taking c = 5 leads to a total weight of 70, notably lowering
this gap. However, increasing c has a disproportionate impact on the computational performance (see
Section 7) due to a requirement for a matrix transpose of size O(c2).

3 Preliminaries

Notations. We use F4 to denote the Galois field of order 4. For G an Abelian group, we denote
by Fq[G] the corresponding group algebra. For an integer n and a polynomial f ∈ Fq[G] with n
variables, Evaln(f) denote the full evaluations of f over (F×

q)
n. We let [N] denote the set {1, 2, . . . , N}.

Divisibility is denoted as a | b, to mean a divides b. The number of elements in a list L is denoted
as |L|. For a vector e ∈ Fn

q , we denote by wH(e) its Hamming weight. More generally, the Hamming
weight of an element of a finite-dimensional Fq-algebra R is the weight of the vector formed by its
coefficients in some basis (in general,R = Fq[G] and we consider a basis given by an arbitrary ordering
of the elements of G.13). For an integer t, we denote by Rt the subset of elements of Hamming weight
t. We denote by poly(·) any polynomial and by negl(·) any negligible function. We use x ← R S to
denote a uniformly random sample drawn from S, and x← A to denote assignment from a possibly
randomized algorithm Adv. We use x := y to denote the initialization of a value x to the value of y. We
use A ≃ B to indicate that two sets are isomorphic. By an efficient algorithm A we mean that Adv is
modeled by a (possibly non-uniform) Turing Machine that runs in probabilistic polynomial time. We
write D0 ≈c D1 to mean that two distributions D0 and D1 are computationally indistinguishable to
all efficient distinguishers D and D0 ≈s D1 to mean that D0 and D1 are statistically indistinguishable.
12 The code is available at https://github.com/mbombar/estimator_folding.
13 The Hamming weight does not depend on the ordering of the elements of G.

15

https://github.com/mbombar/estimator_folding

Vectors and tensor products. We denote vectors using bold lowercase letters. For two vector
u = (u1, . . . , ut),v = (v1, . . . , vt) ∈ Rt for some ring R, their tensor product u ⊗ v is defined by
u⊗ v = (ui · vj)i,j≤t = (v1 · u, . . . , vt · u) and we denote by ⟨u,v⟩ their inner product. Similarly, we
write u⊞v to denote the outer sum of a vector, equal to u⊞v = (ui+ vj)i,j≤t = (v1+u, . . . , vt+u).
We let u[i] denote the value of index i in u.

3.1 Function secret sharing

Function secret sharing (FSS), introduced in [BGI15,BGI16], allows a dealer to succinctly secret share
a function with two parties. An FSS scheme splits a secret function f : D → G, where G is some
Abelian group into keys K0,K1 that can be used by party σ ∈ {0, 1} to evaluate the function on an
input x ∈ D and obtain the share [[f(x)]]σ of the result. We focus on FSS for point functions which
are known as Distributed Point Functions (DPFs).

Distributed Point Functions. Let D be an input domain and G be an Abelian group. A point
function Pα,β : D → G is a function that evaluates to message β ∈ G on a single input α ∈ D,
and evaluates to 0 ∈ G on all other inputs x ̸= α ∈ D. A distributed point function (Definition 1)
is a point function that is encoded into a pair of keys. Each key can be used to obtain an additive
secret-share of the point function Pα(x), for any input x ∈ D.

Definition 1 (Distributed Point Function (DPF) [GI14,BGI16]). Let λ be the security param-
eter, D be an input domain, and G be an Abelian group. A DPF scheme (with a full-domain evaluation
procedure) consists of a tuple of efficient algorithms DPF = (Gen,FullEval) with the following syntax.

– DPF.Gen(1λ, 1n, α, β) → (K0,K1). Takes as input a security parameter, a domain size n, and
index α ∈ D and a payload β ∈ G. Outputs two evaluation keys K0 and K1.

– DPF.FullEval(σ,Kσ)→ vσ. Takes as input the party index σ and an evaluation key Kσ. Outputs
a vector vσ.

These algorithms must satisfy correctness, security, and efficiency:

Correctness. A DPF is said to be correct if for all α ∈ D, all β ∈ G, and all pairs of keys generated
according to DPF.Gen(1λ, 1n, α, β), the sum of the individual outputs from DPF.FullEval result in the
one-hot basis vector scaled by the message β,

Pr
[
FullEval(0,K0) + FullEval(1,K1) = β · eα

]
= 1,

where eα ∈ G|D| is the α-th basis vector.

Security. A DPF is said to be secure if each individual evaluation key output by DPF.Gen leaks
nothing about (α, β) to a computationally bounded adversary. Formally, there exists an efficient sim-
ulator S such that {Kσ} ≈c S(1λ, 1n, σ), where ≈c denotes the computational indistinguishability of
distributions.

Efficiency. A DPF is said to be efficient if the size of each key is sublinear in the domain size. That
is, for all σ ∈ {0, 1}, |Kσ| = |D|ϵ for some ϵ < 1.

FSS for the sum of point functions. We let SPFSS be an FSS scheme for the class of sums of
point functions: Functions of the form f(x) =

∑
i fsi,yi

(x), where each fsi,yi
(·) evaluates to yi on si,

and to 0 everywhere else. As in previous works, we will use efficient constructions of SPFSS in our
constructions of PCGs.

3.2 The Quasi-Abelian Syndrome Decoding Problem

In this section, we recall the Quasi-Abelian Syndrome Decoding assumption (QA-SD) which was
introduced in [BCCD23]. It can be seen as a generalization of both the plain Syndrome Decoding
(SD) assumption, when the group is {1}, as well as the quasi-cyclic syndrome decoding assumption.
Let G be a finite Abelian group. The group algebra of G with coefficients in the finite field Fq is the

16

set of formal linear combinations
{∑

g∈G agg | ag ∈ Fq

}
, which is an Fq-vector space of dimension

|G|, endowed with the convolution product:∑
g∈G

agg

∑
g∈G

bgg

 :=
∑
g∈G

(∑
h∈G

ahbhg−1

)
g.

It can be seen that this product is commutative. The Hamming weight wH(a) of an element a ∈ Fq[G]
is the number of its non zero coordinates in the basis (g)g∈G. This is a well-defined notion since it
does not depend on the ordering of the elements of G.

Recall that a finite Abelian group is nothing more than a direct product of cyclic groups:

G ≃ Z/d1Z× · · · × Z/drZ,

where the di’s can be equal. Then, the group algebra Fq[G] admits an explicit description as some
particular multivariate polynomial ring:

Fq[G] ≃ Fq[X1, . . . , Xr]/(X
d1
1 − 1, . . . , Xdr

r − 1),

where the isomorphism is given by (k1, . . . , kr) 7→ Xk1
1 · · ·Xkr

r , and extended by linearity. We are now
ready to define the main hard problem, which can be stated as a search and a decisional variant.

Definition 2 ((Search) QA-SD(q, c, t,G)). Let G be a finite Abelian group, Fq[G] its algebra with
coefficients in the finite field Fq, and let c ≥ 2 be some constant integer called the compression factor.
Given a target Hamming weight t ∈ {1, . . . , |G|} and a probability distribution Φt which outputs
elements x ∈ Fq[G] such that E(wH(x)) = t. Given access to a pair of the form (a, ⟨a, e⟩+ e0) where
a is uniformly distributed over Fq[G]c−1 and e′ := (e0, e) ∈ Fq[G]c is formed by independent elements
distributed according to Φt, the goal is to recover the error term e′.

Definition 3 ((Decisional) QA-SD(q, c, t,G)). Let G be a finite Abelian group, Fq[G] its algebra
with coefficients in the finite field Fq, and let c ≥ 2 be some constant integer called the compression
factor. Given a target Hamming weight t ∈ {1, . . . , |G|} and a probability distribution Φt which outputs
elements x ∈ Fq[G] such that E(wH(x)) = t, the Quasi-Abelian Syndrome Decoding problem asks to
distinguish, with a non-negligible advantage, between the distributions:

D0 :
(
(a(i))i∈{1,...,c−1}, u

)
where a(i), u

$← Fq[G]

D1 :

(
(a(i))i∈{1,...,c−1},

c−1∑
i=1

a(i)ei + e0

)
where a(i)

$← Fq[G] and ei
$← Φt.

We say that the QA-SD(q, c, t,G) assumption holds when this problem is hard for every non-uniform
polynomial time distinguisher.

Remark 4. When it is clear from the context, we might drop the dependency in q and simply write
QA-SD(c, t,G).

In general we consider Φt to output uniform elements of Hamming weight t, or a regular variant
where the basis (g)g∈G is split into t blocks of size |G|/t (except maybe the last one) such that each
block contains exactly one t.

Relation to linear codes. Fix an ordering of the elements of G and for every element a ∈ Fq[G],
denote by Ma the |G|× |G| matrix representing the multiplication by a. A code having a parity-check
matrix formed by multiple blocks of the form Ma is known as a Quasi-Abelian code of group G (or a
quasi-G code). Formally, it is an Fq[G]-submodule of the free module Fq[G]ℓ for some integer ℓ > 0.
When G = {1}, then Fq[G] is nothing but the finite field Fq, and therefore a quasi-{1} code is simply an
Fq-linear code. On the other hand, when G = Z/nZ is cyclic, then Fq[G] ≃ Fq[X]/(Xn−1). Therefore,
quasi-Z/nZ codes are exactly quasi-cyclic codes, at the core of many code-based cryptosystems such
as Nist Round 4 candidates Bike [AAB+22a] and HQC [AAB+22b]. We refer to [BCCD23, Section
4] for more information on Quasi-Abelian codes.

17

Now, a sample (a, ⟨a, e⟩⟩+ e0) corresponds to a pair (H,He′) where

H =
[
I|G| Ma1

· · ·Mac−1

]
is by definition, a parity-check matrix of some random quasi-Abelian code of rate 1−1/c, in systematic
form, and e′ = (e0, e) is an error vector of length c|G| and weight ct, with a c-split structure (which
is standard when dealing with structured variants of the decoding problem). In other words, the
search version of QA-SD corresponds to a structured variant of the decoding problem of random
Quasi-Abelian codes.

4 A Fast PCG for F4-OLEs

In this section, we present the construction of QA-SDOLE over F4 (Fig. 1) following optimizations via
early termination and fast evaluation of polynomials for FFT.

4.1 PCGs over F4 from the QA-SD assumption

The general description of the framework based on it can be found in Appendix A. In [BCCD23], the
authors point out that their QA-SDOLE construction is the first to produce a large number of OLE
correlations over Fq, for any q ≥ 3. They propose using G =

∏n
i=1 Z/(q − 1)Z, q ≥ 3. The direct

consequence of this is that Fq[G] ≃ Fq[X1, . . . , Xn]/(X
q−1
1 − 1, . . . , Xq−1

n − 1) ≃
∏D

i=1 Fq, where the
last isomorphism equivalence comes from the Chinese Remainder Theorem. Above, D = (q − 1)n is
the number of elements in the group, and the number of OLE’s we can get over Fq by applying this
isomorphism. Looking closely, we instantiate our particular PCG over R ≃ F4[X1, . . . , Xn]/(X

3
1 −

1, . . . , X3
n − 1), by setting q = 4. At the end of the protocol QA-SDOLE, the parties obtain one OLE

over R , the parties obtain one OLE over R; a general description of the construction is given in
Fig. 14. Let us denote (xσ, zσ) the output of party σ. To obtain many OLE’s over F4, the parties have
to evaluate xσ, zσ ∈ F4[X1, . . . , Xn]/(X

3
1 − 1, . . . , X3

n − 1) over the full domain (F×
4)

n. The standard
approach is to use a Fast Fourier Evaluation to efficiently obtain this result. Here, we remark that, in
our group algebra, fast multiplication also requires FFT, first in a multi-evaluation form, and then
in the interpolation form. Therefore, doing the interpolation again is wasteful as in the end we will
evaluate again after interpolating. As such, we can avoid the intermediate steps of multi-evaluation-
then-interpolation and work directly with the evaluations, without coming back to R. That is, we do
not construct the polynomials xσ, zσ over F4[X1, . . . , Xn]/(X

3
1 − 1, . . . , X3

n− 1) but instead, we focus
directly on the polynomials evaluations.

Let Evaln(f) = {f(x1, . . . , xn), (x1, . . . , xn) ∈ {1, θ, θ + 1}n} be the set of all the possible evalu-
ations. Instead of giving the parties the description of the coefficients of the polynomials ai ∈ a, we
can give them the vectors of all the evaluations of all the polynomials, that is giving them Evaln(ai),
for all i. Because we can write xσ = e0σ + e1σa1 + · · ·+ ec−1

σ ac−1, it follows that all the evaluations of
xσ can be obtained from Evaln(e

i
σ) and Evaln(ai). All that remains is to evaluate the eiσ polynomials.

They are sparse polynomials, and therefore their evaluations can be computed very efficiently i.e., if
the polynomials have t non-zero coefficients, then the cost of the evaluation is linear in t · 3n. As a
result, we can obtain Evaln(xσ) for a cost linear in 3n.

The computation of Evaln(zσ) is a little trickier. As mentioned above, x0 · x1 can be seen as
a function of degree 2 in (e0, e1), with constant coefficients depending solely from a ⊗ a. Because
Evaln(ai) is already given to the parties, the evaluation of the coefficient from a⊗ a can be obtained
using only c2 multiplications. It remains to compute the evaluations of the additive shares of the
polynomials ei0 · e

j
1. There are c2 such polynomials shared among the parties, and we can view each

share as a random polynomial. Therefore, each party has to compute the evaluation of c2 random
polynomials. This is a crucial part of the scheme and we devote the next section to it. Fig. 1 represents
the PCG framework of [BCCD23] tailored to our setting, its correctness and security are implied
by Theorem 20.

Remark 5. Let t = 3k be a power of 3, and let R = F4[G] = F4[X1, . . . , Xn]/(X
3
1 −1, . . . , X3

n−1). Let
e0 and e1 be sampled from a t-regular noise distribution over R. In other words, the coordinates of ei
can be divided into t consecutive blocks B0, . . . , Bt−1 of size 3n/t, each block having a single nonzero
coordinate. More precisely, considering the lexicographic ordering of the monomials, and since t = 3k,

18

block Bi is formed by all monomials Xp such that the first k coordinates of p represent the ternary
decomposition of the integer i (over k trits). For example, if n = 4 and t = 9, the 34 = 81 monomials
are split into 9 blocks B0, . . . , B8 of size 9, and a monomial Xp lies in B6 if and only if p is of the
form (2, 0, ⋆, ⋆) with ⋆ ∈ {0, 1, 2}, where [2∥0] is the ternary decomposition of the integer 6.

We now show that the product e = e0 · e1 has at most t nonzero monomials in each block.14
Indeed, let i ∈ {0, . . . , 3k − 1} and let Xp be a monomial appearing in e with a nonzero coefficient.
In particular, the first k entries of p can be parsed as the ternary decomposition of i, which we
denote by [i]3. It is clear that Xp is of the form Xp0+p1 where p0 (resp. p1) identifies one of the t
nonzero monomials in e0 (resp. e1), and the sum is taken modulo 3 component-wise. In particular,
there are at most t2 such monomials, and for each nonzero monomial Xp0 of e0, with first k entries
[i0]3, there corresponds at most one nonzero monomial in e1 contributing to Xp, namely Xp−p0 .15 In
other words, the monomial Xp can be produced by at most t possible pairs of monomials (Xp0 ,Xp1),
whose first k entries are ([i0]3, [i]3 − [i0]3), with i0 ranging over {0, . . . , t− 1}.
Example. Let n = 3 and t = 3. Set e0 := X2

3 + X1X2X3 + X2
1 (which corresponds to positions

(0, 0, 2), (1, 1, 1), and (2, 0, 0)) and e1 := 1+X1+X2
1 (which corresponds to positions (0, 0, 0), (1, 0, 0),

and (2, 0, 0)). Then,

e0 · e1 = (1 +X2
3 +X2X3)︸ ︷︷ ︸
∈B0

+(X1 +X1X
2
3 +X1X2X3)︸ ︷︷ ︸
∈B1

+(X2
1 +X2

1X
2
3 +X2

1X2X3)︸ ︷︷ ︸
∈B2

.

Proposition 6. Let R = F4[G] = F4[X1, . . . , Xn]/(X
3
1 − 1, . . . , X3

n − 1) where G =
∏n

i=1 Z/3Z is an
Abelian group. Assume that SPFSS is a secure FSS scheme for sums of point functions and that the
QA-SD(q, c, t,G) assumption holds for regular noise distribution. Then there exists a generic scheme
to construct a PCG to produce one OLE correlation (described on Fig. 1). If the SPFSS is based on a
PRG : {0, 1}λ → {0, 1}2λ+2 via the PRG-based construction from [BGI16], we obtain:

• Each party’s seed has maximum size around: (c · t)2 · ((n · log(3)− log t+ 1) · (λ+ 2) + λ+ 2) +
c · t · (n · log(3) + 2) bits.

• The computation of Expand can be done with at most log(3) ·(2+⌊(2)/λ⌋) ·n ·c2 ·t PRG operations,
and O(n · log(3) · c2 · 3n) operations in F4.

The proof follows immediately from Theorem 20 (in Appendix A) and the analysis of [BCCD23].

4.2 Optimizing the FSS evaluation via early termination

We remark that we can use a very simple trick that enables the parties to obtain the evaluation of
their MPFSS shares 64 times faster than with the standard construction (and at a slight reduction
in communication). The trick comes from the fact that the standard construction of the DPF based
on the GGM tree implies that each leaf is of size λ = 128 bits. It was pointed out in [BGI16] that we
can consider early termination in the case of small outputs. In our case, we would like a single leaf
to encode a value in F4. This only requires 2 bits instead of the 128 bits we get as output, making
the naïve evaluation “waste” 126 bits of the output. Instead, we can avoid wasting computation by
truncating the tree 6 levels earlier and setting the value of the new 128-bit leaf on the special path
to encode a unit vector consisting of zeroes except on the exact 2 bits where it equals to the correct
value of F4 element. This essentially involves “hard-coding” the end of the path into the leaf directly,
as illustrated in Section 4.2. Using this idea, we reduce the computational cost of evaluating the DPF
by 64× and reduce the communication costs (key size of the DPF) by roughly 6 · 128 bits [BGI16].
This simple trick was initially introduced in the context of PIR applications [BGI16], but could not be
applied to prior PCG constructions until now since all PCG constructions (except for the recent PCG
construction of Bombar et al. [BCCD23]) required the DPF output to be encode elements of a large
field. Similarly, in silent OT extension protocols [BCG+19b, BCG+19a, CRR21, BCG+22, RRT23],
which are also bottlenecked by DPF evaluations, this optimization could not be applied because
there, the DPF is used to output “authenticated” shares of a (potentially small) field element with a
(large) MAC, which requires the leaves to encode 128 bit output value.
14 This crucially relies on the fact that since t is a power of 3, we can uniquely identify the block corresponding

to a given monomial by looking at the first k entries of its exponent. When t is not a power of 3, this is
not true anymore.

15 Note that the corresponding monomial Xp1 might not appear in e1.

19

Specific construction of QA-SDOLE for F4OLEAGE

Parameters: Noise weight t = t(λ), compression factor c, ring R = F4[X1, . . . , Xn]/(X
3
1−1, . . . , X3

n−1).
A SPFSS scheme SPFSS = (SPFSS.Gen, SPFSS.FullEval) for sums of t2 point functions, with domain
[0 . . . 3n) and range F4.

Public Input: c− 1 vectors of length 3n over F4, corresponding to the result of Evaln(ai), for uniformly
random a1, · · · , ac−1 ∈ R, therefore the full evaluation of the c elements ai.

PCG.Gen(1λ):
1: foreach σ ∈ {0, 1}, i ∈ [0 . . . c):

1.1: Sample random pi
σ ← {(pi

σ,1, . . . ,p
i
σ,t) | pi

σ,j ∈ Fn
3 }, and vi

σ ← (F×
4)

t.
▷ [Optimization]: pi

σ can be sampled from regular noise distribution. See Remark 5.

2: foreach i, j ∈ [0 . . . c):
2.1: Sample FSS keys (Ki,j

0 ,Ki,j
1)← SPFSS.Gen(1λ, 1n,pi

0 ⊞ pj
1,v

i
0 ⊗ vj

1).
▷ If using regular noise as an optimization, then
▷ SPFSS is for the sum of t point functions with domain [0, . . . , 3n/t).

3: Let kσ = ((Ki,j
σ)i,j∈[0...c), (p

i
σ,v

i
σ)i∈[0...c)).

4: Output (k0, k1).

PCG.Expand(σ,kσ):
1: Parse kσ as ((Ki,j

σ)i,j∈[0...c), (p
i
σ,v

i
σ)i∈[0...c)).

2: foreach i ∈ [0 . . . c):
2.1: Define over F4 the polynomial:

eiσ(X) =
∑

j∈[0...t)

vi
σ[j] ·Xpi

σ [j].

2.2: Compute Evaln(e
i
σ).

3: Compute xσ = ⟨a, eσ⟩, where a = (1, a1, · · · , ac−1), eσ = (e0σ, · · · , ec−1
σ).

4: From Evaln(e
i
σ) and Evaln(ai), compute Evaln(xσ).

5: foreach i, j ∈ [0 . . . c),
5.1: Compute uσ,i+cj ← SPFSS.FullEval(σ,Ki,j

σ) and view it as a c2 vector uσ of elements in R.

6: foreach j ∈ [0 . . . c2):
6.1: Compute Evaln(uσ,j).

▷ [Optimization]: only need to perform c(c+ 1)/2 FFTs, see Section 2.5.

7: Compute Evaln(zσ), with zσ = ⟨a⊗ a,uσ⟩.
8: Output (Evaln(xσ),Evaln(zσ)).

Fig. 1: QA-SD-based PCG for OLE over R from evaluations of functions.

20

Real tree generated

Virtual trees hard-
coded in the leaves

Fig. 2: Early termination example in the case we truncate only two steps earlier. Solid black nodes represent
“zero” leaves, whereas solid red leaves can take on any value.

4.3 Fast evaluation over F4[X1, . . . , Xn]/(X
3
1 − 1, . . . , X3

n − 1)

The high-level idea. Given a polynomial P with n variables, the party wants to compute Evaln(P),
that is, to evaluate P over

(
F×
4

)n where F×
4 = {1, θ, θ + 1}. Here, we adapt the standard divide-and-

conquer style algorithm to our case, see for example the seminal work of [CT65]. Remark that

P (X1, . . . , Xn) = P0(X1, . . . , Xn−1) +XnP1(X1, . . . , Xn−1) +X2
nP2(X1, . . . , Xn−1).

Instead of classically dividing our problem into 2 sub-problems, we divide it into 3 sub-problems.
This is a ternary generalization of a standard FFT algorithm adapted to our case. Then,

Evaln(P) = Evaln−1(P0) ∪XnEvaln−1(P1) ∪X2
nEvaln−1(P2). (1)

Denote by C(Evaln(P)) the number of operations carried out to obtain all the 3n evaluations on the
set F×

4 . Then we have C(Evaln(P)) = 3C(Evaln(P))+ 2 · 3n, which leads us to C(Evaln(P)) = 4 ·n · 3n.
The concrete number of additions or multiplications is 2 · n · 3n. This quick back-of-the-envelope
calculation captures the essence of the technique, even if it does not accurately count the cost of the
various operations and does not take into account what is implemented in practice. We now turn to
a concrete implementation of this idea:

Concrete implementation. An element of F4 has a direct canonical representation using 2 bits.
Given an element x ∈ F4, we write x(0) and x(1) to denote the F2-coefficients of x viewed as a
polynomial over F2[X]/(X2 +X + 1); that is, x = x(0) + θ · x(1). Using a given machine word of 64
bits we represent a vector of size 32 over F4, such that the even indexed bits are high order and the
odd indexed bits are low order. This is illustrated in Fig. 3.

Packed representation of F4 elements

Fig. 3: Representation of a vector of F4 elements. Red blocks represent the high-order bits while the blue
blocks represent low-order bits.

As stated before, we use a recursive algorithm to compute all the evaluations, displayed in algo-
rithm Fig. 4. We considered using a non-recursive approach but no significant efficiency gains were
observed, so we instead decided to use the recursive algorithm due to its conceptual simplicity.

Actual cost of the computation. A step in the algorithm of Fig. 4 is to evaluate a polynomial of
degree 2, with coefficient in F4, for the values {1, θ, θ + 1}. Let the polynomial be a+ bXi + cX2

i .

– in the case Xi = 1, then the evaluation of the polynomial becomes a+ b+ c.
– in the case Xi = θ, the evaluation becomes (a+ c) + θ · (b+ c).
– in the case Xi = θ + 1, the evaluation becomes (a+ b) + θ · (b+ c).

Note that we want to compute all the different evaluations, and therefore we can try to reduce the
overall costs by reusing several of the intermediate calculations. We can obtain the three evaluations

21

via the following steps: (1)compute a+ b, a+ c, b+ c; (2) compute θ · (b+ c); (3) compute a+ b+ c;
(4) Compute (a+ c) + θ · (b+ c)), and (a+ b) + θ · (b+ c)). Therefore, we count 12 classical bit-by-bit
XOR over F2, and a multiplication by θ to obtain the three needed evaluations of the polynomial.

Fast-Evaluation algorithm

Parameters: n > 0 an integer, P ∈ F3[X1, · · · , Xn]/(X
3
1−1, · · · , X3

n−1), a polynomial with n variables.
FastEval(n, P):
1: if n = 1 then

1.1: return {P (1), P (θ), P (θ + 1)}
2: else

2.1: Write P (X1, · · · , Xn) = P0(X1, · · · , Xn−1) +XnP1(X1, · · · , Xn−1) +X2
nP2(X1, · · · , Xn−1).

2.2: S := {}.
2.3: ∀i ∈ {0, 1, 2}, Si ← FastEval(n− 1, Pi).
2.4: foreach i ∈ [|S0|]:

2.4.1: fj(X) := S0[j] + S1[j]X + S2[j]X
2.

2.4.2: S ← S ∪ {fj(1), fj(θ), fj(θ + 1)}.
2.5: return S.

Fig. 4: Fast evaluation of a polynomial in n variables.

4.3.1 Taking advantage of the computer words. Today’s processors offer XOR operations for
machine words of size 64 bits. We take advantage of this parallelism to run multiple FFTs in parallel
with a small overhead compared to running a single FFT. With 64-bit machine words, we can perform
up to 32 FFT in parallel. We pack the c2 FFTs required by our PCG as follows: we let each machine
word contain a single coefficient of the same monomial for each of the c2 polynomials that we are
trying to compute. This saves a factor of c2, at no extra cost.16 Therefore, the cost of the evaluation
of a single polynomial being of 16n · 3n−1 XOR, the optimization entails the cost of obtaining the full
evaluation of the c2 polynomials to be 16⌈c2/64⌉n · 3n−1.

5 Distributed Seed Generation

In this section, we build a distributed point function that works over ternary indices. This general-
ization of the standard DPF construction allows us to cleanly work on a ternary basis. In particular,
this makes the distributed seed generation protocol for our PCG construction in Fig. 14 much more
efficient by avoiding the use of expensive secure binary decomposition protocols when working over
ternary secret shares.

5.1 A ternary distributed point function

In prior constructions [GI14,BGI15,BGI16], the domain of DPF was set to D = {0, 1}n. In contrast,
we will use a ternary domain {0, 1, 2}n. While this change may appear conceptually straightforward,
the constructions of [GI14,BGI15] do not immediately generalize to non-binary input domains. We
therefore construct a ternary DPF using the main ideas behind the two state-of-the-art construc-
tions [BGI15,BGI16].

Definition 7 (Random Distributed Point Function (rDPF)). We say a DPF scheme is a
random DPF (rDPF) scheme if DPF.Gen does not take the parameter β as input, and the output
value at index α is a secret share of a value (s∥1) ∈ {0, 1}λ+1, where s pseudorandom conditioned on
Kσ, for σ ∈ {0, 1}.
16 In practice, using larger machine words has an impact by increasing stack usage, but this is only observed

when performing an FFT over very large polynomials.

22

Lemma 8 (Adapted from [BGI16]). Any random DPF scheme with output group {0, 1}λ+1 can
be transformed into a DPF scheme for any choice of β ∈ G a the cost of increasing the key size by
log |G| bits.
Remark 9. Looking ahead to Section 5.2, using a random DPF makes our protocols and analysis
simpler. In particular, describing a distributed key generation protocol for a random DPF eliminates
edge cases associated with the output value β. Separately, we show how to generate an “output
correction word” that can be used to go from the s∥1 output of an rDPF to an arbitrary output β.

We present our construction for a ternary rDPF in Fig. 5 and analyze security in Proposition 10.
The construction follows a similar template to the DPF construction of [BGI15].

Proposition 10 (Ternary rDPF security). Fig. 5 satisfies the correctness and security properties
of Definition 7.

Proof. Deferred to Appendix E.1.

5.2 Distributed DPF key generation

In this section, we describe how two parties can generate DPF keys using secret-shares of the index
α (i.e., the index at which the point function evaluates to a non-zero value). Our approach is inspired
by the protocol of Doerner-shelat [Ds17], which makes only black-box use of OT to select the appro-
priate correction word at each level. While formally constructing such a protocol requires multiple
functionalities and is quite tedious, conceptually, the core idea is very simple. At a high level, each
party evaluates the DPF tree, layer-by-layer, and computes the correction word CWi for layer i using
a secure protocol that takes as input shares of the i-th trit αi ∈ {0, 1, 2} and the “shares” of the left,
middle, and right node labels (si,0∥ti,0, si,1∥ti,1, si,2∥ti,2). The protocol then outputs CWi exactly as
computed in Fig. 5 to both parties. However, this only results in the parties getting rDPF keys. To
make the output consist of a chosen value β ∈ F4, we construct a separate protocol that outputs a
special “output” correction word, denoted CWout, that can be used to go from an rDPF output to a
chosen output β (which the parties hold shares of). Conceptually, CWout is the last-layer correction
word that encodes the “early termination” output in addition to β.

Overview of functionalities and instantiations. The main ideal functionality, FrDPF-DKG, for
computing the full rDPF keys (matching the distribution of rDPF.Gen in Fig. 5) is presented in
Fig. 8. It is followed by an instantiation, ΠrDPF-DKG, in Fig. 9 where we show how to (1) compute
the correction words in each i-th layer by executing the sub-protocol ΠrDPF-CW, (2) define the input
of ΠrDPF-CW for each i-th layer that maintains the correctness of rDPF.FullEval (indicator bits and
constraints between correction words) and the rDPF.Gen can be distributed recursively. Since we are
using a sub-protocol ΠrDPF-CW, we construct its instantiation in Fig. 7 and define its ideal functionality
in FrDPF-CW Fig. 6. ΠrDPF-CW shows how to securely compute the correction words for each i-th layer
based on

(
1
3

)
-OT (note that our protocol ΠrDPF-CW only outputs CWi, it does not handle the correctness

of indicator bits and the constraints between correction words in two consecutive layers).
Then, in ΠOutput-CW Fig. 11, we show how to handle computing the “output” correction word that

allows us to go from a random output (as computed by the rDPF) to a chosen output, by computing
a final correction word CWout and satisfies the ideal functionality FOutput-CW defined in Fig. 10. The
output of PCG-OLE is formed by the multiple shares of each party so an extra OLE over F4 is used
to convert from multiple shares to additive shares before being the input of Fig. 11.

We show that all of our instantiations are secure in the semi-honest setting and we prove secu-
rity in the UC model, where we only make use of the standard ideal functionality 1-out-of-3 chosen OT(
1
3

)
-OT (Fig. 22). Due to limited space, the security proofs for security of ΠrDPF-CW, ΠrDPF-DKG, ΠOutput-CW

are provided in Appendix E.2, Appendix E.3, and Appendix E.4, respectively.

Lemma 11 (Ternary rDPF-CW security). The construction ΠrDPF-CW in Fig. 7 securely realizes
the ideal functionality FrDPF-CW (Fig. 6) against semi-honest adversaries in the

(
1
3

)
-OT hybrid model.

Proposition 12 (Ternary rDPF-DKG security). The construction in Fig. 9 securely realizes the
ideal functionality FrDPF-DKG (Fig. 8) against semi-honest adversaries in the FrDPF-CW hybrid model.

Proposition 13 (Ternary Output-CW security). The construction ΠOutput-CW in Fig. 11 securely
realizes the ideal functionality FOutput-CW (Fig. 10) against semi-honest adversaries in the

(
1
3

)
-OT

hybrid model.

23

Construction of Ternary rDPF

Parameters: Pseudorandom generator G : {0, 1}λ → {0, 1}3(λ+1).

rDPF.Gen(1λ, 1n, α):
1: parse α = α1∥ · · · ∥αn where αi ∈ {0, 1, 2} for all i ∈ [n].

2: s00, s
1
0 ←R {0, 1}λ, t00 ← 0, t10 ← 1.

3: foreach i ∈ [n]:
3.1: (s0i,0∥t0i,0∥s0i,1∥t0i,1∥s0i,2∥t0i,2)← G(s0i−1).
3.2: (s1i,0∥t1i,0∥s1i,1∥t1i,1∥s1i,2∥t1i,2)← G(s1i−1).
3.3: si,0∥ti,0 ← (s0i,0∥t0i,0)⊕ (s1i,0∥t1i,0).
3.4: si,1∥ti,1 ← (s0i,1∥t0i,1)⊕ (s1i,1∥t1i,1).
3.5: si,2∥ti,2 ← (s0i,2∥t0i,2)⊕ (s1i,2∥t1i,2).
3.6: CWi,j ← si,j∥ti,j for all j ∈ {0, 1, 2} \ {αi}.
3.7: ri ←R {0, 1}λ.
3.8: CWi,αi ← (si,αi ⊕ ri)∥(ti,αi ⊕ 1).
3.9: CWi ← CWi,0∥CWi,1∥CWi,2.

3.10: s0i ∥t0i ← s0i,αi
∥t0i,αi

⊕ (t0i−1 · CWi,αi).
3.11: s1i ∥t1i ← s1i,αi

∥t1i,αi
⊕ (t1i−1 · CWi,αi).

4: pp← (CW1, . . . ,CWn).

5: KA ← (pp, s00∥t00), KB ← (pp, s10∥t10).
6: return (KA,KB).

rDPF.FullEval(σ,Kσ):
1: parse Kσ = (pp, sσ0∥tσ0).
2: out← Traverse(σ, pp, sσ0 , t

σ
0 , 1), γ ← 3n.

3: parse out = (v1, . . . , vγ) ∈ ({0, 1}λ)γ .

4: return (v1, . . . , vγ).

Traverse(σ, pp, sσi−1, t
σ
i−1, i):

1: parse pp = (CW1, . . . ,CWn).

2: if i = n+ 1 then

2.1: return sσi−1∥tσi−1.

3: else

3.1: τσ
i ← G(sσi−1), γσ

i ← τσ
i ⊕ (tσi−1 · CWi).

3.2: parse γσ
i = sσi,0∥tσi,0∥sσi,1∥tσi,1∥sσi,2∥tσi,2 ∈ {0, 1}3(λ+1).

3.3: return Traverse(σ, pp, sσ0 , t
σ
0 , i+ 1)∥Traverse(σ, pp, sσ1 , tσ1 , i+ 1)∥Traverse(σ, pp, sσ2 , tσ2 , i+ 1).

Fig. 5: Ternary DPF construction with full-evaluation optimization. All s values are {0, 1}λ bit strings and t
values are bits. Superscripts 0 and 1 represent a party identifier which we write as σ ∈ {0, 1} when referring
to a value held by party σ ∈ {0, 1}.

24

Ideal Functionality FrDPF-CW

The functionality interacts with a party Pσ and an adversary A.
Parameters: Pseudorandom generator G : {0, 1}λ → {0, 1}3(λ+1).
Functionality:
1: Wait for input

(
[[αi]]σ̄, r

σ̄
i , (s

σ̄
i,j∥tσ̄i,j)j∈{0,1,2}

)
∈ F3 × {0, 1}λ × {0, 1}3(λ+1) from A.

2: Wait for input
(
[[αi]]σ, r

σ
i , (s

σ
i,j∥tσi,j)j∈{0,1,2}

)
∈ F3 × {0, 1}λ × {0, 1}3(λ+1) from party Pσ.

3: Set αi := [[αi]]0 + [[αi]]1 ∈ F3, ri := r0i ⊕ r1i .

4: Compute si,j∥ti,j := (s0i,j∥t0i,j)⊕ (s1i,j∥t1i,j) for j ∈ {0, 1, 2}.
5: CWi,j := si,j∥ti,j for all j ∈ {0, 1, 2} \ {αi}, CWi,αi := (si,αi ⊕ ri)∥(ti,αi ⊕ 1).

6: CWi := CWi,0∥CWi,1∥CWi,2.

7: Output CWi to both Pσ and A.

Fig. 6: Ideal functionality FrDPF-CW for computing the correction words

Protocol ΠrDPF-CW

Parameters:

– Party σ ∈ {0, 1} has input [[αi]]σ ∈ F3, r
σ
i ∈ {0, 1}λ, (sσi,j∥tσi,j)j∈{0,1,2} ∈ {0, 1}3(λ+1).

– An instantiation of chosen
(
1
3

)
-OT.

Protocol:
For each party σ ∈ {0, 1}:
1: Sample zσ ←R {0, 1}3(λ+1).

2: Define

Cσ
0 := (rσi ⊕ sσi,0∥(tσi,0 ⊕ σ), sσi,1∥tσi,1, sσi,2∥tσi,2)⊕ zσ ▷ [[CWi]]σ when αi = 0

Cσ
1 := (sσi,0∥tσi,0, rσi ⊕ sσi,1∥(tσi,1 ⊕ σ), sσi,2∥tσi,2)⊕ zσ ▷ [[CWi]]σ when αi = 1

Cσ
2 := (sσi,0∥tσi,0, sσi,1∥tσi,1, rσi ⊕ sσi,2∥(tσi,2 ⊕ σ))⊕ zσ ▷ [[CWi]]σ when αi = 2

Mσ
0 := (Cσ

0 ,C
σ
1 ,C

σ
2), Mσ

1 := (Cσ
1 ,C

σ
2 ,C

σ
0), Mσ

2 := (Cσ
2 ,C

σ
0 ,C

σ
1)

3: Invoke
(
1
3

)
-OT with party σ̄ as follows:

- Party σ̄ plays the role of the sender with inputs Mσ̄
[[αi]]σ̄

.

- Party σ plays the role of the receiver and inputs [[αi]]σ ∈ F3.

- Party σ gets Mσ̄
[[αi]]σ̄

[[[αi]]σ] ∈ {0, 1}3(λ+1) while party σ̄ gets nothing.

4: Define [[CWi]]σ := Mσ̄
[[αi]]σ̄

[[[αi]]σ]⊕ zσ and broadcast [[CWi]]σ.

5: Construct CWi := [[CWi]]σ ⊕ [[CWi]]σ̄ ∈ {0, 1}3(λ+1).

6: Output (CWi,0,CWi,1,CWi,2).

Fig. 7: Instantiation of FrDPF-CW for computing the correction words.

6 Cryptanalysis and Parameter Selection

In this section, we discuss attacks against our instantiation of QA-SD(c, t,G). We provide a Sage-
Math [S+24] script to help select a concrete choice of parameters based on our analysis. In practice,
we consider c = 4, t = 27 to achieve way more than 128 bits of security.17 The spirit of the attack
which we describe here was already described in [BCCD23], but we give a more in-depth analysis. As

17 For c = 4, t = 27 our script estimates 203 bits of security.

25

Ideal Functionality FrDPF-DKG

The functionality interacts with a party Pσ and an adversary A.
Parameters: rDPF = (rDPF.Gen, rDPF.FullEval) as constructed in Fig. 5.
Functionality:
1: Wait for input ([[αi]]σ̄)i∈[n] ∈ Fn

3 , (rσ̄i)i∈[n] ∈ ({0, 1}λ)n, and sσ̄0 ∈ {0, 1}λ from A.

2: Wait for input ([[αi]]σ)i∈[n] ∈ Fn
3 , (rσi)i∈[n] ∈ ({0, 1}λ)n, and sσ0 ∈ {0, 1}λ from party Pσ.

3: Set t00 = 0, t10 = 1.

4: Set αi := [[αi]]0 + [[αi]]1 ∈ F3 and ri := r0i + r1i ∈ {0, 1}λ for each i ∈ [n].

5: For each i ∈ [n]:
Compute CWi as done in Step 3 of rDPF.Gen(1λ, 1n, α) in Fig. 5.

6: Set pp := (CW1, . . . ,CWn), K0 := (pp, s00∥t00), and K1 := (pp, s10∥t10).
7: Output Kσ to Pσ and Kσ̄ to A.

Fig. 8: Ideal functionality FrDPF-DKG for distributed key generation of the ternary rDPF construction from
Fig. 5.

Protocol ΠrDPF-DKG

Parameters:

– Pseudorandom generator G : {0, 1}λ → {0, 1}3(λ+1).
– There are two parties σ, σ̄ ∈ {0, 1} with input ([[αi]]σ)i∈[n] ∈ Fn

3 , (rσi)i∈[n] ∈ ({0, 1}λ)n, sσ0,0 ∈ {0, 1}λ.

Protocol:
For each party σ ∈ {0, 1}:
1: Set t̂σ0,1 := σ and ŝ0,1 := s0,0.

2: foreach i ∈ [n]:
3.1: Set d := 3i.
3.2: foreach j ∈ [d− 1]:

3.1.1: (sσi,3j∥tσi,3j∥sσi,3j+1∥tσi,3j+1∥sσi,3j+2∥tσi,3j+2)← G(ŝσi−1,j).

3.3: sσi,0∥tσi,0 :=
⊕d

j=1(s
σ
i,3j∥tσi,3j).

3.4: sσi,1∥tσi,1 :=
⊕d

j=1(s
σ
i,3j+1∥tσi,3j+1).

3.5: sσi,2∥tσi,2 :=
⊕d

j=1(s
σ
i,3j+2∥tσi,3j+2).

3.6: Invoke ΠrDPF-CW with party σ̄:
CWi ← ΠrDPF-CW(i, [[αi]]σ, r

σ
i , (s

σ
i,j∥tσi,j)j∈{0,1,2}).

3.7: foreach j ∈ [d− 1]:

3.7.1: (ŝσi,3j∥t̂σi,3j∥ŝσi,3j+1∥t̂σi,3j+1∥ŝσi,3j+2∥t̂σi,3j+2) :=
(sσi,3j∥tσi,3j∥sσi,3j+1∥tσi,3j+1∥sσi,3j+2∥tσi,3j+2)⊕ (t̂σi−1,j · CWi).

3: pp := (CW1, . . . ,CWn).

4: KA := (pp, s00,0∥0), KB := (pp, s10,0∥1).
5: return (KA,KB).

Fig. 9: Instantiation of rDPF Distributed Key Generation Protocol.

a result of this deeper analysis, we show that the parameters considered in [BCCD23] do not achieve
the claimed 128 bits of security, and instead achieve closer to 100 bits of security in practice.

26

Ideal Functionality FOutput-CW

Parameters:

– The functionality interacts with a party Pσ and an adversary A.

– Pseudorandom generator G : {0, 1}λ → (F4)
3t .

Functionality:
1: Wait for input

(
([[αi]]σ̄)i∈[t], [[β]]σ̄, s

σ̄
)
∈ (F3)

t × F4 × {0, 1}λ from A.

2: Wait for input
(
([[αi]]σ)i∈[t], [[β]]σ, s

σ
)
∈ (F3)

t × F4 × {0, 1}λ from party Pσ.

3: Set αi := [[αi]]0 + [[αi]]1 ∈ F3, α :=
∑t

i=1 αi3
i−1 ∈ [3t],

β := [[β]]0 + [[β]]1 ∈ F4.

4: CWt ← eα · β ⊕G(s0)⊕G(s1), where eα ∈ (F4)
3t is the α-th indicator vector.

5: Output CWt to Pσ and A.

Fig. 10: Ideal functionality FOutput-CW for computing the output correct word with message β.

Protocol ΠOutput-CW

Parameters:

– There are two parties σ, σ̄ ∈ {0, 1} with input ([[αi]]σ)i∈[t] ∈ (F3)
t, [[β]]σ ∈ F4, s

σ ∈ {0, 1}λ.
– An instantiation of chosen

(
1
3

)
-OT.

– Pseudorandom generator G : {0, 1}λ → (F4)
3t .

Protocol:
For each party σ ∈ {0, 1}, for i ∈ [t]:

1: Sample zσi ←R (F4)
3i .

2: Define

Cσ
i,0 = ([[β]]σ, 0, 0)⊕ zσi ∈ (F4)

3i ,

Cσ
i,1 = (0, [[β]]σ, 0)⊕ zσi ∈ (F4)

3i ,

Cσ
i,2 = (0, 0, [[β]]σ)⊕ zσi ∈ (F4)

3i ,

Mσ
0 = (Cσ

i,0,C
σ
i,1,C

σ
i,2), Mσ

1 = (Cσ
i,1,C

σ
i,2,C

σ
0), Mσ

2 = (Cσ
i,2,C

σ
i,0,C

σ
i,1)

3: Invoke
(
1
3

)
-OT with party σ̄ as follows:

- Party σ̄ plays the role of the sender with inputs Mσ̄
[[αi]]σ̄

.

- Party σ plays the role of the receiver and inputs [[αi]]σ ∈ F3.

- Party σ gets Mσ̄
[[αi]]σ̄

[[[αi]]σ] ∈ (F4)
3i while party σ̄ gets nothing.

4: Define [[β]]σ := Mσ̄
i [[[αi]]σ]⊕ zσi ∈ (F4)

3i .
Output [[CW]]t := [[β]]σ ⊕G(sσ).

Fig. 11: Instantiation of FOutput-CW for computing the last correction words with constraint β.

6.1 Model of attack

In the following, we focus on attacks on QA-SD(c, t,G) over the finite field Fq. Everything that
we describe applies to any q, but we will focus on q = 4 when deriving parameters. Our goal is
to distinguish pairs ((a1, . . . , ac−1), s := e0 + a1e1 + · · · + acec) from the uniform distribution over
Fq[G]c × Fq[G], where ai

$← Fq[G], and ei are sparse elements of Fq[G] with Hamming weight t. As

27

mentioned in Section 3.2, the search version of QA-SD is equivalent to solving a decoding problem of
the form (

I A1 . . . Ac−1

) e0
...

ec−1

 = s,

where Ai is the matrix representation of the multiplication by element ai with respect to the basis
given by G, for some arbitrary ordering of G, and ei are sparse vectors of Hamming weight t. In
particular, the error vector is split into c blocks of weight t. This is standard when dealing with
structured variants of the decoding problem. This c-split structure has recently received renewed
attention since it is also used in the NIST submission SDitH [AMFG+23] (for unstructured codes).
The hardness of this variant can be estimated using the following theorem from [FJR22].

Theorem 14 ([FJR22, Theorem 1]). Let n, k, w be positive integers such that n > k, n > w,
and c divides both w and n. If there is an algorithm solving a random instance of the c-split decoding
problem with code length n, dimension k and w errors, in time T and with probability εc, then there
exists an algorithm which solves a random instance of the standard decoding problem with the same
parameters, in time T , and with probability ε1 with

ε1 ≥

(
n/c
w/c

)c(
n
w

) · εc.
With Theorem 14 in hand, one might contend that the complexity of solving a c-split variant

of the decoding problem cannot be lower than the best complexity for solving the usual syndrome
decoding problem, times

(
n/c
w/c

)c
/
(
n
w

)
. When choosing parameters, we make sure that this lower bound

is beyond the targeted security level.

Remark 15. This lower bound has been updated in [CHT23] when taking the number of solutions
into account. However, in our low noise regime, there is only one solution to the decoding problem
with overwhelming probability, and in this situation, the two bounds coincide.

Remark 16. In practice, no decoding algorithm currently makes use of the c-split structure, and taking
into account the penalty given by Theorem 14 gives overly conservative parameters. Note also that
according to [ES23], we are on a high rate regime which seems to be harder for this kind of regular
or split structure.

In our setting, the code rate is 1−1/c which is always bounded away from 1/2. Therefore, generic
attacks on LPN such as Arora-Ge [AG11] or BKW [BKW03], which require a very low code-rate, do
not apply. In other words, we will only consider attacks against the decoding problem. Nevertheless,
our instance is far from being generic. Indeed, the quasi-abelian structure gives more power to the
adversary. First, the adversary can apply the DOOM strategy from [Sen11] to get a

√
|G| speed-up

over any decoding algorithm. Second, the additional structure allows an attacker to reduce their
sample modulo some ideal of Fq[G] to obtain a smaller instance of the decoding problem, with the
hope that the noise rate does not grow too much. As already observed in [BCCD23], the best possible
choices arise from quotients of G and are known as folding attacks. They will be precisely analyzed
in Section 6.3. In short, the folding operator with respect to a subgroup H will send a code of length
c|G| to a code of length c|G/H|, while keeping the code-rate constant. On the other hand, the noisy
vector will still be c-split (with blocks of size |G/H|), but the number of error coordinates in each
block might decrease due to collisions. In other words, the noise is upper bounded by t on each block.

Attack Strategy. The general idea of folding attacks to solve QA-SD(c, t,G) consists in picking
some subgroup H, applying the folding operator with respect to H and run a generic decoding al-
gorithm on this smaller instance. Therefore, we need to choose the parameters such that generic
decoding algorithms against all folded instances remain beyond the targeted security parameter, even
considering the loss induced by the c-split structure, and the

√
|G|/|H| speed-up from the DOOM

strategy. In general, this folding strategy will only be helpful for large enough subgroups H (yielding
small instances of the decoding problem). Nevertheless, for this approach to be relevant, we also need
the number of errors to remain below the Gilbert-Varshamov (GV) bound of the folded instance,
which ensures on average the uniqueness of the solution. Recall that for a code of rate R, the GV

28

bound is defined as δGV = h−1
q (1 − R) where hq(x) := −x logq

(
x

q − 1

)
− (1 − x) logq(1 − x) for

x ∈ (0, 1− 1/q), is the q-ary entropy function. It is well-known that this provides a threshold for the
number of solutions on a random instance (H, s) of the decoding problem of a code of length n and at
distance w: when w < nδGV , then there will be at most one solution with overwhelming probability
over the choices of H, while when w > nδGV there will be exponentially many solutions, even when
s was picked uniformly at random (see [Deb23, Chapter 2]). In particular, if the number of errors in
the folded instance is beyond the GV bound, then we need to lift each of those exponentially many
putative solutions back to the original decoding problem to see whether it is an actual solution, or
not. Doing so is equivalent to specifying a small number of unknowns in the linear system coming
from the original syndrome decoding instance (see [CT19, Section IV]), and this strategy is far less
efficient than solving a single decoding problem for a larger code-length. Note that finding a solution
to a folded instance below the GV bound is enough to provide a distinguisher between an instance of
QA-SD and a uniformly random vector, thus breaking the security of F4OLEAGE, since we only need
to solve the decisional variant of QA-SD.

Improvement. In Section 6.3 we give a precise analysis of the probability distribution of the weight
of the folded error. Since the initial error is extremely sparse, the weight of the folded error will be very
close to that of the initial error with overwhelming probability (since there will be very few collisions).
However, we show how an attacker can bet that the folded error has a much smaller weight w0 than
expected, which happens with some exponentially small probability pw0

. They can then benefit from
the fact that our instantiation has an extremely large number of potential subgroups H to run 1

pw0

algorithms tailored for decoding w0 errors, resulting in an attack which brings the security of the
parameters chosen in [BCCD23] down to roughly 100 bits instead of the targeted 128.

Remark 17 (Regular noise). For the optimized variants of our PCG, we also put an additional struc-
ture on the error term. Beyond being c-split, it is in fact regular, namely it is the concatenation of
t unit vectors. This variant has been introduced for building the hash function FSB [AFS03] which
was submitted to the SHA-3 competition and was subsequently analyzed in [FGS07, BLPS11]. In
general, it is not known to induce a significant weakness, however, it has not undergone the same
thorough analysis that the standard syndrome decoding problem has gone through. This regular
variant has recently become more popular due to many works on signatures and secure computa-
tion [HOSS18b,BCGI18,BCG+19b,BCG+20b,BCG+22,CCJ23,BCCD23]. We note that Theorem 14
is not tight in the regular case, and it would be overly conservative to consider this loss here. More
precisely, every work that really targets the regular variant of syndrome decoding shows that the
code rate needs to be rather small for this variant to have an impact on the security [BØ23,ES23].
The latter reference even argues that regular syndrome decoding is harder than standard syndrome
decoding for in the high code-rate regime (see [ES23, Figure 1]), which is precisely our setting.

6.2 Generic decoding algorithms

Generic attacks against the decoding problem are divided into two families, which we summarize here.

Information Set Decoders (ISD). Starting from Prange’s seminal work [Pra62], Information Set
Decoding represents the main technique to solve the decoding problem. They have been extensively
studied over the past 60 years [Pra62,Ste89,Wag02,MMT11,BJMM12,MO15,BM18,DEEK24], and
in general their complexity is exponential in the number of error coordinates. However, most anal-
yses were conducted over the binary field, in order to improve on the exponent. In particular, as
far as we know, there is no precise analysis of the concrete, non asymptotic, efficiency over larger
fields Fq. We note though that the most recent algorithms (starting from [MO15]), have prohibitive
hidden constants, which make them less practical [Hir16]. We give an overview of ISD algorithms in
Appendix C.

Dual attacks. Up until recently, Information Set Decoding algorithms were considered to be the best
algorithms to solve the generic decoding problem. However, another strategy known as statistical
decoding or dual attacks, has been introduced in [Jab01, Ove06] and were greatly improved in the
past few years [DT17, CDMT22, MT23, CDMT24]. Most recent dual attacks even outperform ISD
algorithms in some regimes. Nevertheless, those improvements are only apparent for codes of the rate
below 1/2 [CDMT24, Figure 1]. In particular, we will not consider them in our high code-rate regime.

29

6.3 Analysis of Folding attacks

In general, there are very few known ways in which an attacker can exploit the structure of variants
of the decoding problem to get a significant advantage. In fact, it is a longstanding open problem
in algebraic coding theory to design a generic decoder for quasi-abelian codes [Wil21]. Moreover,
the authors of [BCCD23] proved that our particular instantiation of QA-SD comes with a search-to-
decision reduction. All of that argues in favor of the hardness of QA-SD(c, t,G). Nevertheless, in the
case of QA-SD, an attacker can use one of the many subgroups of G to get a smaller instance, with
the hope of getting an easier decoding problem. In this section, we give a precise analysis of such
folding attacks.

6.3.1 The Folding Operation

Let H be a subgroup of G. The canonical projection G→ G/H induces a morphism of algebras

πH :

Fq[G] −→ Fq[G/H]∑

g∈G
agg 7−→

∑
ḡ∈G/H

(∑
h∈H

ag+h

)
ḡ.

Represented as a vector of length |G|, an element x ∈ Fq[G] can also be seen as a collection of |G/H|
interleaved subvectors of length |H| indexed by each coset of H. The operation πH simply consists of
summing up all the entries of each subvector. An illustration is given on Fig. 12.

a0 a1 a2 a3 a4 a5 a6 a7 a8

a0 + a3 + a6 a1 + a4 + a7 a2 + a5 + a8

Fig. 12: Example representation of πH for a group G of size 9 and a subgroup H of size 3. Each coset of H is
represented by a different color. Note that in general, there is no reason to have this regular pattern.

Given an element y := (y1, . . . , yc) ∈ Fq[G]c, we define the folding with respect to H as FoldH(y) :=
(πH(y1), . . . , πH(yc)) ∈ Fq[G/H]c. Now, consider an instance (a, ⟨a, e⟩+e0) of QA-SD(c, t,G). Applying
πH on the syndrome yields

πH

(
e0 +

c−1∑
i=1

aiei

)
= πH(e0) +

c−1∑
i=1

πH(ai)πH(ei) ∈ Fq[G/H],

which is nothing but the syndrome of FoldH(e) with respect to the matrix represented by FoldH(1,a).
In other words, starting from a decoding problem with code-length c|G| and dimension (c− 1)|G|, we
build a smaller decoding problem with code-length c|G/H|. The main observation is that, doing so,
we did not change the code-rate, which remains equal to 1− 1/c. On the other hand, the Hamming
weight of the folded error might be slightly below the original one. The goal of this section is to
carefully estimate this weight. To do so, we will give a precise analysis of the probability distribution
of wH(FoldH(x)) when x := (x1, . . . , xc) ∈ Fq[G]c is such that the xi’s are independent and uni-
formly distributed over the elements of Hamming weight t. This distribution is nothing but the c-fold
convolution of the probability distribution of the weights of a single component, which we derive in
Section 6.3.2. Our analysis is similar to that of [CT19], written in the language of group algebras.18

18 In [CT19, Proposition 3], the authors forgot a q−1 factor, which we fix in our analysis. Note that this does
not impact the results of [CT19] since their actual setting was for q = 2.

30

6.3.2 Weight distribution of the image of the folding

For u ∈ {0, . . . , t} and H a subgroup of G, denote by

AH(t, u) :=
∣∣∣{x ∈ Fq[G] | wH(x) = t and wH(πH(x)) = u

}∣∣∣.
When x is uniformly chosen amongst the elements of the group algebra Fq[G] of Hamming weight t,

then Prx [wH(πH(x)) = u] =
AH(t, u)(|G|
t

)
(q − 1)t

. In other words, the goal is to compute AH(t, u).

Let x ∈ Fq[G] of Hamming weight t and let ℓ := |H|. We can view x as an interleaving of
|G/H| subvectors of length ℓ corresponding to the different cosets of H, such that the weights of the
subvectors form a partition of t into parts of size at most ℓ. For a given element x of weight t, we call
the corresponding partition of t the signature of x. By definition, a coordinate of πH(x), indexed by
some coset g0 +H, is zero if and only if the corresponding entries of x sum up to 0, i.e., if and only if
the word (xg0+h)h∈H ∈ Fℓ

q belongs to the [ℓ, ℓ− 1]q-parity code denoted by Cℓ. In particular, AH(t, u)
does not depend on the specific subgroup H, but rather on its order ℓ.

For ω ∈ {0, . . . , ℓ}, let ν(ω, ℓ) be the number of codewords of Cℓ of Hamming weight ω and let
Pν,ℓ :=

∑ℓ
ω=0 ν(ω, ℓ)X

ω be the weight enumerator of Cℓ. Similarly, we denote by Pθ,ℓ :=
∑ℓ

ω=0 θ(ω, ℓ)X
ω

the weight enumerator of the complement Fℓ
q \ Cℓ. Let a ∈ Fq[G/H] be of weight u. Without loss of

generality, we assume that the u nonzero positions of a correspond to its first u entries. Then, given
a partition (i1, . . . , i|G/H|) of t into parts of size at most ℓ, the number of elements x ∈ Fq[G] having
this signature and which are mapped to a is exactly

|G/H|∏
j=1

(
θ(ij , ℓ)1aij

̸=0 + ν(ij , ℓ)1aij
=0

)
=

u∏
j=1

θ(ij , ℓ)

|G/H|∏
j=u+1

ν(ij , ℓ).

In other words, we have

AH(t, u) =

(
|G/H|

u

) ∑
i1+···+i|G/H|=t

0≤ij≤ℓ

 u∏
j=1

θ(ij , ℓ)

|G/H|∏
j=u+1

ν(ij , ℓ)

 ,

which is nothing but the coefficient of Xt in the polynomial
(|G/H|

u

)
Pu
θ,ℓ(X)P

|G/H|−u
ν,ℓ (X), which we

denote by [Xt]
((|G/H|

u

)
Pu
θ,ℓ(X)P

|G/H|−u
ν,ℓ (X)

)
. We can then deduce the following proposition.

Proposition 18. Let 0 ≤ t ≤ |G| and 0 ≤ u ≤ min(t, |G/H|). When x is uniformly distributed over
the elements of Fq[G] of Hamming weight t, then

Prx [wH(πH(x)) = u] =

(|G/H|
u

)
[Xt]

(
Pu
θ,ℓ(X)P

|G/H|−u
ν,ℓ (X)

)
(|G|

t

)
(q − 1)t

.

The following lemma, a corollary of MacWilliam’s identity (see [MS86]), gives the closed formulas
of Pν,ℓ and Pθ,ℓ.

Lemma 19 ([CT19, Lemma 1]). We have

Pν,ℓ(X) =
1

q

(
(1 + (q − 1)X)

ℓ
+ (q − 1)(1−X)ℓ

)
,

and

Pθ,ℓ(X) =
q − 1

q

(
(1 + (q − 1)X)

ℓ − (1−X)ℓ
)
.

31

6.3.3 Choice of the folding subgroup

The choice of the subgroup H is motivated by the targeted length c|G/H| of the folded code (we discuss
in Section 6.4 folding with respect to several subgroups). As mentioned above, we need t < δGV |G/H|
for this procedure to be relevant, where δGV is the GV bound at rate 1− 1/c. In our setting, G is of
the form (Z/3Z)n and therefore H will be of the form (Z/3Z)n′

. In particular, |G/H| = 3n−n′
should

be such that c ·t ≤ c ·δGV 3
n−n′

. In practice, choosing n′ = n−⌈log3 (t/δGV)⌉, or n−⌈log3 (t/δGV)⌉−1
when t is particularly small, yields the best complexity.

6.4 Improving the attack: Folding for several subgroups

Since we chose G of the form (Z/3Z)n, there are many different subgroups of given order 3n
′
. More

precisely, they are in one-to-one correspondence with the n′-dimensional subspaces of Fn
3 : there are(

n
n′

)
3

of them. Instead of picking one particular subgroup and running the best generic decoding
algorithm on the folded instance, an attacker could bet that the error has a much smaller weight
ω0. They could then run the best decoding algorithm, aborting the procedure when the number of
iterations exceeds that required to decode ω0 errors, and then pick another subgroup. On average,

this procedure will allow to decode in time
CostDecoding(ω0) + CostFolding

Pr [wH(FoldH(x)) = ω0]
, where CostDecoding is the

complexity of the best decoding algorithm for the target weight ω0 in the folded code, and CostFolding
is the cost of computing the folding operation, i.e., CostFolding is exactly the length of the initial code.
In order to run the attack, it suffices to choose the best ω0 which minimizes this ratio to get the best
complexity. This attack is much more efficient for small values of c, that is why we chose c = 5 in our
setting. This allows us to maintain small parameters while achieving more than 128 bits of security
(while still keeping some security margin).

6.4.1 Parameter Estimation and Revaluation of [BCCD23]

We provide a SageMath [S+24] script to help choose a set of concrete parameters for QA-SD. It
computes the probability distribution of the weight of the folded error and computes the cost of the
best attack. It also takes into account the previous attack.

As a by-product, we can use it to give a new estimation of the security of [BCCD23]. Results are
given in Section 6.4.1. It shows that we would need to significantly increase the value of t in order to
achieve 128 bits of security.

n c t (nfold, kfold, ω0) (Niter,CostDecoding)
Number of
subgroups

Actual
security

25 4 16 (2048, 1536, 54) (214, 289) 2145 118

30 4 16 (2048, 1536, 54) (214, 289) 2190 118

35 4 16 (2048, 1536, 54) (214, 289) 2235 118

Table 2: Reestimation of the security for the parameters given in [BCCD23]. They were considered to yield
more than 128 bits of security, they were even considered to be conservative. Note that in [BCCD23], all
the parameters were for q = 3. Here t is the number of errors per block, while in [BCCD23] it was the total
number of errors. nfold and kfold are respectively the length and dimension of the folded code. Niter is the
number of different foldings necessary to run the attack, and ω0 is the optimal target weight.

7 Implementation and Evaluation

We implement F4OLEAGE in C (v15.0.0) as a library that consists of two main components: (1) an
optimized implementation of the ternary DPF construction and (2) an implementation of the FFT
over F4. The open-source code for our F4OLEAGE PCG benchmarks is available online.19

19 https://github.com/sachaservan/FOLEAGE-PCG.

32

https://github.com/sachaservan/FOLEAGE-PCG

Implementation details. Our DPF implementation takes advantage of the AES-NI instruction to
implement a fast PRG G using fixed-key AES (from the OpenSSL library [Ope]) and the Davies-
Meyer transform. We experimented with using the half-tree optimization of [GYW+23]. However, we
observed a minimal performance gains (2-4%) from this optimization when applied to a ternary tree.
This is because the half-tree optimization is tailored to the binary tree DPF construction where it can
shave a larger fraction of total AES calls. 20 We implement the recursive FFT over F4 described in
Section 4.3 and perform the FFT in parallel by packing all the coefficients into one machine word (for
our parameters, we will require 16 FFTs, so we can perform them in parallel using a uint32 type for
packing). While the FFT could possibly be optimized further using an iterative algorithm and taking
advantage of AVX instructions, the simplicity of the recursive algorithm coupled with the parallel
packing makes it sufficiently fast for F4OLEAGE. This is especially true given that the DPF evaluations
end up being the dominant cost (roughly 70% of the total computation). We do not implement the
distributed seed generation protocol given that it consists of black-box invocations of any one-out-of-
three OT. However, we do estimate the concrete performance and communication costs of distributed
seed generation by benchmarking the libOTe library on state-of-the-art OT protocols [RR].

Benchmarks. We perform our benchmarks using AWS c5.metal (3.4GHz CPU) and t2.large
instances. All experiments are averaged across ten trials and evaluated on a single core. To gain a
better understanding of the overhead involved with each component, we start by benchmarking the
SPFSS (sum of many DPFs) and FFT implementation separately and report the results in Tables 3
and 4. Concretely, if we are packing 3n coefficients over F4, we want the output of the DPF to be
close to a power of 3. To achieve this, we terminate 5 levels early and pack 512 elements of F4 in the
virtual leaves by having the DPF output be a 1024 bit block. Therefore, the key size of each DPF is
3 ·128 · (n−5)+128+2 ·512 when using AES with 128-bit keys. We report the SPFSS benchmarks in
Table 3 when evaluating the sum of 730 DPFs (this corresponds to the t = 27 regime in Fig. 1, since
the SPFSS needs to be instantiated with t2 = 729 DPFs). When evaluating the SPFSS, we observe
a roughly 1.8× reduction in computation time over evaluating just one DPF. This is due to better
cache performance when evaluating many DPFs and working over the same memory allocation to
evaluate consecutive DPFs. Our choice of DPF range 311, 313, and 315 correspond to the size of a
regular noise block when D = 314, D = 316, and D = 318, respectively (see Table 5).

Range
(elements of F4)

SPFSS.Gen
(c5.metal | t2.large)

SPFSS.FullEval
(c5.metal | t2.large)

AES
(c5.metal | t2.large)

Key Size
(per party)

311 5 ms | 11 ms 26 ms | 39 ms 18 ms | 27 ms 315 kB
313 7 ms | 13 ms 260 ms | 364 ms 174 ms | 253 ms 385 kB
315 8 ms | 16 ms 2357 ms | 3272 ms 1526 ms | 2229 ms 456 kB

Table 3: Performance of our SPFSS (for the sum of 730 DPFs) on two EC2 instances and comparison to the
raw AES computation time required for the PRG evaluations.

Benchmarking our PCG. Next, we benchmark the performance of the PCG from Fig. 1 on various
parameters. The parameter D = 3n determines the number of Beaver triples we generate in total. In
contrast, the parameters c (compression factor) and t (noise weight) influence the size of the PCG key
and evaluation time. Specifically, evaluating the PCG requires (c · t)2 calls to the DPF on domain size
D/t (due to regular noise) and c(c+1)/2 calls to the FFT (which we can parallelize by a factor of up
to 32 using packing on 64-bit architectures). The DPF evaluation cost ends up being the dominant
factor (approximately 70%) in the total computation. The FFT accounts for less than 5% of the
total computation. Interestingly, packing the FFT (which requires computing a matrix transpose of
dimension c(c+1)/2×3n to translate from c(c+1)/2 polynomials to a packed representation suitable

20 Since there are roughly 1/3 nodes for which we can hope to shave AES calls in the ternary tree, but we
can only shave one-out-of-three AES calls using the “half-tree” optimization in the ternary-tree case, we
can only hope to save 1/3 · 1/3 ≈ 10% of the AES computation time. However, given that AES calls are
dominant but not the entire cost of the DPF (we also need to compute many XORs), we end up with
roughly 2-4% savings. This could perhaps be optimized a bit further, but the performance savings would
plateau at roughly 6%.

33

Number of
Variables

Packed FFT (4×)
(c5.metal | t2.large)

Packed FFT (16×)
(c5.metal | t2.large)

Packed FFT (32×)
(c5.metal | t2.large)

14 20 ms | 30 ms 21 ms | 33 ms 28 ms | 45 ms
16 180 ms | 280 ms 213 ms | 329 ms 312 ms | 475 ms
18 1682 ms | 2608 ms 2165 ms | 3280 ms 4913 ms | 7478 ms

Table 4: Performance of our FFT implementation over F4 on two different EC2 instances. Packing increases
throughput almost linearly with the packing size. However, with a large number of variables (> 16), it is more
efficient to use smaller packing values to avoid the increased memory usage from the recursive FFT function
calls.

for computing the FFT in parallel) accounts for 15% of the total computation! This motivates using
small values of c, such as c = 4, as otherwise this transpose becomes the dominant cost in the entire
PCG expansion. We leave exploring the possibility of implementing fast SIMD-based matrix-transpose
algorithms (e.g., [TE76,AS20]) as a promising direction for future work, since it may allow using a
smaller noise weight (e.g., t = 9) and larger c.

We set t = 27 since we need it to be a power of 3 (see Remark 5), and report the computational
costs of the PCG for different values of D in Table 5 and c. The choice of (c = 4, t = 27) corresponds
to a conservative parameter choice based on our calculations in Section 6. To show the influence of c
on the performance, we also evaluate our PCG construction on c = 3, which corresponds to a more
aggressive parameter choice. We observe a much smaller PCG seeds and better concrete performance
with c = 3 compared to c = 4.

(a) Parameters: (c = 4, t = 27)

D
PCG.Expand

(c5.metal | t2.large)
Key Size
(per party)

314 579 ms | 890 ms 5.0 MB
316 5.9 s | 8.4 s 6.2 MB
318 54.3 s | – 7.3 MB

(b) Parameters: (c = 3, t = 27)

D
PCG.Expand

(c5.metal | t2.large)
Key Size
(per party)

314 346 ms | 534 ms 2.8 MB
316 3.5 s | 5.2 s 3.5 MB
318 32.1 s | – 4.1 MB

Table 5: Performance of our PCG implementation on two different EC2 instances. We set the noise parameter
to t = 27 and let c = 4 in the left table (our conservative parameter choice) and c = 3 in the right table (our
aggressive parameter choice); these parameters are computed in Section 6. D = 318 ran out of memory on
the t2.large.

Estimating setup costs. We use the libOTe library [RR] to benchmark the state-of-the-art OT
protocols. We run libOTe on localhost and evaluated both SoftSpoken OT [Roy22] and the RRT’
silent OT [RRT23]. For SoftSpoken, we measured roughly 50,000,000 OT/s on the c5.metal machine
and roughly 32,000,000 OT/s on the t2.large. For the RRT, we measure a throughput of nearly
7,000,000 on c5.metal and 4,000,000 on the t2.large. To run our distributed DPF key generation
protocol, we require n = 14 (at D = 314) and n = 18 (at D = 318) rounds per DPF. All the (ct)2 DPF
keys can be computed in parallel. Therefore, in total, using our conservative parameters of c = 4 and
t = 27, we require roughly 11,600 parallel calls to an OT functionality in n rounds. Our aggressive
parameters of c = 3 and t = 27 only require 6,561 parallel OT calls.

34

Acknowledgements

We thank the anonymous reviewers for helpful suggestions. We thank Peter Rindal for help with run-
ning the libOTe [RR] library, and Marcel Keller for answering our questions about Overdrive [KPR18].
We thank Elette Boyle and Matan Hamilis for several comments that helped us improve the presen-
tation of the paper. Geoffroy Couteau, Clément Ducros, and Dung Bui were supported by the French
Agence Nationale de la Recherche (ANR), under grant ANR-20-CE39-0001 (project SCENE), by
the France 2030 ANR Project ANR22-PECY-003 SecureCompute, and by ERC grant OBELiSC
(101115790). Dung Bui was supported by DIM Math Innovation 2021 (N°IRIS: 21003816) from the
Paris Mathematical Sciences Foundation (FSMP) funded by the Paris Île-de-France Region. Maxime
Bombar was supported by the NWO Gravitation Project QSC. Alain Couvreur was supported by the
French Agence Nationale de la Recherche (ANR) under grant ANR-21-CE39-0009-BARRACUDA,
by the plan France 2030 under the project ANR-22-PETQ-0008 and by Horizon-Europe MSCA-DN
project Encode.

References

AAB+22a. C. Aguilar Melchor, N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville,
P. Gaborit, S. Ghosh, S. Gueron, T. Güneysu, R. Misoczki, E. Persichetti, J. Richter-Brockmann,
N. Sendrier, J.-P. Tillich, V. Vasseur, and G. Zémor. BIKE. Round 4 Submission to the NIST
Post-Quantum Cryptography Call, v. 5.1, October 2022.

AAB+22b. C. Aguilar Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J. Bos, J.-C. Deneuville,
A. Dion, P. Gaborit, J. Lacan, E. Persichetti, J.-M. Robert, P. Véron, G. Zémor, and J. Bos.
HQC. Round 4 Submission to the NIST Post-Quantum Cryptography Call, October 2022.
https://pqc-hqc.org/.

ABD+16. C. Aguilar, O. Blazy, J.-C. Deneuville, P. Gaborit, and G. Zémor. Efficient encryption from
random quasi-cyclic codes. Cryptology ePrint Archive, Report 2016/1194, 2016. https:
//eprint.iacr.org/2016/1194.

AFS03. D. Augot, M. Finiasz, and N. Sendrier. A fast provably secure cryptographic hash function.
IACR Cryptology ePrint Archive, Report2003/230, 2003. http://eprint.iacr.org/.

AG11. S. Arora and R. Ge. New algorithms for learning in presence of errors. In Automata, Languages
and Programming, LNCS 6755, pages 403–415. Springer Berlin Heidelberg, 2011.

AMBD+18. C. Aguilar-Melchor, O. Blazy, J.-C. Deneuville, P. Gaborit, and G. Zémor. Efficient encryption
from random quasi-cyclic codes. IEEE Transactions on Information Theory, 64(5):3927–3943,
2018.

AMFG+23. C. Aguilar Melchor, T. Feneuil, N. Gama, S. Gueron, J. Howe, D. Joseph, A. Joux, E. Persichetti,
T. Randrianarisoa, M. Rivain, and D. Yue. SDitH. Round 1 Additional Signatures to the NIST
Post-Quantum Cryptography: Digital Signature Schemes Call, May 2023.

AS20. H. Amiri and A. Shahbahrami. SIMD programming using Intel vector extensions. J. Parallel
Distrib. Comput., 135(C):83–100, Jan 2020.

BC23. D. Bui and G. Couteau. Improved private set intersection for sets with small entries. In
PKC 2023, Part II, LNCS 13941, pages 190–220. Springer, Heidelberg, May 2023.

BCCD23. M. Bombar, G. Couteau, A. Couvreur, and C. Ducros. Correlated pseudorandomness from the
hardness of quasi-abelian decoding. In CRYPTO 2023, Part IV, LNCS, pages 567–601. Springer,
Heidelberg, August 2023.

BCDL19. R. Bricout, A. Chailloux, T. Debris-Alazard, and M. Lequesne. Ternary syndrome decoding with
large weight. In SAC 2019, LNCS 11959, pages 437–466. Springer, Heidelberg, August 2019.

BCG+19a. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl. Efficient two-round
OT extension and silent non-interactive secure computation. In ACM CCS 2019, pages 291–308.
ACM Press, November 2019.

BCG+19b. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudorandom
correlation generators: Silent OT extension and more. In CRYPTO 2019, Part III, LNCS 11694,
pages 489–518. Springer, Heidelberg, August 2019.

BCG+20a. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Correlated pseudorandom
functions from variable-density LPN. In 61st FOCS, pages 1069–1080. IEEE Computer Society
Press, November 2020.

BCG+20b. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudorandom
correlation generators from ring-LPN. In CRYPTO 2020, Part II, LNCS 12171, pages 387–416.
Springer, Heidelberg, August 2020.

35

https://pqc-hqc.org/
https://eprint.iacr.org/2016/1194
https://eprint.iacr.org/2016/1194
http://eprint.iacr.org/

BCG+22. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, N. Resch, and P. Scholl. Correlated pseu-
dorandomness from expand-accumulate codes. In CRYPTO 2022, Part II, LNCS 13508, pages
603–633. Springer, Heidelberg, August 2022.

BCGI18. E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai. Compressing vector OLE. In ACM CCS 2018,
pages 896–912. ACM Press, October 2018.

Bea92. D. Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO’91, LNCS
576, pages 420–432. Springer, Heidelberg, August 1992.

Bea96. D. Beaver. Correlated pseudorandomness and the complexity of private computations. In 28th
ACM STOC, pages 479–488. ACM Press, May 1996.

BGI15. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In Annual international conference
on the theory and applications of cryptographic techniques, pages 337–367. Springer, 2015.

BGI16. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing: Improvements and extensions. In
ACM CCS 2016, pages 1292–1303. ACM Press, October 2016.

BGV14. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption with-
out bootstrapping. New York, NY, USA, jul 2014. Association for Computing Machinery.

BJMM12. A. Becker, A. Joux, A. May, and A. Meurer. Decoding random binary linear codes in 2n/20:
How 1 + 1 = 0 improves information set decoding. In EUROCRYPT 2012, LNCS 7237, pages
520–536. Springer, Heidelberg, April 2012.

BKW03. A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

BLPS11. D. J. Bernstein, T. Lange, C. Peters, and P. Schwabe. Faster 2-regular information-set decoding.
In Coding and Cryptology, Proceedings of IWCC, LNCS 6639, pages 81–98. Springer, 2011.

BM18. L. Both and A. May. Decoding linear codes with high error rate and its impact for LPN security.
In Post-Quantum Cryptography - 9th International Conference, PQCrypto 2018, pages 25–46.
Springer, Heidelberg, 2018.

BØ23. P. Briaud and M. Øygarden. A new algebraic approach to the regular syndrome decoding problem
and implications for PCG constructions. In EUROCRYPT 2023, Part V, LNCS 14008, pages
391–422. Springer, Heidelberg, April 2023.

CCJ23. E. Carozza, G. Couteau, and A. Joux. Short signatures from regular syndrome decoding in the
head. In EUROCRYPT 2023, Part V, LNCS 14008, pages 532–563. Springer, Heidelberg, April
2023.

CD23. G. Couteau and C. Ducros. Pseudorandom correlation functions from variable-density LPN,
revisited. In PKC 2023, Part II, LNCS 13941, pages 221–250. Springer, Heidelberg, May 2023.

CDMT22. K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, and J. Tillich. Statistical decoding 2.0: Re-
ducing decoding to LPN. In Advances in Cryptology - ASIACRYPT 2022, LNCS. Springer,
2022.

CDMT24. K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, and J. Tillich. Reduction from sparse lpn to
lpn, dual attack 3.0. In Advances in Cryptology - EUROCRYPT 2024, LNCS. Springer, 2024.

CHT23. K. Carrier, V. Hatey, and J.-P. Tillich. Projective space stern decoding and application to sdith.
Cryptology ePrint Archive, 2023.

CRR21. G. Couteau, P. Rindal, and S. Raghuraman. Silver: Silent VOLE and oblivious transfer from
hardness of decoding structured LDPC codes. In CRYPTO 2021, Part III, LNCS 12827, pages
502–534, Virtual Event, August 2021. Springer, Heidelberg.

CT65. J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Calculation of Complex Fourier
Series. Math. Comput., 19:297–301, 1965.

CT19. R. Canto-Torres and J. Tillich. Speeding up decoding a code with a non-trivial automorphism
group up to an exponential factor. In Proc. IEEE Int. Symposium Inf. Theory - ISIT 2019,
pages 1927–1931, 2019.

CTS16. R. Canto Torres and N. Sendrier. Analysis of Information Set Decoding for a Sub-linear Error
Weight. In Post-Quantum Cryptography - PQCrypto 2016, Fukuoka, Japan, February 2016.

DA23. T. Debris-Alazard. Code-based cryptography: Lecture notes. arxiv:2304.03541,. 2023.
Deb23. T. Debris-Alazard. Code-based cryptography: Lecture notes, 2023. https://arxiv.org/abs/

2304.03541.
DEEK24. L. Ducas, A. Esser, S. Etinski, and E. Kirshanova. Asymptotics and improvements of sieving for

codes. 2024.
DNNR17. I. Damgård, J. B. Nielsen, M. Nielsen, and S. Ranellucci. The TinyTable protocol for 2-party

secure computation, or: Gate-scrambling revisited. In CRYPTO 2017, Part I, LNCS 10401,
pages 167–187. Springer, Heidelberg, August 2017.

DPSZ12. I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat
homomorphic encryption. In CRYPTO 2012, LNCS 7417, pages 643–662. Springer, Heidelberg,
August 2012.

Ds17. J. Doerner and a. shelat. Scaling ORAM for secure computation. In ACM CCS 2017, pages
523–535. ACM Press, October / November 2017.

36

https://arxiv.org/abs/2304.03541
https://arxiv.org/abs/2304.03541

DT17. T. Debris-Alazard and J.-P. Tillich. Statistical decoding. In Proc. IEEE Int. Symposium Inf.
Theory - ISIT 2017, pages 1798–1802, Aachen, Germany, June 2017.

Dum89. I. Dumer. Two decoding algorithms for linear codes. Probl. Inf. Transm., 25(1):17–23, 1989.
EGL82. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. In

CRYPTO’82, pages 205–210. Plenum Press, New York, USA, 1982.
ES23. A. Esser and P. Santini. Not just regular decoding: Asymptotics and improvements of regular

syndrome decoding attacks. Cryptology ePrint Archive, 2023.
FGS07. M. Finiasz, P. Gaborit, and N. Sendrier. Improved Fast Syndrome Based Cryptographic Hash

Functions. In ECRYPT Hash Workshop 2007, 2007.
FJR22. T. Feneuil, A. Joux, and M. Rivain. Syndrome decoding in the head: Shorter signatures from zero-

knowledge proofs. In CRYPTO 2022, Part II, LNCS 13508, pages 541–572. Springer, Heidelberg,
August 2022.

FOP+16. J.-C. Faugère, A. Otmani, L. Perret, F. de Portzamparc, and J.-P. Tillich. Folding alternant and
Goppa Codes with non-trivial automorphism groups. IEEE Trans. Inform. Theory, 62(1):184–
198, 2016.

GGM19. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions, page 241–264.
Association for Computing Machinery, New York, NY, USA, 2019.

GI14. N. Gilboa and Y. Ishai. Distributed point functions and their applications. In Advances in
Cryptology–EUROCRYPT 2014: 33rd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings
33, pages 640–658. Springer, 2014.

Gil99. N. Gilboa. Two party RSA key generation. In CRYPTO’99, LNCS 1666, pages 116–129. Springer,
Heidelberg, August 1999.

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In 19th ACM STOC, pages 218–229. ACM Press,
May 1987.

GYW+23. X. Guo, K. Yang, X. Wang, W. Zhang, X. Xie, J. Zhang, and Z. Liu. Half-tree: Halving the
cost of tree expansion in COT and DPF. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 330–362. Springer, 2023.

Hir16. S. Hirose. May-Ozerov Algorithm for Nearest-Neighbor Problem over ℧q and Its Application
to Information Set Decoding. In Innovative Security Solutions for Information Technology and
Communications - 9th International Conference, SECITC 2016, Bucharest, Romania, June 9-10,
2016, Revised Selected Papers, Lecture Notes in Computer Science 10006, pages 115–126, 2016.

HOSS18a. C. Hazay, E. Orsini, P. Scholl, and E. Soria-Vazquez. Concretely efficient large-scale MPC with
active security (or, TinyKeys for TinyOT). In ASIACRYPT 2018, Part III, LNCS 11274, pages
86–117. Springer, Heidelberg, December 2018.

HOSS18b. C. Hazay, E. Orsini, P. Scholl, and E. Soria-Vazquez. TinyKeys: A new approach to efficient multi-
party computation. In CRYPTO 2018, Part III, LNCS 10993, pages 3–33. Springer, Heidelberg,
August 2018.

IKNP03. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In
CRYPTO 2003, LNCS 2729, pages 145–161. Springer, Heidelberg, August 2003.

Jab01. A. A. Jabri. A statistical decoding algorithm for general linear block codes. In Cryptography and
coding. Proceedings of the 8th IMA International Conference, LNCS 2260, pages 1–8, Cirencester,
UK, December 2001. Springer.

KD08. R. Kutzelnigg and M. Drmota. Random bipartite graphs and their application to Cuckoo Hashing.
na, 2008.

Kel20. M. Keller. MP-SPDZ: A versatile framework for multi-party computation. In Proceedings of
the 2020 ACM SIGSAC conference on computer and communications security, pages 1575–1590,
2020.

KKRT16. V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched oblivious PRF with
applications to private set intersection. In ACM CCS 2016, pages 818–829. ACM Press, October
2016.

KOS16. M. Keller, E. Orsini, and P. Scholl. MASCOT: Faster malicious arithmetic secure computation
with oblivious transfer. In ACM CCS 2016, pages 830–842. ACM Press, October 2016.

KPR18. M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making SPDZ great again. In EURO-
CRYPT 2018, Part III, LNCS 10822, pages 158–189. Springer, Heidelberg, April / May 2018.

KS08. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free xor gates and applications. In
Automata, Languages and Programming: 35th International Colloquium, ICALP 2008, Reykjavik,
Iceland, July 7-11, 2008, Proceedings, Part II 35, pages 486–498. Springer, 2008.

LB88. P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-key cryptosystem.
In EUROCRYPT’88, LNCS 330, pages 275–280. Springer, Heidelberg, May 1988.

MMT11. A. May, A. Meurer, and E. Thomae. Decoding random linear codes in Õ(20.054n). In ASI-
ACRYPT 2011, LNCS 7073, pages 107–124. Springer, Heidelberg, December 2011.

37

MO15. A. May and I. Ozerov. On computing nearest neighbors with applications to decoding of binary
linear codes. In Advances in Cryptology - EUROCRYPT 2015, LNCS 9056, pages 203–228.
Springer, 2015.

MS86. F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North–Holland,
Amsterdam, fifth edition, 1986.

MT23. C. Meyer-Hilfiger and J.-P. Tillich. Rigorous foundations for dual attacks in coding theory. In
Theory of Cryptography Conference, TCC 2023, LNCS. Springer Verlag, December 2023. to
appear.

Obe07. U. Oberst. The fast fourier transform. SIAM journal on control and optimization, 46(2):496–540,
2007.

Ope. OpenSSL Project. OpenSSL cryptography and SSL/TLS toolkit. https://www.openssl.org/.
Accessed: 2024-02-12.

Ove06. R. Overbeck. Statistical decoding revisited. In Information security and privacy : 11th Aus-
tralasian conference, ACISP 2006, LNCS 4058, pages 283–294. Springer, 2006.

Pet10. C. Peters. Information-set decoding for linear codes over Fq. In The Third International Work-
shop on Post-Quantum Cryptography, PQCRYPTO 2010, pages 81–94. Springer, Heidelberg,
May 2010.

Pra62. E. Prange. The use of information sets in decoding cyclic codes. IRE Transactions on Information
Theory, 8(5):5–9, 1962.

PSWW18. B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. Efficient circuit-based PSI via cuckoo
hashing. In EUROCRYPT 2018, Part III, LNCS 10822, pages 125–157. Springer, Heidelberg,
April / May 2018.

Rab81. M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard
University,, 1981.

Roy22. L. Roy. SoftSpokenOT: Quieter OT extension from small-field silent VOLE in the minicrypt
model. In CRYPTO 2022, Part I, LNCS 13507, pages 657–687. Springer, Heidelberg, August
2022.

RR. P. Rindal and L. Roy. libOTe: an efficient, portable, and easy to use oblivious transfer library.
https://github.com/osu-crypto/libOTe.

RRT23. S. Raghuraman, P. Rindal, and T. Tanguy. Expand-convolute codes for pseudorandom correla-
tion generators from LPN. In Advances in Cryptology - CRYPTO 2023 - 43rd Annual Interna-
tional Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023,
Proceedings, Part IV, Lecture Notes in Computer Science 14084, pages 602–632. Springer, 2023.

RS21. P. Rindal and P. Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI from vector-OLE. In
EUROCRYPT 2021, Part II, LNCS 12697, pages 901–930. Springer, Heidelberg, October 2021.

S+24. W. Stein et al. Sage Mathematics Software (Version 10.2). The Sage Development Team, 2024.
http://www.sagemath.org.

Sen11. N. Sendrier. Decoding one out of many. In Post-Quantum Cryptography 2011, LNCS 7071, pages
51–67, 2011.

Sen23. N. Sendrier. Wave parameter selection. In Post-Quantum Cryptography, pages 91–110, Cham,
2023. Springer Nature Switzerland.

SGRR19. P. Schoppmann, A. Gascón, L. Reichert, and M. Raykova. Distributed vector-OLE: Improved
constructions and implementation. In ACM CCS 2019, pages 1055–1072. ACM Press, November
2019.

Ste89. J. Stern. A method for finding codewords of small weight. Coding Theory and Applications,
388(10):106–113, 1989.

TE76. R. E. Twogood and M. P. Ekstrom. An extension of Eklundh’s matrix transposition algorithm
and its application in digital image processing. IEEE Trans. Comput., 25(9):950–952, sep 1976.

Tor17a. R. C. Torres. Asymptotic analysis of isd algorithms for the q-ary case. Proceedings of the Tenth
International Workshop on Coding and Cryptography WCC 2017, 2017.

Tor17b. R. C. Torres. Optimizing bjmm with nearest neighbors:full decoding in 22/21n and mceliece
security. WCC Workshop on Coding and Cryptography WCC 2017, 2017.

Wag02. D. Wagner. A generalized birthday problem. In Advances in Cryptology - CRYPTO 2002, LNCS
2442, pages 288–303. Springer, 2002.

Wil21. W. Willems. Codes in group algebras, chapter 16. Chapman and Hall/CRC, 2021.
Yao86. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages

162–167. IEEE Computer Society Press, October 1986.

38

https://www.openssl.org/
https://github.com/osu-crypto/libOTe
http://www.sagemath.org

Appendix

A PCGs from the QA-SD assumption

In this section, we recall the construction of PCGs from the Quasi-Abelian Syndrome Decoding as-
sumption (QA-SD) which was introduced in [BCCD23], and properly defined in Appendix A. We
start with a short overview of the PCG construction over Fq of Bombar et al. [BCCD23]. Let
R = Fq[G] =

{∑
g∈G agg | ag ∈ Fq

}
, with G an abelian group. We refer to Rt as the set of ring

elements of R of weight at most t. The goal is to construct a PCG that would achieve the function-
ality described in Fig. 13.

Ideal Functionality QA-SDOLE−Setup

Parameters: Security parameter 1λ, PCGOLE = (PCGOLE.Gen,PCGOLE.Expand) as per Fig. 14.
Functionality:
1: Sample (k0, k1)← PCGOLE.Gen(1

λ).

2: Output kσ to party Pσ for σ ∈ {0, 1}.

Fig. 13: Functionality QA-SDOLE−Setup.

The protocol is described in Fig. 14. The goal of the OLE correlation is to give the two parties a
pseudorandom xσ ∈ R, as well as an additive sharing of the product x0·x1. To achieve this, the authors
constructed the framework on the Quasi-Abelian Syndrome Decoding assumption. The players first
have access to a vector a = (1, a1, · · · , ac−1) of elements in R, publicly. Taking advantage of the
canonical notion of the sparseness ofR, players can define xσ = ⟨a, eσ⟩, where eσ = (e0σ, · · · , ec−1

σ) is a
vector of t-sparse elements ofR, for a given t. Because of the QA-SD assumption, xσ is pseudorandom.
Giving the parties additive sharing of x0 · x1 can be achieved via Function Secret Sharing. Indeed,
x0 ·x1 = ⟨a, e0⟩+ ⟨a, e1⟩ can be fully expressed via the elements in (e0⊗e1), and the public elements
in the expression a⊗ a. Therefore we want to obtain an additive sharing of (e0 ⊗ e1). Because each
eiσ are t-sparse element in R, all the products ei0 · e

j
1 are t2-sparse element. Therefore they can easily

be concisely shared using t2 Single Point Function Secret Sharing (SPFSS). This enables the parties
to obtain a short seed kσ which contains their FSS keys to obtain the full evaluation and recover the
additive sharing of e0 ⊗ e1, as well as the descriptions of eσ. Later on, the parties can use their seed
to recover xσ and their additive share zσ of x0 · x1.

Theorem 20 ([BCCD23]). Let G be an Abelian group. Assume that SPFSS is a secure FSS scheme
for sums of point functions and that the QA-SD(q, c, t,G) assumption holds. Then there exists a generic
scheme to construct a PCG to produce one OLE correlation (described on Fig. 14). If the SPFSS is
based on a PRG : {0, 1}λ → {0, 1}2λ+2 via the PRG-based construction from [BGI16], we obtain:

• Each party’s seed has maximum size around : (ct)2 · ((log |G| − log t+ 1) · (λ+ 2) + λ+ log q) +
ct(log |G|+ log q) bits.

• The computation of Expand can be done with at most (2+ ⌊(log q)/λ⌋)|G|c2t PRG operations, and
O(c2|G| log |G|) operations in Fq.

B N-party MPC with Preprocessing from F4-OLEs

B.1 Secure computation in the FcBT-hybrid model

In this section, we show how to securely compute arbitrary Boolean circuits in the preprocessing
model, given access to an ideal functionality generating Beaver triples over F4. Because F4 is an

General construction of QA-SDOLE

Parameters: Security parameter λ, noise weight t = t(λ), compression factor c ≥ 2, G a finite abelian
group, R = Fq[G]. An FSS scheme (SPFSS.Gen,SPFSS.FullEval) for sums of t2 point functions, with
domain [0 . . . |G|) and range Fq.
Public Input: c− 1 random ring elements a1, . . . , ac−1 ∈ R.

PCG.Gen(1λ):
1: foreach σ ∈ {0, 1}, i ∈ [0 . . . c):

1.1: pi
σ ← (piσ,1, · · · , piσ,t)piσ,j∈G and vi

σ ← (F×
q)

t.

2: foreach i, j ∈ [0 . . . c):

2.1: Sample FSS keys (Ki,j
0 ,Ki,j

1)
$← SPFSS.Gen(1λ, 1n,pi

0 ⊗ pj
1,v

i
0 ⊗ vj

1).

3: Let kσ = ((Ki,j
σ)i,j∈[0...c), (p

i
σ,v

i
σ)i∈[0...c)).

4: Output (k0, k1).

PCG.Expand(σ,kσ):
1: Parse kσ as ((Ki,j

σ)i,j∈[0...c), (p
i
σ,v

i
σ)i∈[0...c)).

2: foreach i ∈ [0 . . . c):
2.1: Define the element of Rt,

eiσ =
∑

j∈[0...t)

bi
σ[j] · pi

σ[j].

3: Compute xσ = ⟨a, eσ⟩, where a = (1, a1, · · · , ac−1), eσ = (e0σ, · · · , ec−1
σ).

4: foreach i, j ∈ [0 . . . c):
4.1: Compute uσ,i+cj ← SPFSS.FullEval(σ,Ki,j

σ) and view it as a c2 vector uσ of elements in Rt2 .

5: Compute zσ = ⟨a⊗ a,uσ⟩.
6: Output xσ, zσ.

Fig. 14: PCG for OLE over R, based on QA-SD.

40

Ideal Functionality FcBT(F)

The functionality interacts with N parties P1, . . . , PN and an adversary A.
Functionality:
1: Wait for the input Corr ⊊ [N] from A consisting of the set of corrupted parties and a list

([[a]]i, [[b]]i, [[c]]i)i∈Corr of triples in F.

2: Wait for the command init from each party Pi for i /∈ Corr.

3: Sample ([[a]]i, [[b]]i, [[c]]i)i∈[N]\Corr ∈ F3 uniformly at random conditioned on

a · b =

(
N∑
i=1

[[a]]i

)
·

(
N∑
i=1

[[b]]i

)
=

N∑
i=1

[[c]]i.

4: Output ([[a]]i, [[b]]i, [[c]]i) to each party Pi for i /∈ Corr.

Fig. 15: Ideal corruptible functionality FcBT for sampling N -party Beaver triples over a field F.

extension field of F2, we note that simply replacing the F2-Beaver triples with F4-Beaver triples in
the classical instantiation of the GMW protocol in the preprocessing model works out-of-the-box.
However, doing so naïvely doubles the communication during the online phase, from 2 bits per AND
gate and per party to 4 bits per AND gate and per party (due to using masks over F4 instead of F2). In
the technical overview, we introduced an improved strategy, which first converts each F4-triple into an
F2-triple using one bit of communication per party, and then runs the standard GMW protocol over
F2. To formally prove this result, we introduce on Fig. 15 a corruptible functionality for generating
an N -party Beaver triple over a field F. Here, corruptible means that the adversary can freely choose
the shares obtained by the corrupted parties; it is known that this functionality suffices to securely
instantiate GMW [BCG+19b] and can be securely instantiated given a programmable PCG for OLE
over F [BCG+20b]. That is:

Theorem 21 ([BCG+19b, Theorem 19, Theorem 41]). Assume that there is a programmable
PCG for generating m OLEs over F. Then there exists a protocol securely realizing m calls to the
functionality FcBT(F) in Fig. 15 using N · (N − 1) instances of a protocol to securely distribute the
seeds of the PCG, and no further communication.

We formally state our construction as a protocol ΠBT(F4 → F2) that securely instantiates the
FcBT(F2) functionality in the FcBT(F4)-hybrid model, using a single call to FcBT(F4) and one bit of
communication per party. The protocol is represented in Fig. 16.

Protocol ΠBT(F4 → F2)

Protocol:
1: The parties invoke the functionality FcBT(F4) with init. Each party Pi receives a triple

([[a]]4i , [[b]]
4
i , [[c]]

4
i) ∈ F3

4.

2: Each party Pi broadcasts [[b]]4i (1). All parties reconstruct b(1) =
∑N

i=1[[b]]
4
i (1).

Output: Each party Pi outputs ([[a]]4i (0), [[b]]
4
i (0), [[c]]

4
i (0) + b(1) · [[a]]4i (1)).

Fig. 16: An N -party protocol ΠBT(F4 → F2) that securely realizes the FcBT(F2) functionality in the FcBT(F4)-
hybrid model.

Lemma 22. The protocol ΠBT(F4 → F2) of Fig. 16 securely realizes the FcBT(F2) corruptible func-
tionality in the FcBT(F4)-hybrid model, using one bit of communication per party and a single call to
FcBT(F4).

41

Combining this lemma with the GMW protocol yields:

Corollary 23. There exists an N -party computation protocol that securely evaluates all Boolean cir-
cuits with m AND gates in the preprocessing model using m calls to the FcBT(F4) functionality. The
protocol uses N ·m bits of communication in the preprocessing phase, and two bits of communication
per AND gate and per party in the online phase.

Proof of Lemma 22.

Proof. Sim emulates the FcBT(F4) functionality, and receives from A the set Corr ⊊ [N] of corrupted
parties and the list ([[a]]4i , [[b]]4i , [[c]]4i)i∈Corr of corrupted triples over F4. On behalf of each honest party
Pi for i /∈ Corr, Sim broadcast a uniformly random bit [[b]]4i (1). Then, Sim reconstructs b(1) ←∑N

i=1[[b]]
4
i (1) and sends ([[a]]4i (0), [[b]]4i (0), [[c]]4i (0)+b(1)·[[a]]4i (1))i∈Corr to the ideal functionality FcBT(F2)

on behalf of the ideal adversary. As the [[b]]4i (1) are sampled uniformly and independently at random by
FcBT(F4), it only remains to show that the honest parties output in an execution of ΠBT(F4 → F2) is
distributed as the output of the adversaries from FcBT(F2) in the simulated game. In turn, this follows
immediately from the fact that from the viewpoint of A, the shares [[a]]4i (0), [[b]]

4
i (0) are uniformly

distributed for every i /∈ Corr, and the values [[c]]4i (0) + b(1) · [[a]]4i (1) for i /∈ Corr form uniformly
random shares of

∑
i/∈Corr

(
[[c]]4i (0) + b(1) · [[a]]4i (1)

)
=

N∑
i=1

(
[[c]]4i (0) + b(1) · [[a]]4i (1)

)
− C

= a(0)b(0) + a(1)b(1) + b(1) · a(1)− C

= a(0)b(0)− C,

where C ←
∑

i∈Corr[[c]]
4
i (0) + b(1) · [[a]]4i (1) denote the sum of the corrupted parties’ last output. This

concludes the proof.

B.2 An improved protocol for N = 2 parties

In the previous section, we described how N parties can construct an F2-triple using one invocation
to FcBT(F4) and N bits of communication. Typically, the functionality FcBT(F4) is realized by making
N · (N − 1) calls to a (programmable) OLE functionality over F4. When N = 2, this translates to
using two calls to the OLE functionality, and two bits of communication. In this section, we introduce
an improved construction, where N = 2 parties generate a Beaver triple over F2 using a single call
to an OLE functionality over F4, and no communication. The corruptible functionality for generating
OLEs over F4 is represented on Fig. 17.

Ideal Functionality FcOLE(F)

The functionality interacts with 2 parties A, B and an adversary A.
Functionality:
1: Wait for an input (Corr, u, v) ∈ {A,B,⊥}× F× F from A, and for the command init from each party.

2: If Corr = ⊥, sample (a, b, [[ab]]A)
$← F3 and set [[ab]]B ← a · b − [[ab]]A. If Corr = A, sample b

$← F, set
(a, [[ab]]A)← (u, v) and [[ab]]B ← a · b− [[ab]]A. If Corr = B, sample a

$← F, set (b, [[ab]]B)← (u, v) and
[[ab]]A ← a · b− [[ab]]B .

3: Output (a, [[ab]]A) to A and (b, [[ab]]B) to B.

Fig. 17: Ideal corruptible functionality FcOLE(F) for sampling an OLE correlation over a field F.

In Fig. 18, we represent our protocol for realizing FcBT(F2) when N = 2 in the FcOLE(F4)-hybrid
model.

42

Protocol Π(F4OLE→ F2BT)

Protocol:
1: The parties invoke the functionality FcOLE(F4) with init, and receive (a, [[ab]]4A) and (b, [[ab]]4B), respec-

tively.

Output:
Alice outputs (a(0), a(1), a(0)a(1) + [[ab]]4A(0)) and Bob outputs (b(1), b(0), b(0)b(1) + [[ab]]4B(0)).

Fig. 18: A 2-party protocol Π(F4OLE → F2BT) that securely realizes the FcBT(F2) functionality in the
FcOLE(F4)-hybrid model.

Lemma 24. The protocol Π(F4OLE → F2BT) of Fig. 18 securely realizes the FcBT(F2) corruptible
functionality for N = 2 parties in the FcOLE(F4)-hybrid model, using no communication and a single
call to FcOLE(F4).

We refer the reader to the technical overview (Section 2.4) for the correctness analysis. The proof
of security is straightforward and we omit it.

C Complexity of Informations Set Decoding algorithms over Fq

In this section, we provide a detailed framework for the ISD algorithm, discussing its primary vari-
ations. We conduct a thorough analysis of the complexity associated with each variant, aiming to
determine the most suitable choice for addressing our QA-SD assumption. Deep analysis has been
conveyed on these algorithms, to improve their asymptotic complexity, but this has mainly been done
for ISD over F2. This is all the more true in our context: due to the significant size of the involved
matrices, we have to take into account the polynomial factors coming from linear algebra which are
usually neglected when doing asymptotic analysis. Hence, we present a comprehensive analysis that
considers polynomial factors, particularly over Fq. It’s worth noting that the general case of Fq has
been explored in some previous works [Pet10,Tor17a,BCDL19]. We will primarily describe the over-
arching framework provided by [DA23], along with relevant findings from [Sen23], tailored to our
specific scenario.

Let us consider the syndrome decoding assumption in its search variant: given a matrix H ∈
F(n−k)×n
q and y ∈ Fn−k

q , find e ∈ Fn
q such that the weight of e achieves a certain target t. The

general idea behind all ISD algorithms is to pick randomly what is called an information set. For
a set I ⊂ [0, n − 1], we define by I it’s complementary in [0, n − 1]. For a matrix H, we denote
by HI the restriction of H to the columns indicated by I, and for a vector e, we write eI for the
restriction of e to the entries indexed by I. Given a parity check matrix H, an information set is
defined by I ⊂ [0, n − 1], |I| = k + ℓ, ℓ ∈ N, and HI is full rank. The upcoming discussion relies on
the ISD framework outlined by [DA23]. While [Sen23] also offers a comparable general framework, it
introduces a permutation matrix to denote an information set, a classic selection for clarity reasons.
However, in practical applications, this approach introduced overheads due to matrix multiplication.
Consequently, we have opted not to pursue it.

General ISD framework. Consider two parameters 0 ≤ ℓ ≤ n− k and 0 ≤ p ≤ min(t, k + ℓ)

1. Pick randomly a subset I ⊂ [0, n− 1], |I| = k + ℓ, until HI is full rank.
2. Perform a Gaussian elimination to compute a non-singular matrix U ∈ F(n−k)×(n−k)

q such that

UHI =

[
In−k−ℓ

0

]
, and compute s̃ = Us. Write UHI =

[
H1

H2

]
.

3. Compute L ⊂ {e2 ∈ Fk+ℓ
q , wH(e2) = p,H2e2 = s̃I} according to a given ISD-subroutine.

4. Find a e2 ∈ L such that e1 = s̃I−H1e2 has weight t−p. If no such e2 is found, return to Step 1.

If it is found, return the vector e such that e ∈ Fn
q and He = s

[
e1
e2

]
.

An ISD algorithm is an iterative algorithm that loops until it finds a solution. The algorithm
is therefore probabilistic, with its iterations being independent, and its complexity is given by the

43

complexity of Steps 2 and 3, multiplied by the number of iterations (i.e., the inverse of the probability
of finding an information set for which the procedure terminates). An instance of the general ISD
algorithm is given by the choice of the parameters (ℓ, p) and of the ISD subroutine to compute L.
Next, based on the work of Sendrier [Sen23], we expose the practical complexity of the different
variants of the ISD algorithm defined above and take into account some polynomial factors while
being conservative.

Remark 25. In this analysis, we do not consider the modern and more recent attacks on syndrome
decoding using nearest neighbors search [Tor17b,BM18], as they are not considered to be practical,
even in the binary field case. To the best of our knowledge, there has been no work on extending
these algorithms to the general case of Fq, and we believe that it would not be practical in our range
of parameters.

We denote by T (n, k, q, ∗) the complexity of a given ISD, ∗ indicating here the different parameters
of the variant considered to be tuned. As stated before an ISD algorithm is by essence probabilistic,
and its complexity can be formulated like this:

T (n, k, q, t, ∗) = TG(n, k, q, ∗) + CS(n, k, q, ∗)
PS(n, k, q, t, ∗)

,

where TG(n, k, q, ∗) counts the costs of the Gaussian elimination done at each iteration, CS(n, k, q, ∗) is
the complexity of the subroutine chosen for this ISD, and PS(n, k, q, t, ∗) the probability of randomly
selecting an Information Set that led to a solution.

Remark 26 (Gaussian Elimination Cost). For our estimations, we consider the following cost

TG(n, k, q, p, ℓ) = (n− k − ℓ)n.

In other words, we consider here that Gaussian elimination costs just as much as the size of the
matrix, which is a very conservative lower bound.

C.1 Stern/Dumer

The algorithm proposed by Stern [Ste89] and independently by Dummer [Dum89] corresponds to the
case where we consider the following subroutine:

1. We create two lists

L1 =

{
(e0 =

[
e′

0

]
,H2e0), e

′ ∈ F
k+ℓ
2

q , wH(e′) =
p

2

}
L2 =

{
(e′0 =

[
0
e′

]
, (s̃I −H2e

′
0), e

′ ∈ F
k+ℓ
2

q , wH(e′) =
p

2

}
each list is of size |L1| = |L2| =

(
(k+ℓ)/2

p/2

)
(q − 1)p/2.

Complexity: O(|L1|).

2. Search for all pairs ((e0,H2e0), (s̃I−H2e
′
0)) ∈ ×L2 such that H2 ·e0 = s̃I−H2e

′
0, and construct

the list

L = {e0 + e′0, ((e0,H2e0), (e
′
0, s̃I −H2e

′
0) ∈ L1 × L2,H2 · e0 = s̃I −H2e

′
0}.

The list L created like this satisfies that

L ⊂ {e2 ∈ Fk+ℓ
q , wH(e2) = p,H2e2 = s̃I}.

The size of the list is |L| =
(
(k+ℓ)/2

p/2

)2
(q − 1)pq−l.

Complexity: O(max(|L1|, |L|)).

3. We perform Step 4 of the general ISD framework to find e1 of weight t− p.

44

Complexity: O(|L|(n− k − ℓ)(k + ℓ)).

Proposition 27 (Stern Algorithm). The complexity of an iteration of the Stern algorithm is given
by

CS(n, k, q, p, l) = O(|L|(n− k − ℓ)(k + ℓ) + max(|L1|, |L|) + |L1|)

with

|L1| =
(
(k + ℓ)/2

p/2

)
(q − 1)p/2 |L| =

(
(k + ℓ)/2

p/2

)2

(q − 1)pq−l

and the probability of finding a solution is

PS(n, k, q, t, p, l) =

(
k+ℓ
p

)(
n−k−ℓ
t−p

)(
n
t

) ·

(
(k+ℓ)/2

p/2

)2(
k+ℓ
p

) =

(
(k+ℓ)/2

p/2

)2(n−k−ℓ
t−p

)(
n
t

) .

Remark 28. The probability of success is obtained as the probability of having an error vector that
has exactly p errors on the chosen information set (first fraction) multiplied by the probability that
the error on the information set is equally distributed into the two halves of the corresponding vector
eI .

Remark 29. The complexity given at Step 1 and 2 is voluntarily given without any polynomial co-
efficient, for conservative purposes. In fact, for each element of the lists, we have to perform the
computation of s̃I − H2e

′
0. This costs naively ℓ(ℓ + k) per element in the list (for a total cost of

O(ℓ(ℓ + k)|L1|). Second, we have to check for equality among vectors of size l, and this costs l for
each element in the list (for a total cost of O(max(|L1|, |L|) · ℓ). Nevertheless, some optimization
exists for these Steps (see [Pet10]). Therefore, we chose to stick with O(|L1|) and O(max(|L1|,L|)),
as conservative lower bounds.

Corollary 30 (Prange and Lee Brickell complexities). The Prange [Pra62] algorithm is a very
particular case of the Stern algorithm with p = 0, ℓ = 0 and no subroutine. In the case of Prange, we
have

C(n, k, q, t) = 0 PS(n, k, q, t) =

(
n−k
t

)(
n
t

) .

The same goes for the Lee-Brickell algorithm [LB88], by taking ℓ = 0 with only p to optimize, and no
subroutine. In the case of Lee-Brickell, we therefore have:

C(n, k, q, t) = 0 PS(n, k, q, t) =

(
k
p

)(
n−k
t−p

)(
n
t

) .

C.2 MMT

The MMT algorithm [MMT11] of May et al. introduced the representation technique. They remark
that we can split a given vector e of weight p into R different sums of two vectors e1 and e2, of the
same size but weight p/2, and disjoint support.

e = e1 + e2, wH(e1) = p/2, wH(e2) = p/2.

Remark that H2e = s̃I implies H2e1 = s̃I −H2e2. Therefore they create L1,0 ⊂ {H2e1, wH(e1) =
p/2} and L1,1 ⊂ {s̃I −H2e2, wH(e2) = p/2} and look for possible collisions. R is called the number
of representations, and we have that

R =

(
p

p/2

)
.

Let 0 ≤ r = logq(R) ≤ l. The subroutine is as follows:

45

1. For 0 ≤ i ≤ 1, construct the following lists

Li,0 =

{
(e0 =

[
e′

0

]
,H2e0), e

′ ∈ F
k+ℓ
2

q , wH(e′) =
p

4

}
,

Li,1 =

{
(e′0 =

[
0
e′

]
, s̃I −H2e

′
0), e

′ ∈ F
k+ℓ
2

q , wH(e′) =
p

4

}
.

The size of each list is |L0,0| = |L0,1| = |L1,0| = |L1,1| =
(
(k+ℓ)/2

p/4

)
(q − 1)p/4.

Complexity: O(|L0,0|).

2. For 0 ≤ i ≤ 1, and given a fix set of r entries, search for all pairs ((e0,H2e0),
(e′0, s̃I −H2e

′
0)) ∈ Li,0 ×Li,1 such that H2 · e0 = s̃I −H2e

′
0 on the r entries. Construct the list

Li,2 = {e0 + e′0, (e0,H2e0), (e
′
0, s̃I −H2e

′
0)) ∈ Li,0 × Li,1,H2e0 = s̃I −H2e

′
0}.

We have that
Li,2 ⊂ {e2 ∈ Fk+ℓ

q , wH(e2) = p/2,H2e2 = s̃I}.

The size of the lists resulting from the merge is |L0,2| = |L1,2| = |L0,0|2/qr.

Complexity: O(max(|L0,0|, |L0,2|)).

3. Merge the two previous lists again, to obtain L which contains vectors of size k+ ℓ, weight p, and
with the appropriate fixed value for the remaining ℓ− r coordinates of their syndromes. The size
of the resulting list is |L| = |L0,0|4/ql+r.

Complexity: O(max(|L0,2|, |L|)).

4. We perform Step 4 of the general ISD framework to find e1 of weight t− p.

Complexity: O(|L|(n− k − ℓ)(k + ℓ)).

Proposition 31 (General MMT algorithm). The complexity of an iteration of the MMT algo-
rithm is given by

CS(n, k, q, p, l) = O(|L|(n− k − ℓ)(k + ℓ) + max(|L0,0|, |L0,2|, |L|) + L0,0)

with

|L0,0| =
(
(k + ℓ)/2

p/4

)
(q − 1)p/4 |L0,2| =

(
(k + ℓ)/2

p/4

)2

(q − 1)p/2q−r

|L| =
(
(k + ℓ)/2

p/4

)4

(q − 1)pq−ℓ−r R =

(
p

p/2

)
r = logq(R)

and the probability of finding a solution is

PS(n, k, q, t, p, l) =

(
k+ℓ
p

)(
n−k−ℓ
t−p

)(
n
t

) ·

(
(k+ℓ)/2

p/4

)4
(
k+ℓ
p/2

)2 .

Remark 32. The probability of success is obtained as the probability of having an error vector that
has exactly p errors on the chosen Information Set (first fraction) multiplied by the probability that
e1 has p/2 errors equally distributed into its two halves, multiplied again by the probability that e1
has p/2 errors equally distributed into its two halves.

46

=

+

e

e1

e2

p

p/2− ε1

p/2− ε1 2ε1 ε2

2ε1 ε2

Fig. 19: BJMM representations

C.3 BJMM

The algorithm introduced by Becker et al. [BJMM12], proposes an improvement of the MMT algo-
rithm, by increasing the number of representations one can get. Their idea follows the approach of
MMT, except that an additional parameter ε is introduced. Let p1 = p/2 + ε. Their idea is still to
write a vector e ∈ Fk+ℓ

q , of weight p as a sum.

e = e1 + e2

but now we want to allow their support to coincide on a proportion ε, and we ask that wH(e1) =
wH(e2) = p1.

The support of e1 and e2 can coincide in two different ways: either the sum of the entries vanishes,
or they do not vanish. For this reason, we split ε = ε1 + ε2. For e to have a support of size p, the
support of e1 and e2 should coincide on the same 2ε1+ε2 entries, and be distinct on the other p/2−ε1
entries, as represented in Figure 19. The number of representations is therefore given by

R =
∑

ε1+ε2=ε

(
p

p/2− ε1

)(
p/2 + ε1

2ε1

)(
k + ℓ− p

ε2

)
(q − 1)2ε1+ε2 .

Let r = logq(R). The subroutine is as follows:

1. For 0 ≤ i ≤ 1 construct the following lists

Li,0 =

{
(e0 =

[
e′

0

]
,H2e0), e

′ ∈ F
k+ℓ
2

q , wH(e′) =
p1
2

}
,

Li,1 =

{
(e′0 =

[
0
e′

]
, s̃I −H2e

′
0), e

′ ∈ F
k+ℓ
2

q , wH(e′) =
p1
2

}
.

The size of each list is |L0,0| = |L0,1| = |L1,0| = |L1,1| =
(
(k+ℓ)/2
p1/2

)
(q − 1)p1/2.

Complexity: O(|L0,0|).

2. For 0 ≤ i ≤ 1, and given a fix set of r entries, search for all pairs (e0, e
′
0) ∈ Li,0 × Li,1 such that

H2 · e0 = s̃I −H2e
′
0 on the r entries. Construct the list

Li,2 = {e0 + e′0, (e0,H2e0), (e
′
0, s̃I −H2e

′
0)) ∈ Li,0 × Li,1,H2 · e0 = s̃I −H2e

′
0}.

We have that

Li,2 ⊂ {e2 ∈ Fk+ℓ
q , wH(e2) = p1/2,H2e2 = s̃I}

The size of the lists resulting from the merge is |L0,2| = |L1,2| = |L0,0|2/qr.

Complexity: O(max(|L0,0|, |L0,2|)).

3. Merge the two previous lists again, to obtain L which contains vectors of size k+ ℓ, weight p, and
with the appropriate fixed value for the remaining ℓ− r coordinates of their syndromes. The size
of the resulting list is |L| = |L0,0|4/ql+r.

47

Complexity: O(max(|L0,2|, |L|)).

4. We perform Step 4 of the general ISD framework to find e1 of weight t− p.

Complexity: O(|L|(n− k − ℓ)(k + ℓ)).

Proposition 33 (BJMM algorithm). The complexity of an iteration of the BJMM algorithm is
given by

CS(n, k, q, p, l, ε) = O(|L|(n− k − ℓ)(k + ℓ) + max(|L0,0|, |L0,2|, |L|) + L0,0)

with

|L0,0| =
(
(k + ℓ)/2

p1/2

)
(q − 1)p1/2 |L0,2| =

(
(k + ℓ)/2

p1/2

)2

(q − 1)p1q−r

|L| =
(
(k + ℓ)/2

p1/2

)4

(q − 1)2p1q−ℓ−r p1 = p/2 + ε

and

R =
∑

ε1+ε2=ε

(
p

p/2− ε1

)(
p/2 + ε1

2ε1

)(
k + ℓ− p

ε2

)
(q − 1)2ε1+ε2

r = log(R)

and the probability of finding a solution is

PS(n, k, q, t, p, l, ε) =

(
k+ℓ
p

)(
n−k−ℓ
t−p

)(
n
t

) ·

(
(k+ℓ)/2
p1/2

)4
(
k+ℓ
p1

)2 .

Remark 34. The probability of success is obtained as the probability of having an error vector that
has exactly p errors on the chosen Information Set (first fraction) multiplied by the probability that
e1 has p1 errors equally distributed into its two halves, multiplied again by the probability that e2
has p1 errors equally distributed into its two halves.

Remark 35. We want to stress the fact that in the case of the MMT and BJMM-like attacks, our
estimations are quite conservative, as we do not take into account the costs implied by the memory
calls. In our range of parameters, they should not be discarded in practice. Indeed, the memory size
is about the size of the biggest lists computed, therefore

M(n, k, q, p, l) ≈ max(|L0,2|, |L1,1|, |L|),

which can be be over 250, and entails an overhead in the computation time. This is often neglected
in the literature.

D Faster seed expansion from hashing (application to silent OT)

In this section, we describe how to combine hashing techniques with our PCG construction to reduce
the number of DPFs required to share the noise vector. This has the advantage of making seed
expansion faster with the number of PRGs operations being O(2|G|), but comes at the cost of requiring
a trusted setup. As such, this optimization is primarily suited to silent-OT applications where a trusted
setup process is assumed.

48

D.1 Faster seed expansion

We propose a better fQA-SDOLE scheme in terms of seed expansion efficiency that is based on the
DPF scheme and hashing techniques. First, we take advantage of Cuckoo hashing and simple hash-
ing [KKRT16, PSWW18, BC23, RS21] to distribute the noise positions. After that, we use a DPF
scheme for each bin to obtain the shares of value in each noise position by using a DPF for each bin.
In general, using our Cuckoo hashing trick, we obtain a faster seed expansion but need to assume
a trusted dealer because the Doerner-shelat protocol does not apply out-of-the-box. However, our
fQA-SDOLE construction has an advantage compared to the QA-SDOLE protocol, i.e., the computation
cost of Expand is smaller and independent of t (number of noisy coordinates). Concretely, the number
of PRG operations is reduced from O(t|G|) to O(2|G|). Just as with the QA-SDOLE construction, our
fQA-SDOLE construction can be used to obtain OLE correlation over any finite field F (except for F2),
however, to be consistent with the concept of our main contribution, we cast our fQA-SDOLE over F3

for concrete efficiency.

D.1.1 Hashing technique. We fix K random hash functions h1, · · · , hK , where hi : G→ [m] and
m = O(n). Using these K hash functions, the formal definition and parameter choices of Cuckoo
hashing and simple hashing schemes (similarly as in PSI works [KD08,KKRT16,BC23,RS21]) are as
follows:

1. Cuckoo hashing schemes with parameters (G,K,m, n) enable mapping a set of n item into a
table T of size m using K hash functions (hi)i≤K such that each bin in T has at most one item.
The algorithm takes an item x ∈ G and inserts it into the bin T [h1(x)], if this bin is occupied
then evicts the item in this bin and relocates it using h2, this process continues until all items are
inserted in table T . The hashing algorithm can fail if a cycle eviction is found or a threshold number
of relocations has been performed, this failure can be avoided with high probability by choosing
appropriate parameters (K,m, n) or using a stash to store the last item in each cycle eviction
if it exists [PSWW18]. Here, we choose the parameters such that K = 2,m = 2n [BC23,RS21],
and do not use a stash. Looking ahead, this will imply that insertion will have a noticeable
failure probability; however, we will show that in this case, the trusted dealer can simply re-
sample the noise vector until insertion succeeds. This induces a small bias on the noise, but a
straightforward reduction shows that it does not harm the security of the underlying syndrome
decoding assumption (if the insertion fails with probability α, then the reduction loses a factor
α in the advantage). For K = 2, m = 2n, the failure probability of Cuckoo hashing is known to
be
√
2/3 + o(1) [KD08], which translates to a small constant security loss. We note in passing

that the same observation applies to the use of Cuckoo hashing in a previous work [SGRR19] and
allows them to reduce the computational overhead of their LPN-based construction from 3 to 2
compared to their regular LPN-based construction.

2. Simple hashing with parameters (G,K,m) uses K hash functions (hi)i≤K to insert each item
x ∈ G to the bin B[hi(x)] of a table B of size m. With very high probability, for m = O(n log n)
bins, the maximum possible items per bin is O(logm). In particular, by the randomness of hash
functions, with high probability, the maximum number of items per bin (denoted as max_load) is
bounded by 3 lnm

ln lnm . That is, Pr
[
max_load ≥ 3 lnm

ln lnm

]
≤ 1

m . To estimate our concrete efficiency, we
highlight the total number of items in all bins always is K · |G| since each item in G is mapped
to K bins using different K hash functions.

D.1.2 OLE from hashing techniques. In our construction we have G =
∏n

i=1 Z/(q − 1)Z.
Because we are working over F4, |G| = 3n. We later work on “balls and bins” where each bin has a
different number of balls and is associated with a DPF to distributed shares of a point vector then
we make use of notation DPFn for DPF scheme with arbitrary domain [n].

We reuse all notations defined in Section 2.5, the intuition of the construction is the same as
in Section 2.5 except that we provide a more efficient way to distribute the position of noise coordinates
before using the DPF to give each party the shares of point vector. Briefly, to construct an OLE
correlation over the ring R, we want to give the parties shares of x0 ·x1. Note that x0 ·x1 is a degree-2
function in (e0, e1); therefore, it suffices to share e0 ⊗ e1. Since e0, e0 ∈ Rc

t both are sparse vectors
of weight t over Rt, where the product of two sparse vectors is a sparse vector with sparsity t2. So
the goal here is to securely distribute the tensor e0 ⊗ e1 to both parties as in other existing PCGs

49

(Figure 1 and Figure 14). Note that eσ = (e0σ, · · · , ec−1
σ), σ ∈ {0, 1} and each random eiσ ∈ Rt is

defined by a pair of vectors pi
σ ∈ |G|t,vi

σ ∈ Ft
3 (can be considered as set of positions of non-zero

entries of a vector over Rt and the corresponding values of these entries). Then, e0 ⊗ e1 is defined as
a vector over Rt2 where (vi

0 ⊗ vj
1)[k], k ∈ [t2] is the value of entry in position (pi

0 ⊗ pj
1)[k].

Now, the seed generation and seed expansion are processed as follows. Simple hashing is applied
to all elements in the group G to get a table B of size m where each bin in this table contains
elements of G and items in all bins are sorted in some canonical order. Then Gen uses Cuckoo hashing
and distributes each entry (pi

0 ⊗ pj
1)[k] of pi

0 ⊗ pj
1 to only one bin (denote lk) of a table T of size

m = O(t2) while in simple hashing this entry is inserted to K bins {i1, · · · , iK} instead of one (note
that lk ∈ {i1, · · · , iK}), then

1. For bin lk, using DPF|Blk
|.Gen to generate keys such that the point function is defined by position

in bin lk where (pi
0 ⊗ pj

1)[k] is inserted and the value output shared is (vi
0 ⊗ vj

1)[k],
2. For other bins {i1, · · · , iK} \ {lk}, in the position where (pi

0⊗pj
1)[k] is inserted, the value shared

is 0.

The formal constructions of key generation and key expansion are shown in Figure 20 and Figure 21
respectively.

Theorem 36. Let R = F4[G] = F4[X1, . . . , Xn]/(X
3
1−1, . . . , X3

n−1) where G =
∏n

i=1 Z/3Z. Assume
that DPFn is a secure FSS scheme for point function with domain n and that the QA-SD(c, t,G)
assumption holds. Then, there exists a generic construction scheme to construct a PCG to produce
one OLE correlation (described in Figure 20 and Figure 21). Using the DPF [BGI16] based on a PRG
G : {0, 1}λ → {0, 1}2λ+2 and Cuckoo hashing scheme parameters (G,K,m, t2) then we obtain:

– Each party’s seed has maximum size: c2·(0.9m)·((log(3)n−log t+1)·(λ+2)+λ+2)+4t·(log(3)n+2)
bits.

– The computation of Expand can be done with at most (2 + ⌊2/λ⌋) · (K3n) · c2 PRG operations,
and O(c2 · (log(3)n) · 3n) operations in F4.

Proof sketch. The security of our construction is based on the security of FSS scheme and is followed
the same as in [BCG+20b,BCCD23] since (1) The parameter of the simple hashing scheme is public
then both parties can self-compute the table B obtained from this scheme (2) and pi

0⊗p
j
1 and vi

0⊗v
j
1

are mapped to the table Ti,j by using Cuckoo hashing scheme later they are inputs of DPF.
Now we argue the correctness and efficiency in turn.

Correctness. First, note that

ei0 · e
j
1 =

 ∑
k∈[0...t)

vi
σ[k] · pi

σ[k]

 ·
 ∑

l∈[0...t)

vj
σ[l] · pj

σ[l]

=

∑
k,l∈[0...t)

(
vi
0[k] · v

j
1[l]
)
·
(
pi
0[k] · p

j
1[l]
)
=

∑
k∈[0...t2)

(vi
0 ⊗ vj

1)[k] · (pi
0 ⊗ pj

1)[k].

Observe that u0,i+cj [k] + u1,i+cj [k] =
∑K

l=1 (w0,lk [rk] +w1,lk [rk]) then from the correctness of DPF:

1. If k ∈ Ai,j i.e., k is inserted to table Ti,j using Cuckoo hashing scheme, denote t as the bin of
Ti,j where k is inserted then:

u0,i+cj [k] + u1,i+cj [k] = w0,t[rk] +w1,t[rk] = (vi
0 ⊗ vj

1)[k].

2. Otherwise, k /∈ Ai,j then u0,i+cj [k] + u1,i+cj [k] = 0.

Therefore,

u0 + u1 = ⟨a⊗ a, e0 ⊗ e1⟩ = ⟨a, e0⟩ · ⟨a, e1⟩ = x0 · x1.

Efficiency. We show how to obtain the party’s seed size and the computation cost of Expand in Theo-
rem 36 by using two optimizations which are tailored on the choice of Cuckoo’s parameters (to reduce
the number of bins) and regular noise distribution (to reduce a factor t in the number of PRG calls).

The formulas we get are adapted from [BCG+20b, BCCD23] for |G| = 3n and followed by our
optimizations.

50

Construction fQA-SDOLE

Parameters: Security parameter λ, noise weight t = t(λ), compression factor c = 4, ring R =
F4[X1, . . . , Xn]/(X

3
1 − 1, . . . , X3

n − 1).

– An DPFn scheme (DPFn.Gen,DPFn.FullEval) with an arbitrary domain [n] and range F4.
– K hash functions h1, · · · , hK : G→ [m].
– Cuckoo hashing and simple hashing schemes with parameters (G,K,m, t2) and (G,K,m) respectively

where m = O(t2).

Public Input: c− 1 vectors of length 3n over F4, for a1, · · · , ac−1 ∈ R.

fQA-SD.Gen (1λ):
1: foreach σ ∈ {0, 1}, i ∈ [0 . . . c):

1.1: Sample random vectors pi
σ ← (piσ,1, · · · , piσ,t)piσ,j∈G and vi

σ ← (F3)
t.

2: Hashing algorithm:
2.1: Use simple hashing scheme (G,K,m) to get a table B having m bins (Bi)i≤m such that:

Bi = {x ∈ G | ∃j ∈ [K] ∧ hj(x) = i}.

Each bin is sorted in some canonical order.
2.2: foreach i, j ∈ [0 . . . c):

2.2.1: Use the Cuckoo hashing scheme (G,K,m, t2) to insert pi,j := pi
0 ⊗ pj

1 to table Ti,j .
We denote each k-th entry value pi,j [k] of vector pi,j is inserted to the bin lk ∈ [m] of table
Ti,j i.e. Ti,j [lk] = pi,j [k] and when considering in bin Blk of table B (obtained from simple
hashing), denote the position of pi,j [k] as rk i.e. Blk [rk] = pi,j [k].

3: foreach i, j ∈ [0 . . . c), lk ∈ [m]:
3.1: If pi,j [k] = Ti,j [lk] and pi,j [k] = Blk [rk], sample DPF keys for each bin Blk :

(Ki,j
0,lk

,Ki,j
1,lk

)← DPF|Blk
|.Gen(1

λ, rk,v
i
0 ⊗ vj

1[k]).

3.2: Otherwise, generate randomly rk ←R |Blk | and sample DPF keys:

(Ki,j
0,lk

,Ki,j
1,lk

)← DPF|Blk
|.Gen(1

λ, rk, 0).

4: Let kσ = ((Ki,j
σ,lk

)i,j∈[0...c),lk∈[m], ((p
i
σ,v

i
σ)i∈[0...c)).

5: Output (k0, k1).

Fig. 20: Seed generation of fQA-SD over R, based on QA-SD and hashing techniques

51

Construction fQA-SDOLE

fQA-SD.Expand (σ,kσ):
1: Parse kσ as ((Ki,j

σ,lk
)i,j∈[0...c),lk∈[m], ((p

i
σ,v

i
σ)i∈[0...c)).

2: foreach i ∈ [0 . . . c):
2.1: Define the element of Rt:

eiσ =
∑

j∈[0...t)

vi
σ[j] · pi

σ[j].

3: Compute xσ = ⟨a, eσ⟩, where a = (1, a1, · · · , ac−1), eσ = (e0σ, · · · , ec−1
σ).

4: foreach i, j ∈ [0 . . . c):
4.1: ∀k ∈ [m], compute wσ,k ← DPF|Bk|.FullEval(σ,K

i,j
σ,k).

4.2: foreach k ∈ |G|:
4.2.1: ∀l ∈ [1,K], compute hl(k) = lk, then find the bin rk of k in bin Blk i.e., k = Blk [rk].
4.2.2: Define a vector uσ,i+cj over R such that uσ,i+cj [k] =

∑K
l=1 wσ,lk [rk].

4.3: View the set of uσ,i+cj as a c2 vector uσ of element in R.

5: Compute zσ = ⟨a⊗ a,uσ⟩.
6: Output xσ, zσ.

Fig. 21: Seed expansion of fQA-SD over R, based on QA-SD and hashing techniques.

1. Party’s seed size, since we have m bins and each bin (Bi)i∈[m] needs to use a DPF|Bi| scheme so
in total, we have (m · c2) pairs of keys (Ki,j

σ,lk
)i,j∈[0...c),lk∈[m] having a size of

c2 ·m · ((log(3)n− log t+ 1) · (λ+ 2) + λ+ 2) + 4t · (log(3)n+ 2).

We make an observation that since the number of bins m is defined to avoid the failure of
the Cuckoo hashing scheme. However, because the distributed key generation phase is honestly
executed, we allow the Cuckoo hashing scheme to fail with an acceptable probability (say 90% of
standard experimental failure probability [PSWW18]). In the case of failure, then we repeat the
Cuckoo hashing scheme (with a new set of functions) until it succeeds (the number of repetitions
is very small in expectation). This leads to an optimization for the number of bins m to be reduced
to 0.9m while the trade-off in security is reasonable (the adversary knows the distribution of noise
sampled has to make sure the Cuckoo hashing succeeds while the number of bins is only 0.9m).
Then, the seed size is reduced roughly to

c2 · (0.9m) · ((log(3)n− log t+ 1) · (λ+ 2) + λ+ 2) + 4t · (log(3)n+ 2).

2. For the number of PRG calls in seed expansion, in each bin (Bi)i∈[m], we make use of a DPF|Bi|
with domain |Bi| and from the property of simple hashing scheme

∑
i≤m |Bi| = K · |G| then the

number of PRG operations is at most (2 + ⌊2/λ⌋) · (K3n) · c2 (reduced by a factor t from the
regular noise distribution).

D.2 Application of OLE over F4 to silent OT extension

In this section, we show how to convert an F4-OLE into a random 1-out-of-2 OT in F2 using a single
bit of communication. To explain the observation, let us consider two parties, Alice and Bob, holding
respectively (a, [[ab]]4A) and (b, [[ab]]4B) for a and b ∈ F4. We have

a · b = [[a · b]]4A(0) + [[a · b]]4B(0) + ([[a · b]]4A(1) + [[a · b]]4B(1))θ
= (a(0) · b(0) + a(1) · b(1)) + (a(0) · b(1) + a(1) · b(0) + a(1) · b(1)) · θ,

52

where θ is the primitive root of X2 + X + 1. Considering only the (a · b)(1) term from the above
equation (i.e., the parts multiplied by θ, while in conversion from single OLE to Beaver triple over
F2 the part taken is without θ), we get that

(a · b)(1) = [[a · b]]4A(1) + [[a · b]]4B(1) = a(0) · b(1) + a(1) · b(0) + a(1) · b(1),

and therefore,
[[a · b]]4A(1)
known by A

+ a(1) · (b(0) + b(1)) = a(0) · b(1) + [[a · b]]4B(1)
known by B

.

If Bob sends (b(0) + b(1)) to Alice then the equation becomes

[[a · b]]4A(1) + a(1) · (b(0) + b(1))

known by A

= a(0) · b(1) + [[a · b]]4B(1)
known by B

.

It turns out that if Alice as a receiver in OT sets t = a(0),mt = [[a ·b]]4A(1)+a(1) ·(b(0)+b(1)) and Bob
as a sender in OT sets m0 = [[a ·b]]4B(1),m1 := b(1)+[[a ·b]]4B(1) then we have an instantiation of 1-out-
of-2 OT over F2. The correctness is followed by the above equation and security is straightforward:
the only communication between the parties is sending b(0) + b(1) from Bob to Alice, which is a
uniform random bit in the view of Alice (from the randomness of OLE).

Efficiency. To get 3n random OT, our main QA-SDOLE PCG needs 2(c2 · t) PRG calls (omitting
some common factors) along with a factor-64 speedup from the early termination optimization while
fQA-SD only needs (K · c2) PRG calls where K = 2, t = 27 (see Section 6) and can be optimized by
the same optimizations. Hence, we estimate to get 3N -OT over F2, fQA-SD can be about 30× faster
in terms of computation compared to [RRT23], since the cost of QA-SDOLE is essentially on par with
that of [RRT23] (see Section 2 for detail).

E Deferred Proofs

E.1 Proof of Proposition 10

Proof. We prove correctness and security in turn.

Correctness. Fix an index α = (α1, . . . , αn) in a ternary basis. Consider the ternary tree consisting
of 3n nodes. Let Lσ

i,j be any node label at depth i and index j ∈ [3i] as computed by party σ. Define
Li,j = L0

i,j ⊕L1
i,j and ℓi = 3iαi +3i−1αi−1 + · · ·+α1. To prove correctness, we start by showing that

the following two invariants are maintained throughout the tree:

1. For all node labels Li,j where j ̸= ℓi, Li,j = 0λ∥0.
2. For all node labels Li,j where j = ℓi, Li,j = L′∥1 where L′ ∈ {0, 1}λ \

{
0λ
}
.

If we can show that the two invariants are maintained, it immediately follows that only one path
along the tree contains non-zero labels. Once we’ve shown this, we can argue why the output at the
non-zero label at the leaf is equal to β.

We first prove that all child node labels (Li,3j , Li,3j+1, Li,3j+2) of parent nodes with labels Li−1,j =
0λ∥0 are also zero. That is, (Li,3j , Li,3j+1, Li,3j+2) = (0λ+1)3. By definition, Li−1,j = L0

i−1,j ⊕L1
i−1,j ,

where Lσ
i−1,j = sσi−1∥tσi−1, for σ ∈ {0, 1}. Since Li−1,j = 0λ∥0, it holds that L0

i−1,j = L1
i−1,j . Hence,

G(s0i−1,j) = G(s1i−1,j), which implies that both parties compute the same τσi in Line 3.1 of Traverse.
Moreover, because Li−1,j = si−1∥ti−1 = 0λ∥0, it follows that t0i−1 ⊕ t1i−1 = 0. In turn, we have that
γ0
i ⊕γ1

i = τ0i ⊕ τ1i , since the correction word is not applied (it is multiplied by tσi−1—an XOR share of
zero). This implies that (1) Li,3j = s0i,0∥t0i,0⊕s1i,0∥t1i,0 = 0λ∥0, (2) Li,3j+1 = s0i,1∥t0i,1⊕s1i,1∥t1i,1 = 0λ∥0,
and (3) Li,3j+2 = s0i,2∥t0i,2 ⊕ s1i,2∥t1i,2 = 0λ∥0, as required.

In other words, the above proves that all child node labels that are off the “special path” described
by α remain zero. We must now prove that all child node labels that are on the “special path” (i.e.,
child nodes where the parent node is non-zero) only have one non-zero sibling after the correction
word is applied.

We prove this by induction starting with the root of the tree. Note that L0 = s00∥t00 ⊕ s10∥t10
and that t00 ⊕ t10 = 1 by definition (Line 2 of DPF.Gen). Since the root label has no siblings, the

53

base case is trivially satisfied. Now consider any parent node label Li−1,j of the form Li−1,j =
s∥1 for some s ̸= 0λ. Consider the child node labels (Li,3j , Li,3j+1, Li,3j+2) of parent node label
Li−1,j . Since Li−1,j ̸= 0λ∥1, it holds that L0

i−1,j ̸= L1
i−1,j . Hence, with overwhelming probability,

it holds that G(s0i−1,j) ̸= G(s1i−1,j), which implies that both parties compute a different τσi in Line
3.1 of Traverse. Moreover, because ti = t0i ⊕ t1i = 1, it holds that γi = γ0

i ⊕ γ1
i = (τ0i ⊕ τ1i) ⊕

(CWi,0∥CWi,1∥CWi,2). Then, by construction of CWi,0, CWi,1, CWi,2 (Lines 4.6–4.9 of DPF.Gen), we
have that γi = si,0∥ti,0∥si,1∥ti,1∥si,2∥ti,2 where si,k∥ti,k = 0λ∥0 for all k ∈ {0, 1, 2} \ {αi}. In turn, we
have that two (out of the three) child labels are zero. In words, this proves that at each level of the
tree, only one label is non-zero, and the non-zero label is at index ℓi = 3iαi + 3i−1αi−1 + · · · + α1

because the αi−1-st child label of each non-zero parent label is always non-zero. This proves the
second invariant.

To satisfy the rDPF definition, it remains to show that the non-zero leaf label of the tree is of the
form Ln = s∥1 where s is a pseudorandom value (from the viewpoint of either party). To see this,
consider the base case of Traverse (when i = n+1) for the non-zero leaf label. The output of Traverse
is just sn∥tn. Therefore, for the non-zero child, (s0n∥t0n⊕s1n∥t1n) = sn∥tn⊕CWn,αn

= sn⊕(sn⊕rn)∥1 =
rn∥1 by definition of CWn,αn

in Line 3.8 of DPF.Gen. It follows that rn is pseudorandom since it is
chosen uniformly at random and is masked by sn in CWn,αn , which is pseudorandom conditioned on
either key.

Security. Informally, security holds because (1) the starting labels s00 and s10 given to party 0 and
1, respectively, are uniformly random and (2) the correction words (i.e., pp) consist of the expanded
shares of party σ masked by the pseudorandom shares of party 1 − σ which makes them computa-
tionally indistinguishable from random from the viewpoint of party σ given Kσ.

Formally, we prove security via a sequence of hybrid distributions and reducing to the pseudoran-
domness of a GGM tree construction [GGM19] (generalized to have a branching factor of 3 to match
our ternary tree). Fix α = α1∥ . . . ∥αn.

Hybrid H0. This hybrid consists of the DPF key Kσ as defined in Figure 5. Specifically,

H0 = {(
CW1

CW1,0∥CW1,1∥CW1,2, . . . ,

CWn

CWn,0∥CWn,1∥CWn,2)

pp

, sσ0∥tσ0},

where CWi,j , for i ∈ [n] and j ∈ {0, 1, 2}, is defined as CWi,j = s0i,j∥t0i,j ⊕ s1i,j∥t1i,j if j ̸= αi,
CWi,j = (si,αi

⊕ ri)∥(t0i,j ⊕ t1i,j ⊕ 1) if j = αi ∧ i ̸= n, and CWn,j = sn ⊕ β∥0 if j = αi ∧ i = n.

Hybrid H1. In this hybrid, we define each correction word as being party σ’s share masked with a
uniformly random mask (as opposed to being masked by a value computed by party 1−σ). Specifically,

H1 = {(CW1,0∥CW1,1∥CW1,2, . . . ,CWn,0∥CWn,1∥CWn,2), s
σ
0∥tσ0},

where CWi,j , for i ∈ [n] and j ∈ {0, 1, 2}, is defined as CWi,j = sσi,j∥tσi,j ⊕ maski,j if j ̸= αi,
CWi,j = (sσi,αi

⊕ ri)∥(tσi,j ⊕ 1) ⊕ maski,j if j = αi ∧ i ̸= n, and CWn,j = (sσn ⊕ β∥0) ⊕ maskn,j if
j = αi ∧ i = n. Where for each i, j, maski,j ←R {0, 1}λ+1.

Hybrid H2. In this hybrid, we define each correction word as being a uniformly random string of
appropriate length. That is,

H2 = {(CW1,0,CW1,1∥CW1,2∥ . . . ,CWn,0∥CWn,1∥CWn,2), s
σ
0∥tσ0},

where CWi,j , for all i ∈ [n] and j ∈ {0, 1, 2}, is defined as CWi,j ←R {0, 1}λ+1.

Claim. H0 ≈c H1

Proof. The claim follows from the pseudorandomness of the GGM construction [GGM19] (generalized
to the ternary-arity case). Specifically, each s1−σ

i,j ∥t
1−σ
i,j is computed as the output of a PRG applied

to a pseudorandom seed s1−σ
i−1 ∥t

1−σ
i−1 , where the starting seed s1−σ

0 is sampled independently of sσ0 .
Therefore, by the pseudorandomness of the GGM construction [GGM19, Theorem 3], for all i ∈ [n], j ∈
{0, 1, 2}, it follows that s1−σ

i,j ∥t
1−σ
i,j is also pseudorandom. We can therefore replace the pseudorandom

strings with uniformly random strings maski,j , which proves the claim.

54

Claim. H1 ≡ H2

Proof. The claim follows immediately by noticing that the uniformly random strings Mi,j and maski,j
in H1 act as information-theoretic masks, making the distribution identical to H2.

Finally, to prove security we must prove the existence of an efficient simulator S that generates
a computationally indistinguishable DPF key Kσ on input (1λ, 1n, σ). The existence of S follows
trivially by the fact that H3 consists of a uniformly random string of length {0, 1}3(λ+1)+λ+1.

E.2 Proof of Lemma 11

Ideal Functionality
(
1
3

)
-OT

There are two parties, a sender and a receiver. The sender has input (m0,m1,m2) ∈ {0, 1}∗ while the
receiver has input b ∈ {0, 1, 2}.
Functionality:
1: Wait for input (m0,m1,m2) ∈ {0, 1}∗ from the sender.

2: Wait for input b ∈ {0, 1, 2} from the receiver.

3: Output mb to the receiver and ⊥ to the sender.

Fig. 22: Ideal functionality
(
1
3

)
-OT in the semi-honest setting.

Proof. We show correctness and security in turn.

Correctness. To prove the correctness, we show that in our construction ΠrDPF-CW, CWi = (CWi,0,CWi,1,CWi,2)
satisfies the following two conditions:

1. For all j ∈ {0, 1, 2} \ {αi} then CWi,j = (s0i,j∥t0i,j)⊕ (s1i,j∥t1i,j).
2. Otherwise, CWi,αi = (s0i,αi

∥t0i,αi
)⊕ (s1i,αi

∥t1i,αi
)⊕ (ri∥1).

Observe that in our construction from the definition of {C0
j ,C

1
j}j∈{0,1,2}, we have C0

αi
⊕C1

αi
=

CWi ⊕ z0 ⊕ z1. Note that αi = [[αi]]0 + [[αi]]1. Consider,

Mσ
0 = (Cσ

0 ,C
σ
1 ,C

σ
2), Mσ

1 = (Cσ
1 ,C

σ
2 ,C

σ
0), Mσ

2 = (Cσ
2 ,C

σ
0 ,C

σ
1),

for σ ∈ {0, 1}. Observe that each Mσ
j = (Cσ

j ,C
σ
j+1,C

σ
j+2), for j ∈ {0, 1, 2}, is a cyclically shifted

vector defined by shifting (Cσ
0 ,C

σ
1 ,C

σ
2) to the left j times.

We show that party σ = 0 obtains the correct correction word (the case where σ = 1 is symmetric).
Party 0 invokes the

(
1
3

)
-OT as the receiver with input [[αi]]0, and party 1 plays the role of the sender

with input
M1

[[αi]]1 = (C1
[[αi]]1 ,C

1
[[αi]]1+1,C

1
[[αi]]1+2).

After invoking
(
1
3

)
-OT, party 0 obtains C1

[[αi]]1+[[αi]]0 = C1
αi

. (By a symmetric argument, party 1 gets
C0

αi
.) It is easy to see that C1

αi
⊕z0 and C0

αi
⊕z1 form shares of CWi, since (C0

αi
⊕z1)⊕ (C1

αi
⊕z0) =

(CWi⊕ z0⊕ z1)⊕ (z0⊕ z1), where CWi is defined identically to the i-th iteration of Fig. 5. It follows
that the output of the protocol (opening of the shares of CWi) is correct.

Security. We prove our security in the UC model. In a nutshell, the proof boils down to the security
of the 1-out-of-3 oblivious transfer functionality

(
1
3

)
-OT. We assume

(
1
3

)
-OT securely realizes the ideal

functionality Fig. 22 in a semi-honest setting. Since the role of the two parties is symmetric, we can
build a simulator that simulates the view of both parties when one of them is corrupted. Without loss
of generality, assume σ is the corrupted party, Sim interacts with A as in the hybrid model below.

55

Hybrid H0. This hybrid is identical to the real protocol, both parties are honest, and
(
1
3

)
-OT is

executed honestly.

Hybrid H1. This hybrid is identical to H0 except that now Sim plays the role of A and inputs
{[[α]]σ, rσi , (sσi,j∥tσi,j)j∈{0,1,2}} to the ideal functionality FrDPF-CW and receives CWi as output.
The distribution of this hybrid is identical to that of the previous hybrid since in this hybrid, Sim
does not interact with A.

Hybrid H2. This hybrid distribution is identical to H1 except now Sim emulates
(
1
3

)
-OT as follows.

– When A is the sender, learns the input vector Mσ
[[αi]]σ of A. Since Sim knows (sσi,j∥tσi,j)j∈{0,1,2}

then from Mσ
[[αi]]σ , [[αi]]σ, Sim recomputes zσ.

– When A is the receiver with input [[αi]]σ, Sim plays the role of
(
1
3

)
-OT and gives A an random

string Mσ̄
[[αi]]σ̄ [[[αi]]σ].

This hybrid is indistinguishable from H1 since by assumption we assume that
(
1
3

)
-OT realizes the

ideal functionality of one-out-of-three OTs.

Hybrid H3. In this hybrid, Sim defines [[CWi]]σ̄ := Mσ̄
[[αi]]σ̄ [[[αi]]σ]⊕zσ and [[CWi]]σ̄ := CWi−[[CWi]]σ ∈

{0, 1}3(λ+1). Sim plays the role of party σ, sends [[CWi]]σ̄ to A.
This hybrid is indistinguishable from the previous hybrid. First, from the definition of [[CWi]]σ and
[[CWi]]σ̄, the output CWi of ideal world and real world are identically distributed. Second, in the view
of A after invoking the

(
1
3

)
-OT, the message it gets Mσ̄

[[αi]]σ̄ [[[αi]]σ] is uniformly random since zσ̄ used
as a mask is random over {0, 1}3(λ+1). This concludes the proof.

E.3 Proof of Proposition 12

Proof. Correctness. Fix an index αi = (α1, . . . , αi) in a ternary tree of i-th layer. The correctness
follows by the correctness of ΠrDPF-CW Lemma 11. Since both parties invoke ΠrDPF-CW and get CWi ←
ΠrDPF-CW(i, [[αi]]σ, r

σ
i , (s

σ
i,j∥tσi,j)j∈{0,1,2}). where CWi = (CWi,0,CWi,1,CWi,2) such that:

1. For all j ∈ {0, 1, 2} \ {αi} then CWi,j = (s0i,j∥t0i,j)⊕ (s1i,j∥t1i,j).
2. Otherwise, CWi,αi

= (s0i,αi
∥t0i,αi

)⊕ (s1i,αi
∥t1i,αi

)⊕ (ri∥1).

Therefore, CWi defined in ΠrDPF-CW has the same properties as CWi defined in Fig. 5. Let s =
[[s]]0 ⊕ [[s]]1. To prove correctness of rDPF.FullEval when using CWi computed via ΠrDPF-CW, we show
that for each i ∈ [n],

t̂i−1,αi := t̂0i−1,αi ⊕ t̂1i−1,αi = 1,

otherwise t̂i−1,αi = 0 for i ∈ [3i − 1] \ {αi}. This is done by induction for i ∈ [n]. For i = 1, this
follows immediately. For i ≥ 1, we have

(ŝi,3j∥t̂i,3j∥ŝi,3j+1∥t̂i,3j+1∥ŝi,3j+2∥t̂i,3j+2)

= (si,3j∥ti,3j∥si,3j+1∥ti,3j+1∥si,3j+2∥ti,3j+2)⊕ (t̂i−1,j · CWi).

Assume αi ∈ {3j∗, 3j∗+1, 3j∗+2} for some j∗ ∈ [3i−1], from the definition of (sσi,j∥tσi,j)j∈{0,1,2},σ∈{0,1}
then we have:

1. (si,3j∥ti,3j∥si,3j+1∥ti,3j+1∥si,3j+2∥ti,3j+2) = (0, 0, 0) for j ̸= j∗.
2. CWi,j = si,3j∗+j∥ti,3j∗+j for j ̸= αi,

otherwise CWi,αi
= (si,3j∗+αi

∥ti,3j∗+αi
)⊕ (r1∥1).

then by induction t̂i−1,j∗ = 1 =⇒ t̂i,3j∗+αi+1 = 1 otherwise, t̂i,j = 1 for i ∈ [3i+1 − 1].

Security. Since our instantiation does not have any interaction between two parties except both
parties invoke to ΠrDPF-CW. So our security against semi-honest setting is directly achieved from the
security of ΠrDPF-CW Lemma 11. Note that the distribution of our CWi is indistinguishable from the
distribution of CWi defined in Fig. 5 and it is proved to be secure (Appendix E.1) in the view of party
σ given Kσ.

56

E.4 Proof of Proposition 13

Proof. Informally, the construction ΠOutput-CW is very similar to the way we compute the intermediate
CWi in Fig. 7, except that (1) the inputs of the sender in each

(
1
3

)
-OT execution of the i-th iteration are

always the share of a vector (C1
i,αi
⊕z0i)⊕(C

0
i,αi
⊕z1i) ∈ (F4)

3i (the entry of position α :=
∑i

k=0 αk3
k−1

is β, all others entries are 0), and (2) ΠOutput-CW is computed iteratively such that the value that each
party obtains (seen as [[CWi]]σ) is kept secret.

Correctness. We show that for each i ∈ [t],

[[β]]0 ⊕ [[β]]1 = β, where, [[β]]i ∈ (F4)
3t

As shown in the correctness proof of Lemma 11, Mσ
j = (Cσ

j ,C
σ
j+1,C

σ
j+2) for j ∈ {0, 1, 2} and

σ ∈ {0, 1} is obtained by cyclically shifting the vector (Cσ
0 ,C

σ
1 ,C

σ
2) to the left j times. Moreover, we

have that [[αi]]1 + [[αi]]0 = αi.
Consider party 0 (the case for party 1 is symmetric). Party 0 invokes the

(
1
3

)
-OT functionality as

the receiver with input [[αi]]0 and party 1 plays the role of the sender with input

M1
[[αi]]1 = (C1

i,[[αi]]1 ,C
1
[[αi]]1+1,C

1
[[αi]]1+2),

(viewed as a vector of vectors). Then, it holds that party 0 obtains as output

M1
[[αi]]1 [[[αi]]0] = C1

i,[[αi]]1+[[αi]]0 = C1
i,αi

.

By symmetry, party 1 then obtains C0
i,αi

by invoking the
(
1
3

)
-OT protocol with party 0 now playing

the role of the sender. Then, letting [[β]]1 = C0
i,αi
⊕ z1i and [[β]]0 = C1

i,αi
⊕ z0i be the shares of β,

because the z0i and z1i terms cancel out the masking terms added by each party, we get that

[[β]]0 ⊕ [[β]]1 = C1
i,αi
⊕ z1i ⊕C0

i,αi
⊕ z0i =

(β, 0, 0)), if αi = 0.

(0, β, 0)), if αi = 1.

(0, 0, β)), if αi = 2.

or in other words, [[β]]0 ⊕ [[β]]1 = eαi
· β, where eαi

is the αi-th standard basis vector over F3i

4 .
To see that correctness still holds after the t-th iteration, {Cσ

i+1,j}{j∈{0,1,2} in (i+1)-th iteration is
defined by [[β]]σ ∈ (F4)

3i from the i-th iteration and adding 0’s to make sure that β and the position of
share value in vector of size (F4)

3i is
∑i

k=0 αk3
k−1. This leads to CW := eα ·β⊕G(s0)⊕G(s1) ∈ (F4)

3t

where α =
∑t

i=0 αi3
i−1, as required.

Security Analysis. The simulator Sim is constructed similarly to the simulator in the proof of Lemma 11,
except that Sim does not play the role of party σ to output [[β]]σ for each iteration. Instead, it only
outputs the share for the last iteration, which allows both parties to construct the output CW. Sim
emulates

(
1
3

)
-OT to learn the mask zσ̄i and inputs of A that plays the role of the sender to

(
1
3

)
-OT in

the i-th iteration. Then, using this information, Sim simulates the (i+1)-th iteration. And for the last
step, to simulate the output of the honest party, Sim defines [[CW]]σ from [[CW]]σ that is constructed
by emulating

(
1
3

)
-OT and CW the output of ideal functionality FOutput-CW.

57

	FOLEAGE: F4OLE-Based Multi-Party Computation for Boolean Circuits
	Introduction
	Our focus and contributions
	Organization

	Technical Overview
	Background: Secure MPC from PCGs
	Constructing programmable PCGs
	F2-triples from F4-triples
	An improved protocol from F4-OLEs for N=2
	A fast programmable PCG for F4-OLEs
	Distributed seed generation
	Concrete cryptanalysis of F4OLEAGE

	Preliminaries
	Function secret sharing
	The Quasi-Abelian Syndrome Decoding Problem

	A Fast PCG for F4-OLEs
	PCGs over F4 from the QA-SD assumption
	Optimizing the FSS evaluation via early termination
	Fast evaluation over F4[X1,…, Xn] / (X13-1,…,Xn3-1)

	Distributed Seed Generation
	A ternary distributed point function
	Distributed DPF key generation

	Cryptanalysis and Parameter Selection
	Model of attack
	Generic decoding algorithms
	Analysis of Folding attacks
	Improving the attack: Folding for several subgroups

	Implementation and Evaluation
	PCGs from the QA-SD assumption
	N-party MPC with Preprocessing from F4-OLEs
	Secure computation in the FcBT-hybrid model
	An improved protocol for N=2 parties

	Complexity of Informations Set Decoding algorithms over Fq
	Stern/Dumer
	MMT
	BJMM

	Faster seed expansion from hashing (application to silent OT)
	Faster seed expansion
	Application of OLE over F4 to silent OT extension

	Deferred Proofs
	Proof of Proposition 10
	Proof of Lemma 11
	Proof of Proposition 12
	Proof of Proposition 13

