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MASS CONSERVATIVE LIMITING AND APPLICATIONS TO THE1
APPROXIMATION OF THE STEADY-STATE RADIATION TRANSPORT2

EQUATIONS3

JEAN-LUC GUERMOND‡, AND ZUODONG WANG†4

Abstract. A limiting technique for scalar transport equations is presented. The originality of the method is5
that it does not requires solving nonlinear optimization problems nor does it rely on the construction of a low-6
order approximation. The method has minimal complexity and is numerically demonstrated to maintain high-order7
accuracy. The performance of the method is illustrated on the radiation transport equation.8

Key words. limiting, advection equation, radiation transport equation, stiff sources, conservation equations,9
asymptotic preserving, invariant domains.10
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1. Introduction. The objective of the paper is to present two simple limiting techniques12
for scalar-valued partial differential equations with a structure like the radiation transport equa-13
tion. The first limiting method is iterative, locally mass conservative, and does not involve solv-14
ing any nonlinear optimization problem. At convergence, this method enforces the local mini-15
mum/maximum principle (assuming that local bounds are known). Two iterations of the method16
are in general sufficient, but although the method is observed to converge quickly, there is no guar-17
antee that the bounds are enforced everywhere after a number of iterations that is independent18
of the meshsize. We then propose a second limiting method that is globally mass conservative19
and that also does not involve solving any nonlinear optimization problem. The second limiting20
is applied after the first one. The purpose of this second post-processing is simply to certify that21
some global bound like positivity is exactly and unconditionally enforced while preserving the total22
mass of the solution. The combination of these two limiting techniques is illustrated using con-23
tinuous finite elements stabilized with the continuous interior penalty (CIP) technique (a.k.a. edge24
stabilization) from Douglas and Dupont [7] and Burman and Hansbo [5]. The method presented in25
the paper is not restricted to continuous elements and CIP though. It can be used with other spa-26
tial discretization and other types of stabilization as well. For instance, one can use discontinuous27
elements (of degree p ≥ 1) stabilized with the upwind numerical flux. One can also use continuous28
elements stabilized with other methods like Galerkin Least-Squares, Local Projection Stabilization,29
Orthogonal Subscale Stabilization, and Subgrid Viscosity.30

The original motivation for the work presented here is the solution to the radiation transport31
equation. Based on our experience on nonlinear hyperbolic systems, we have tried for many years32
to use upwinding, artificial viscosity, and nonlinear variations thereof to enforce positivity of the33
angular intensity. But it is well established in the literature that one needs to be careful with this34
type of method in the context of the radiation transport equations. For instance, it is shown in35
Adams [1] (see also Larsen [14], Larsen et al. [15], and [9, Rmk. 5.2], [11, §3.2]), that upwinding36
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2 J.-L. Guermond and Z. Wang

and artificial viscosity may lock in the diffusion limit if the artificial viscosity is strong enough so37
as to guarantee that the local minimum/maximum principle holds. We have long tried to modify38
the artificial viscosity techniques to overcome this difficulty. For instance in [11] we have adopted a39
technique inspired by Gosse and Toscani [8] consisting of scaling the transport term, the scattering40
term, and the artificial diffusion by 1

1+σsh where h is the mesh size and σs is the scattering cross41
section. This gives a method that is indeed positive, convergent, and asymptotic preserving, but42
it is not locally conservative on nonuniform meshes. Moreover, it does not behave properly with43
grazing incidences in the diffusion regime unless the grazing boundary data is replaced by its angular44
average weighted with Chandrasekhar’s H-function, thereby seriously diminishing the usefulness of45
the method as estimating the H-function is nontrivial. In the paper we propose instead to rely on the46
Galerkin approximation augmented with a traditional linear stabilization technique and to enforce47
the local minimum/maximum principle by using a mass conservative post-processing technique.48

An important aspect of the limiting technique we propose is the estimation of local bounds.49
The approach we use for this purpose consists of using the method of characteristics as in Yee50
et al. [28, Eq. (16)]. Note that here we do not propose to use the method of characteristics as a51
solution method but just as a means to estimate guaranteed local upper and lower bounds. We52
refer to Lathrop [16], Sanchez and McCormick [25, §II.C.2] for early reviews on solution methods53
based on the method of characteristics. Once local bounds are found, the next problem consists54
of enforcing these bounds. This can be done as in Maginot et al. [19] where the authors develop55
a nonlinear characteristics-based methods that is positivity-preserving. Another idea is to invoke56
strategies like the so-called flux corrected transport method of Zalesak combining in a nonlinear57
fashion a low-order and a high-order approximation [29]. The problem with this approach is that it58
relies on a low-order approximation which itself relies in one way or another on artificial viscosity,59
which as explained above leads to locking. Another possibility more aligned with what we propose60
in the paper is to enforce local bounds by using nonlinear optimization techniques. The problem is61
then to find a maximum-principle-satisfying object that minimizes some distance to the maximum-62
principle-violating solution while maintaining constant the total mass (either locally or globally).63
This type of method is developed in e.g., Bochev et al. [3, 4], Yee et al. [28] Peterson et al. [24], and64
references therein. A fast convergent algorithm for finding such a minimizer is proposed in Liu et al.65
[18], Ancellin et al. [2]. Here we propose a slightly different approach consisting of just computing a66
quasi-minimizer with a set of two methods whose algorithmic complexity is significantly lower than67
that of computing a genuine minimizer. We finally mention that if positivity is the only property68
one is interested in, one can use “fix-up” techniques like that presented in Lewis and Miller [17,69
Chap. 4]. This iterative method sets negative fluxes to zero and continues the iterations with the70
other degree of freedom to restore balance. This idea is generalized to the discontinuous Galerkin71
setting in Hamilton et al. [12]. Other improvements of the fix-up technique are presented in Maginot72
et al. [20].73

The paper is organized as follows. We introduce in §2 the two limiting techniques mentioned74
above. We choose to present them without invoking the radiation transport equation as these two75
methods are quite general and can be used for other purposes. We recall in §3 how local bounds can76
be extracted for the scalar-valued linear transport equations using the method of characteristics.77
We also introduce in this section a second-order relaxation technique that is essential to achieve78
accuracy beyond second-order. We present in §4 the Galerkin approximation of the radiation79
transport equation stabilized with the continuous interior penalty technique. The full solution80
method is explained in Algorithms A.1 and A.2. The proposed method is illustrated on the scalar81
linear transport equation in §5 and on the radiation transport equation in §6.82
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2. Iterative limiting algorithm. We present in this section two simple conservative iterative83
limiting algorithms. The first one preserves mass locally. The second one only preserves mass84
globally, and is only used as theoretical safeguard. These two algorithms are quite general. They85
are not specific to the radiation transport equations and can be used in many different contexts.86

2.1. The setting. Let {xi}i∈V be degrees of freedom that have to be limited, xi ∈ R for87
all i in the index set V. Let M :=

∑
i∈V mixi be the total mass, where the coefficients mi are88

nonnegative and are called mass at i. For all i ∈ V, let umin
i and umax

i be the local minimum and89
maximum we want to enforce on the i-th degree of freedom. It is henceforth assumed that these90
local bounds umin

i and umax
i satisfy the following reasonable estimate:91

(2.1)
∑
i∈V

miu
min
i ≤M ≤

∑
i∈V

miu
max
i .92

Our objective is to post-process the degrees of freedom {xi}i∈V to enforce the local bounds while93
maintaining mass conservation, either locally or globally.94

We assume that the lumped mass is non-negative, i.e., mi ≥ 0 for all i ∈ V. This assumption95
holds, for example, when using finite elements with Bernstein basis of any polynomial degree, and96
for Lagrange bases of degree 1, 2 and 3 with equally distributed interpolation nodes. We introduce97
a concept of locality by introducing a notion of stencil. For all i ∈ V we assume that there exists98
a collection of indices I(i) ⊊ V that can exchange mass with i. We call this index set stencil. For99
instance, for finite elements we have j ∈ I(i) if φjφi ̸≡ 0, where φi and φj are the global shape100
function associated with the degrees of freedom i and j. We also define I(i)∗ := I(i)\{i}. For all101
the finite element tests reported in §5 and §6, the set I(i) is the standard stencil, i.e., I(i) collects102
the indices of all the global shape functions φj that are such that φjφi ̸≡ 0.103

2.2. Local conservative limiting. We describe here an iterative algorithm that is locally104
conservative. The algorithm consists of looping over all the indices i in V and proceeds as follows.105
Let i ∈ V. If mi = 0, then the i-th degree of freedom does not contribute to the global mass; we106
simply set yi = min(umax

i ,max(umin
i , xi)) and continue to the next degree of freedom in the list V.107

This possible modification of the value at i does not change the mass, either locally or globally. Let108
us assume now that mi > 0. Then either xi ≤ umax

i (i.e., the maximum principle is satisfied) or109
umax
i < xi (i.e., the maximum principle is violated). If xi ≤ umax

i , we do nothing and continue to110
the next index in the loop. If umax

i < xi, then we compute111

a+i :=
∑

j∈I(i)∗
mj max(0, umax

j − xj), b+i := max(xi −
a+i
mi

, umax
i ),(2.2a)112

ℓ+i :=

0 if 0 = a+i

mi
xi−b+i
a+
i

otherwise,
(2.2b)113

and the actual limiting with respect to umax
i is done by setting114

yj := xj + ℓ+i max(0, umax
j − xj), ∀j ∈ I(i)∗(2.3a)115

yi := b+i .(2.3b)116

Lemma 2.1. Let i ∈ V. If umax
i < xi, then the following holds for all {yj}j∈I(i) given by (2.3):117

(i) There is local mass conservation, i.e., mi(yi − xi) +
∑

j∈I(i)∗ mj(yj − xj) = 0.118

This manuscript is for review purposes only.



4 J.-L. Guermond and Z. Wang

(ii) xj ≤ yj ≤ max(xj , u
max
j ) for all j ∈ I(i)∗.119

(iii) umax
i ≤ yi ≤ xi. Moreover, yi < xi if 0 < a+i .120

Proof. (i) Assume first that a+i ̸= 0. The equation (2.3a) implies that the mass transferred121
to the node j ∈ I(i)∗ is mjℓ

+
i max(0, umax

j − xj), while the equation (2.3b) implies that the mass122

transferred to the node i is mi(b
+
i − xi). The total mass exchange is then123

∆i := mi(yi − xi) +
∑

j∈I(i)∗
mj(yj − xj)124

= mi(b
+
i − xi) + ℓ+i

∑
j∈I(i)∗

mj max(0, umax
j − xj) = mi(b

+
i − xi) + ℓ+i a

+
i .125

But since a+i ̸= 0, (2.2b) gives ℓ+i = mi
xi−b+i
a+
i

; hence126

∆i = mi(b
+
i − xi) +mi

xi − b+i
a+i

a+i = 0.127

Otherwise, if a+i = 0, then b+i = max(xi, u
max
i ) = xi and ℓ+i := 0. Then again ∆i = 0.128

(ii) The assertion is trivial when a+i = 0. Let assume now that a+i > 0. As xi −
a+
i

mi
≤ b+i , we129

have ℓ+i := mi
xi−b+i
a+
i

≤ 1. Moreover, the assumptions umax
i < xi and b+i := max(xi −

a+
i

mi
, umax

i ),130

imply that b+i ≤ max(xi, u
max
i ) < xi; hence, 0 ≤ ℓ+i . As 0 ≤ ℓ+i ≤ 1, we infer that xj ≤131

xj + ℓ+i max(0, umax
j − xj) := yj ≤ xj +max(0, umax

j − xj) = max(xj , u
max
j ).132

(iii) By (2.2a), we have umax
i ≤ b+i and b+i = max(xi −

a+
i

mi
, umax

i ) ≤ max(xi, u
max
i ) = xi; hence,133

umax
i ≤ yi := b+i ≤ xi. Let us now assume that a+i ̸= 0. Notice that if b+i = umax

i then yi = b+i < xi134

(whether a+i is equal to zero or not does not matter here). On the other hand, if b+i = xi −
a+
i

mi
,135

then the assumption a+i ̸= 0 implies that yi = b+i xi.136

The same idea as above can be used to enforce the minimum principle. Let i ∈ V. Either137
umin
i ≤ xi (i.e., the local minimum principle is satisfied) or xi < umin

i (i.e., the local minimum138
principle is violated). If umin

i ≤ xi, do nothing and continue to the next index in the list V. If139
x < umin

i , then compute140

a−i :=
∑

j∈I(i)∗
mj max(0, xj − umin

j ), b−i := min(xi +
a−i
mi

, umin
i ),(2.4a)141

ℓ−i :=

0 if 0 = a−i

mi
xi−b−i
a−
i

otherwise,
(2.4b)142

and set143

yj := xj + ℓ−i max(0, xj − umin
j ), ∀j ∈ I(i) \ {i}(2.5a)144

yi := b−i .(2.5b)145

Lemma 2.2. Let i ∈ V. If xi < umin, then the following holds for all {yj}j∈I(i) given by (2.5):146
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(i) mi(yi − xi) +
∑

j∈I(i)∗ mj(yj − xj) = 0, i.e., (2.5) is locally mass conservative147

(ii) min(xj , u
min
j ) ≤ yj ≤ xj for all j ∈ I(i)∗.148

(iii) xi ≤ yi ≤ umin
i . Moreover, xi < yi if 0 < a−i .149

The algorithm (2.2)–(2.5) guarantees that the local maximum decreases and the local minimum150
increases until reaching the prescribed values (see Items (iii) and (iii) in Lemmas 2.1 and 2.2). The151
statements made in Items (ii) and (ii) in Lemmas 2.1 and 2.2 guarantee that by correcting xi → yi,152
the neighboring values that are already in bounds stay in bounds after limiting. The algorithm is153
iterative, but there is no guarantee that the prescribed bounds are reached in a finite number of154
iterations. Extensive numerical tests show though that convergence is quick when one starts from155
a reasonable solution (e.g., a linearly stabilized Galerkin approximation). In all the tests reported156
in the paper the above algorithm is only applied two times in a row. The limiting algorithm is157
summarized in Algorithm 2.1. We note that the order of dofs does not influence the behavior of158
the algorithm.

Algorithm 2.1 Local conservative limiting (2.2)–(2.5)

Require: Bounds {umax
i , umin

i }i∈V , {xi}i∈V .
1: for i ∈ V do ▷ Loop over dofs
2: if mi = 0 then
3: yi = min(umax

i ,max(umin
i , xi)).

4: else if umax
i < xi then ▷ Local maximum principle violated

5: Compute a+i , b+i , ℓ+i using (2.2).
6: yi = b+i
7: for j ∈ I(i)∗ do
8: yj = xj + ℓ+i max(0, umax

j − xj)
9: end for

10: else if xi < umin
i then ▷ Local minimum principle violated

11: Compute a−i , b−i , ℓ−i using (2.4).
12: yi = b−i
13: for j ∈ I(i)∗ do
14: yj = xj + ℓ−i max(0, xj − umin

j )
15: end for
16: else ▷ Do nothing
17: yi = xi
18: end if
19: end for
20: return {yi}i∈V

159

2.3. Global conservative limiting. As the iterative algorithm (2.2)–(2.5) does not guaran-160
tee that the prescribed bounds are achieved in a finite number of iterations, we now propose a final161
conservative post-processing that can be used to make sure that global bounds that are essential162
to the physics are strictly enforced.163

Consider the set of degrees of freedom {xi}i∈V , the associated massM :=
∑

i∈V mixi, and the164
local bounds {umin

i , umax
i }i∈V , which we recall are assumed to satisfy (2.1). We compute a new set165
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6 J.-L. Guermond and Z. Wang

of limited values {zi}i∈V as follows:166

For all i ∈ V, compute, yi := min((max(xi, u
min
i ), umax

i ).(2.6a)167

Then compute α+ := max

(
0,
M−

∑
j∈V mjyj∑

j∈V mj(umax
j − yj)

)
,(2.6b)168

and α− := max

(
0,
M−

∑
j∈V mjyj∑

j∈V mj(umin
j − yj)

)
.(2.6c)169

For all i ∈ V, set, zi := yi + α+(umax
i − yi) + α−(umin

i − yi).(2.6d)170

171

Lemma 2.3. The following holds for all i ∈ V:172

umin
i ≤ zi ≤ umax

i ,(2.7)173 ∑
i∈V

mizi =
∑
i∈V

mixi.(2.8)174

Proof. (1) By definition 0 ≤ α+. IfM−
∑

i∈V miyi ≤ 0 then α+ = 0. IfM−
∑

i∈V miyi ≥ 0,175
then using the assumption (2.1) together with

∑
i∈V mi(u

max
i − yi) ≥ 0 (which holds owing to176

(2.6a)), we infer that177

α+ ≤
M−

∑
i∈V miyi∑

i∈V mi(umax
i − yi)

≤
∑

i∈V miu
max
i −

∑
i∈V miyi∑

i∈V mi(umax
i − yi)

= 1.178

Hence 0 ≤ α+ ≤ 1. We proceed similarly to show that 0 ≤ α− ≤ 1.179
(2) Observing that umin

i − yi ≤ 0, 0 ≤ umax
i − yi (which holds owing to (2.6a)), 0 ≤ α+ ≤ 1,180

and 0 ≤ α−, we obtain181

zi := yi + α+(umax
i − yi) + α−(umin

i − yi) ≤ yi + α+(umax
i − yi)182

≤ yi + (umax
i − yi) = umax

i .183

We proceed similarly to prove that umin
i ≤ zi.184

(3) Since 0 ≤
∑

i∈V mi(u
max
i − yi) and

∑
i∈V mi(u

min
i − yi) ≤ 0, we have185 ∑

i∈V
mizi =

∑
i∈V

miyi + α+
∑
i∈V

mi(u
max
i − yi) + α−

∑
i∈V

mi(u
min
i − yi)186

=
∑
i∈V

miyi +max(0,M−
∑
i∈V

miyi) + min(0,M−
∑
i∈V

miyi) =M.187

This completes the proof.188

Remark 2.4 (Local vs. global bounds). Although the bounds umin
i and umax

i invoked in the189
algorithm can in principle be local, we insist that the algorithm (2.6) should only be used to make190
sure that global bounds are enforced because the mass conservation mechanism is not local. Notice191
that the local and global limiting algorithms can be used to limit the solution of time-dependent192
nonlinear conservation equations as well. Preliminary tests (not shown here for brevity) reveal193
that these two algorithms perform very well when combined as described above. Preliminary tests,194
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(not shown here for brevity) also show that the global limiting algorithm should not be used alone.195
When used alone, the algorithm may make the approximation to converge to a solution that does not196
satisfy the Rankin-Hugoniot condition. The purpose of the global limiting is purely theoretical. Its197
purpose is simply to certify that some global bound (like positivity) is exactly and unconditionally198
enforced while preserving the total mass of the solution, but the bulk of the job is done by the local199
limiting algorithm □200

3. Bounds for the transport equation. A critical aspect of the algorithm (2.2)–(2.5) is201
the estimation of the local bounds {umin

i , umax
i }i∈V . We explain in this section how this can be202

done for scalar transport equations. To simplify the presentation, we assume that the degrees of203
freedoms enumerated with the list V are Lagrange finite elements associated with the Lagrange204
nodes {xi}i∈V from a mesh Th based on a domain D ⊂ Rd, d ∈ {1, 2, 3}. In the rest of this section,205
the symbol x is a position vector in one dimension and x is a position vector in two and higher206
dimensions.207

3.1. Computations of the bounds. We start by explaining the method we use to compute208
bounds in one space dimension. We then generalize the method to high space dimensions later.209
No originality is claimed here as most of what is said in this section can be found in the radiation210
transport literature, see e.g., Lathrop [16].211

3.1.1. One-dimensional case. Let us consider the one-dimensional transport equation212

(3.1) Ω(x)∂xu(x) + σ(x)u(x) = q(x).213

We assume to simplify the presentation that both Ω and σ are piecewise contant over the mesh214
cells. We also assume that Ω is not equal to 0; otherwise, (3.1) is trivial and there is nothing to215
limit. For each i ∈ V, let xi be one of the Lagrangian node in the mesh where one wants to estimate216
an upper and a lower bound. Let K be the (unique) cell in the mesh Th such that the segment217
{xi − sΩ(s) | s ∈ R > 0} ∩K is not empty. This cell exists if xi is not on the inflow boundary (if218
xi is on the inflow boundary one can set umin

i = umax
i = α∂(xi) where α∂ is the inflow boundary219

data of the problem). Then one defines xup
i := ∂K ∩ {xi − sΩ(s) | s ∈ R > 0}. The point xup

i is220
the farthest away from xi in K along the direction −Ω. This point is at the upwind boundary of221
K (see the left panel in Figure 3.1 for example). Then, setting Ω := Ω|K and σ := σ|K , the exact222
solution to (3.1) is such that223

(3.2) u(xi) = u(xup
i )e

σ
Ω (xup

i −xi) +

∫ xi

xup
i

q(x)

Ω
e

σ
Ω s ds.224

Setting qmin := minx∈K q(x), qmax := maxx∈K q(x), this gives umin
i ≤ u(xi) ≤ umax

i where225

umin
i := u(xup

i )e
σ
Ω (xup

i −xi) +
qmin

σ
(1− e σ

Ω (xup
i −xi)),(3.3a)226

umax
i := u(xup

i )e
σ
Ω (xup

i −xi) +
qmax

σ
(1− e σ

Ω (xup
i −xi)).(3.3b)227

As these expressions are not robust with respect to σ (in particular they do not make sense for228

σ = 0), we instead define ∆x :=
∣∣xup

i −xi

Ω

∣∣, and use the following bounds motivated by Taylor229
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8 J.-L. Guermond and Z. Wang

expansion, when σ
Ω (xi − x

up
i ) ≤ 0.005:230

umin
i := u(xup

i )e
σ
Ω (x0−xi) + qmin

(
∆x− σ∆x

2

2
+ σ2∆x

3

6
− σ3∆x

4

24

)
,(3.4a)231

umax
i := u(xup

i )e
σ
Ω (xup

i −xi) + qmax
(
∆x− σ∆x

2

2
+ σ2∆x

3

6

)
.(3.4b)232

So assuming that u(xup
i ) is known, or one has access to some good approximation thereof by some233

iteration process, the bounds (3.3) (or (3.4) if σ∆x is small) gives an estimate of the local bounds234
of the solution at xi.235

3.1.2. Two-dimensional case. The high-dimensional case is similar to the one-dimensional236
one. We consider T (i) the collection of the cells containing xi and we set xup

i :=
⋂

K∈T (i) ∂K ∩237

{xi − sΩ(s) | s ∈ R > 0}. The point xup
i (green one) is the farthest away from xi (red node) in238

T (i) along the direction −Ω (see the right panel in Figure 3.1 for example). One key difference239
with the one-dimensional case is that xup

i is not necessarily a Lagrangian node. Then if one only240
knows u at the vertices of the triangulation, then one needs to reconstruct u at xup

i . For instance,241
in two space dimensions one can proceed as follows:242

1. Compute xup
i :=

⋂
K∈T (i) ∂K ∩ {xi − sΩ(s) | s ∈ R > 0}.243

2. Define u(xup
i ) := u(xi1) + θ(u(xi2)− u(xi1)), where θ = ∥(xi−xi1

)×Ω∥ℓ2

∥(xi2
−xi1

)×Ω∥ℓ2
.244

Figure 3.1: Examples for inflow nodes: left panel: 1D case; right panel: 2D case.

3.2. Relaxation. As for any local limiting technique that we know of, second-order relaxation245
of the bounds must be applied to avoid order reduction. We refer for instance to [10, §4.7] where246
this question is discussed at length. This issue is addressed by another way in the finite volume247
literature consists of relaxing the slope reconstructions; see Harten and Osher [13], Schmidtmann248
et al. [26, §2.1]. Here we adopt the methodology proposed in [10, §4.7]. Let us assume that we249
have (approximate) knowledge of u at the Lagrange node {xi}i∈V , say u(x) ≈

∑
i∈V uiφi(x) where250

{φi}i∈V are the global Lagrange shape functions. We estimate the local curvature of u by251

(3.5) ∆2
i :=

∑
j∈I(i)∗ βij(ui − uj)∑

j∈I(i)∗ βij
, and set ∆2

i := minmod{∆2
j}j∈I(i),252

where βij =
∫
D
∇φj ·∇φi dx are the stiffness coefficients of the Laplace operator. Observe that253 ∑

j∈I(i)∗ βij = −βii = −
∫
D
(∇φi)

2 dx ̸= 0. The relaxed local bounds are then defined as follows:254

umin
i := max(umin

i −∆2
i , u

min), umax
i := min(umax

i +∆2
i , u

max),(3.6)255
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where umin and umax are global bounds, if known (see Algorithm A.3). Relaxation is essential to256
recovers optimal convergence rates, see numerical tests in §5.257

4. Approximation of the radiation transport equations. We are going to illustrate258
the local mass conserving limiting algorithm (2.2)–(2.5) and the global mass conserving limiting259
algorithm (2.6) on the radiation transport equation. We introduce here the radiation transport260
equation and the associated finite element approximation.261

4.1. The model problem. The computational domain D is assumed to be an open, bounded,262
connected polyhedron in R3. The boundary of D is denote by ∂D. The symbol n denotes the outer263
unit normal on ∂D. The unit sphere in R3 is denoted by S. The surface of the unit sphere is264
denoted |S|; recall that |S| = 4π. We set O := ∂D×S, and to define the boundary conditions we265
introduce the inflow boundary O− := {(x,Ω) ∈ O | Ω·n(x) < 0}.266

Given a non-negative source term q : D×S → R+, and a non-negative boundary data α∂ :267
O− → R+, we look for Ψ : D×S → R+ so that268

Ω·∇Ψ(x,Ω) + σt(x)Ψ(x,Ω) = σs(x)Ψ(x) + q(x,Ω), in D×S(4.1a)269

Ψ(x,Ω) = α∂(x,Ω), in O−(4.1b)270

Ψ(x) :=
1

|S|

∫
S
Ψ(x,Ω) dΩ, in D,(4.1c)271

The dependent variable Ψ(x,Ω) is called angular intensity or angular flux, and Ψ(x) is called scalar272
intensity or scalar flux. The coefficient σs : D → R+ is the scattering cross section and σt : D → R+273
is the total cross section with σt ≥ σs. At some occasions we are also going to use the absorption274
cross section σa := σt − σs.275

Our goal is to construct an approximation of (4.1) that is positivity preserving and asymptotic276
preserving in the diffusion limit. We also want to make sure that the above properties hold with277
grazing incidences and inhomogeneous materials.278

4.2. Angular discretization. To simplify the presentation of the method we use the dis-279
crete ordinate technique to do the discretization with respect to the angles. The resulting angular280
quadrature is denoted {µl,Ωl}l∈L and is assumed to satisfy281

(4.2)
∑
l∈L

µl = |S|,
∑
l∈L

µlΩl = 0,
∑
l∈L

Ωl|c·Ωl| = 0,
∑
l∈L

µlΩl⊗Ωl =
|S|
3
I,282

for all c ∈ R3, where I is the 3×3 identity matrix. We define L := card(L). All the simulations283
reported in the paper are done with the SN technique (Gauss-Legendre quadrature along the polar284
axis and equi-distributed angles along the azimuth with 1

8N(N + 2) angles per octant).285

4.3. Space discretization. We are going to use continuous finite elements stabilized with the286
continuous interior penalty (CIP) technique (a.k.a. edge stabilization) from Douglas and Dupont287
[7] and Burman and Hansbo [5]. The method presented in the paper is not restricted to continuous288
elements and CIP though. It can be used with other types of stabilization. For instance, one289
can use discontinuous elements (of degree p ≥ 1) stabilized with upwind numerical flux. One can290
also use continuous elements stabilized with methods like Galerkin Least-Squares (GaLS) (or its291
SUPG variation), Local Projection Stabilization (LPS), Orthogonal Subscale Stabilization (OSS),292
and Subgrid Viscosity (SGV).293
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Let (Th)h∈H be a shape-regular family of unstructured matching meshes exactly coveringD. For294

simplicity we assume that all the elements are generated from a reference element denoted K̂. The295
geometric transformation mapping K̂ to an arbitrary element K ∈ Th is denoted TK : K̂ −→ K.296
We now introduce a reference finite element (K̂, P̂ , Σ̂), which we assume, for simplicity, to be a297
Lagrange element. We define the following scalar-valued finite element space:298

Vh = {v ∈ C0(D;R) | v|K◦TK ∈ P̂ , ∀K ∈ Th}.(4.3)299

The global shape functions are denoted by {φi}i∈V . Recall that Vh = span{φi}i∈V .300
Given any mesh cell K in Th, we denote by hK the diameter of K and nK the outward unit301

normal at the boundary of K. We set h := maxK∈Th
hK . The collection of the mesh faces is denoted302

Fh. The set of interfaces is denoted by F◦
h . The set of boundary faces is denoted by F∂

h . Each303
interface F in F◦

h is oriented using a unit normal vector nF . Letting Kl, Kr be the two cells sharing304
an interface F ∈ F◦

h , we adopt the convention that nF points from Kl to Kr. Every boundary face305
F ∈ F∂

h is oriented by the unit normal nF := nD. For all F ∈ Fh with F = ∂Kl ∩ ∂Kr, and all306
function w smooth enough to have traces on F , we define the jump of w across F as307

(4.4) [[w]]F := lim
Kl∋y→x

w(x)− lim
Kr∋y→x

w(x).308

4.4. Finite element approximation. First, we define the sesquilinear form associated with309
the continuous interior penalty. We start by defining σt

ϵ = σt + ϵσϵ, σs
ϵ = σs + ϵσϵ, where σϵ =310

ϵ supx∈D σ
t(x) and ϵ > 0. The tests reported in the paper are done with ϵ = 10−10. Then, for all311

ψh, ϕh ∈ Vh, we set312

sh(ψh, ϕh) := ϖ
∑

F∈F◦
h

h2F ([[∇ψh]]θ,F , [[∇ϕh]]θ,F )L2(F ),(4.5a)313

[[∇ϕh]]θ,F := (θr∇ϕh|Kl
− θl∇ϕh|Kl

)·nF ,(4.5b)314

θr =
σt
ϵ,l

σt
ϵ,l + σt

ϵ,r

, θr =
σt
ϵ,r

σt
ϵ,l + σt

ϵ,r

,(4.5c)315

In all the simulations reported in the paper the parameters, ϖ, and hF are defined by316

ϖ :=
d2

(1 + p)4
, hF =

1
2 (|Kl|+ |Kr|)

|F |
,(4.6)317

where d is the space dimension and p is the polynomial degree of the approximation.318
Next, for all k ∈ L, we define the bilinear form associated with the operator ψ 7→ Ωk·∇ψ+σtψ319

and the bilinear form we use to weakly enforce boundary conditions. For all k ∈ L, we set320

tk(ψ, ϕ) =

∫
D

(
Ωk·∇ψh,k(x) + σt(x)ψh,k(x)

)
φi(x) dx,(4.7)321

bk(ψ, ϕ) :=
∑

F∈F∂
h

∫
F

1

2
(|Ωk·n| −Ωk·n)ψ(x)ϕ(x) ds.(4.8)322

The approximation of the angular flux ψh is done in (Vh)
L. We set ψh := (ψh,1, . . . , ψh,L) ∈323

Vh× . . .×Vh, with ψh,k :=
∑

j∈V Ψikφj ∈ Vh for all the angular direction in the quadrature k ∈ L.324
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Let α∂
k be the value of the boundary incidence along the quadrature angle Ωk. The discrete ordinate325

Galerkin approximation of (4.1) consists of seeking Ψh ∈ (Vh)
L so that the following holds for all326

k ∈ L and all i ∈ V:327

tk(ψh,k, φi) + sh(ψh,k, φi) + bk(ψh,k, φi)(4.9)328

=

∫
D

σs(x)ψh(x)φi(x) dx+

∫
D

q(x)φi(x) dx+ bk(α
∂
k , φi).329

We are also going to make use of the diffusion approximation with weakly enforced Dirichlet330
boundary condition. For this purpose, for all ϕh, rh ∈ Vh, we set331

a(ϕh, rh) :=

∫
D

1

3σs
ϵ (x)

∇ϕh(x)·∇rh(x) dx+

∫
D

σa(x)ϕh(x)rh(x) dx+
1

4

∫
∂D

ϕh(x)rh(x) ds,

(4.10)

332

where we recall that 1
2|S|

∫
Ω∈S(|Ω·n|+Ω·n) ds = 1

|S|
∫
Ω·n<0

|Ω·n|ds = 1
4 .333

4.5. Solution method. There are many solution methods to solve (4.9). The method that334
is used does not really matter for the purpose of the paper which we recall is about conservative335
limiting not involving computing a low-order solution based on artificial viscosity. The key idea is336
that limiting is done after (4.9) is solved. We explain in Appendix A the method that we use for337
all the simulations reported in the paper. As the purpose of the paper is just to discuss limiting,338
we have adopted a simple source iteration technique preconditioned with a diffusion approximation339
and using a minimum residual technique.340

5. Numerical illustrations, scalar transport equation. The objective of this section is341
to illustrate the limiting technique proposed in the paper. We start by testing the method on the342
scalar advection equation. Examples involving the radiation transport equation are reported in §6.343

5.1. Numerical details. The tests are done with continuous finite elements in one and two344
space dimensions. Unless specified otherwise, the simulations realized in one dimension are done on345
uniform meshes and those realized in two dimensions are done on unstructured Delaunay meshes.346
In all the tests reported below the quadratures are exact for the mass matrix. The index I stands for347
the number of degrees of freedom (or gridpoints) of the approximation. Given a nonzero function348
u ∈ L1(D) and uh its finite element approximation, we call relative error in the L1-norm the349
quantity ∥u− uh∥L1(D)/∥u∥L1(D).350

5.2. 1D smooth solution. We start by solving a transport problem in one space dimension351
with a smooth solution. We let D = (0, 8) and solve352

(5.1) Ω∂xu+ σu = q, a.e. x ∈ D, u(0) = 0.353

with Ω = 1, σ(x) = 1, q(x) = Ωπ sin(πx) + σ(x)(1− cos(πx)). The solution is u(x) = 1− cos(πx).354
We test the method with P1, P2, and P3 continuous finite elements on a series of meshes. We355

compute the relative error in the L1-norm. The results are shown in Table 5.1. We observe the356
expected convergence rates: 2, 3, and 4 for P1, P2, and P3 finite elements, respectively.357

5.3. 1D non-smooth solution. We continue with one-dimensional transport problem with358
a non-smooth solution. We consider D = (0, 1) and solve359

(5.2) Ω∂xu+ σu = q, a.e. x ∈ D, u(0) = 0.360
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12 J.-L. Guermond and Z. Wang

Table 5.1: Problem (5.1). P1, P2, and P3 continuous finite elements. Relative error in the L1-norm.

P1

I L1-Err rate
101 2.28E-03 –
201 4.61E-04 2.32
401 1.02E-04 2.18
801 2.42E-05 2.08
1601 5.92E-06 2.04

P2

I L1-Err rate
101 2.02E-04 –
201 2.22E-05 3.21
401 2.67E-06 3.07
801 3.30E-07 3.02
1601 4.12E-08 3.01

P3

I L1-Err rate
100 1.07E-04 –
202 6.80E-06 3.91
400 4.46E-07 3.99
799 2.81E-08 4.00
1600 1.74E-09 4.00

with Ω = 1, and the scalar fields σ(x) and q(x) are piecewise constants and given by361

(5.3) σ(x) =


s1 x0 ≤ x ≤ x1
s2 x1 < x ≤ x2
s3 x2 < x ≤ 1

q(x) =


q1 x0 ≤ x ≤ x1
q2 x1 < x ≤ x2
q3 x2 < x ≤ 1.

362

The exact solution is given by363

(5.4) u(x) =


q1
s1
(1− exp(s1(x0 − x))) x0 ≤ x ≤ x1

u1 exp(s2(x1 − x)) x1 < x ≤ x2
u2 exp(s3(x2 − x)) + q3

s3
(1− exp(s3(x2 − x))) x2 < x ≤ 1,

364

where u1 = q1
s1
(1 − exp(s1(x0 − x1))) and u2 = u1 exp(s2(x1 − x2)). In the simulations reported365

below we use x0 = 0, x1 = 0.3, x2 = 0.6, s1 = 1, s2 = 103, s3 = 2, q1 = 1, q2 = 0, q3 = 1.366

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

 0  0.2  0.4  0.6  0.8  1

P1 Galerkin

Exact solution

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

 0  0.2  0.4  0.6  0.8  1

P2 Galerkin

Exact solution

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  0.2  0.4  0.6  0.8  1

P3 Galerkin

Exact solution

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 0  0.2  0.4  0.6  0.8  1

P1 CIP no limiting
Exact solution

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 0  0.2  0.4  0.6  0.8  1

P2 CIP no limiting
Exact solution

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 0  0.2  0.4  0.6  0.8  1

P3 CIP no limiting
Exact solution

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  0.2  0.4  0.6  0.8  1

P1 CIP with limiting
Exact solution

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  0.2  0.4  0.6  0.8  1

P2 CIP with limiting
Exact solution

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0  0.2  0.4  0.6  0.8  1

P3 CIP with limiting
Exact solution

Figure 5.1: Nonsmooth solution (5.2). Left column: P1, 101 dofs. Center column: P2, 101 dofs.
Right column: P3, 91 dofs. Top row: Galerkin. Center row: CIP without limiting. Bottom row:
CIP with limiting.

We test the method with P1, P2, and P3 continuous finite elements. We show in Figure 5.1 the367
graph of the P1, P2, and P3 approximation on a mesh composed of 101, 101 and 91 grid points,368
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respectively. The panels in the top row of the figure show the unstabilized Galerkin solution.369
oscillations are clearly visible in the interval (0, x1). The panels in the second row of the figure370
show the solution stabilized with the CIP method. Most of the oscillations are gone at the exception371
of overshoots localized at the interface located at x1. We finally show in the panels of the third row372
the results obtained with CIP stabilization and the limiting technique proposed in the paper. The373
maximum principle is satisfied.374

Table 5.2: Non-smooth solution (5.2). P1, P2, and P3 continuous finite elements. Relative error in
the L1-norm.

P1

I L1-Err rate
101 1.49E-02 –
201 5.15E-03 1.54
401 1.56E-03 1.72
801 3.34E-04 2.23
1601 1.01E-04 1.73

P2

I L1-Err rate
101 1.91E-02 –
201 2.82E-03 2.78
401 9.59E-04 1.56
801 4.12E-04 1.22
1601 1.49E-04 1.47

P3

I L1-Err rate
91 1.68E-02 –
181 5.88E-03 1.53
361 1.49E-03 1.99
721 3.35E-04 2.16
1441 7.11E-05 2.24

The results of the convergence tests are shown in Table 5.2. We observe the expected conver-375
gence rate close to 2 for P3 elements and between 1.5 and 2 for P1 and P2 elements. Note that the376
convergence rate 2 is optimal since the gradient of the solution is only in BV.377

5.4. 2D slip line. We now consider the two-dimensional unit square D = (0, 1)2 and solve378
the problem379

(5.5) Ω∂xu = 0, a.e. x ∈ D, uΓ1
= 0, uΓ2

= 1,380

with Ω = (0, 1)2, and Γ1 = {(0, y) | 0 < y ≤ 1}, Γ2 = {(x, 0) | 0 ≤ x ≤ 1}. The exact solution is381
discontinuous; it exhibits a slip line align the axis {x = y, x > 0}. The solution is given by382

(5.6) u(x, y) =

{
0 x < y

1 y ≤ x.
383

We show in the top three panels of Figure 5.2 the graph of the limited CIP solution obtained384
with P1, P2 and P3 elements on meshes composed of 9535, 9529, and 9541 grid points, respectively.385
We show in the bottom three panels of the figure the meshes and 11 isolines {0.05, 0.1, . . . , 0.9, 0.95}386
(4 triangles are shown for each P2 cell, and 9 triangles are shown for each P3 cell)387

We report in Table 5.3 the convergence rates for P1, P2, and P3 continuous finite elements. We388
observe a rate close to 0.73 for linear elements. The convergence rate for P2 and P3 elements is389
equal to 1 which is optimal as the solution is only in BV . This test confirms the near-optimality390
of the method for P2 and P3 elements.391

5.5. 2D non smooth problem. Let D = (0, 1)2. We solve the two-dimensional version of392
the problem (5.2),393

(5.7) Ω·∇u+ σu = q, a.e. x ∈ D, u(0, y) = 0, 0 ≤ y ≤ 1.394
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14 J.-L. Guermond and Z. Wang

Figure 5.2: Slip line problem (5.5). Non-uniform Delaunay meshes. Left: P1, 9535 grid points;
Center: P2, 9529 grid points; P3, 9541 grid points.

Table 5.3: Problem (5.5). P1, P2, and P3 continuous finite elements. Relative error in the L1-norm.

P1

I L1-Err rate
961 5.47E-02 –
3721 3.45E-02 0.68
14641 2.12E-02 0.71
58081 1.28E-02 0.73
231361 7.75E-03 0.73

P2

I L1-Err rate
1681 4.14E-02 –
6561 2.16E-02 0.96
25921 1.10E-02 0.98
103041 5.57E-03 0.99
410881 2.80E-03 0.99

P3

I L1-Err rate
961 7.09E-02 –
3721 3.71E-02 0.96
14641 1.89E-02 0.98
58081 9.57E-03 0.99
231361 4.81E-03 1.00

with Ω = (1, 0), and, with the notation x := (x, y), the scalar fields σ(x) and q(x) given by395

(5.8) σ(x, y) =


s1 x0 ≤ x ≤ x1
s2 x1 < x ≤ x2
s3 x2 < x ≤ 1

q(x, y) =


q1 x0 ≤ x ≤ x1
q2 x1 < x ≤ x2
q3 x2 < x ≤ 1.

396
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The exact solution is given by397

(5.9) u(x, y) =


q1
s1
(1− exp(s1(x0 − x))) x0 ≤ x ≤ x1

u1 exp(s2(x1 − x)) x1 < x ≤ x2
u2 exp(s3(x2 − x)) + q3

s3
(1− exp(s3(x2 − x))) x2 < x ≤ 1.

398

We use the same set of the coefficients x0, x1, x2, s1, s2, s3, and q1, q2, q3 as in §5.3 (i.e., x0 = 0,399
x1 = 0.3, x2 = 0.6, s1 = 1, s2 = 103, s3 = 2, q1 = 1, q2 = 0, q3 = 1).400

The results of the convergence tests done on uniform meshes are shown in Table 5.4. The401
convergence rate varies between 1.1 and 2. Recall that the convergence rate 2 is the optimal since402
the gradient of the solution is only in BV.403

Table 5.4: Problem (5.7). P1, P2, and P3 continuous finite elements. Relative error in the L1-norm.

P1

I L1-Err rate
961 5.08E-02 –
3721 2.34E-02 1.15
14641 9.62E-03 1.30
58081 3.18E-03 1.61
231361 8.28E-04 1.95

P2

I L1-Err rate
1681 2.32E-02 –
6561 1.04E-02 1.18
25921 3.74E-03 1.49
103041 1.09E-03 1.79
410881 4.64E-04 1.23

P3

I L1-Err rate
961 4.12E-02 –
3721 1.96E-02 1.10
14641 7.08E-03 1.49
58081 1.71E-03 2.06
231361 4.18E-04 2.04

6. Radiation transport. In this section, we report the tests done on the radiation transport404
equation using the algorithm described in the paper.405

6.1. Numerical details. The positive- and asymptotic-preserving algorithm defined in Al-406
gorithms A.1 and A.2 is implemented with continuous finite elements of degree p ∈ {1, 2, 3} on407
simplices. The meshes in one dimension are uniform. The meshes in two space dimension are non-408
uniform and composed of triangles. The angular discretization is done with the Gauss-Chebyshev409
SN quadrature. In one dimension, the x1-component of the angles are the N quadrature points410
of the Gaussian-Legendre quadrature over [−1, 1] and the weights are the weights of the Gaussian-411
Legendre quadrature. In two-dimensions we use the standard triangular SN quadrature. As the412
x3-direction is ignored, there are four quadrants and the total number of angular directions is413
1
2N(N + 2). Unless specified otherwise, the units are cm for lengths, nb.part./cm2·s·sr for ψ,414

nb.part./cm2·s for ψ, nb.part./cm3·s for q, and cm−1 for the cross sections.415

6.2. One-dimensional benchmark tests. We start by illustrating the performance of the416
method in one space dimension. We compare the results given by the proposed the method with417
those given by the unlimited dG1 approximation stabilized by using the upwind flux. We use the418
angular quadrature S8 (8 discrete directions in 1D) for all the cases. The angles, characterized419
by their x1-component, are enumerated in increasing order from 1 to 8. The data for the four420
cases considered here are reported in Table 6.1. In each case we give the length of the domain and421
the number of zones composing the domain. For each zone we give the values of σt, σs, and q422
(constants), and we also give the number of cells composing the zone. The boundary condition for423
cases 1, 3, and 4 are ψh|∂D− = 0 (this is the so-called vacuum boundary condition). We enforce a424
grazing incidence for case 2; we set ψh,k|∂D− = 0 for k ̸= 5, 1 ≤ k ≤ 8, and ψh,5(0) = 1.0.425
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Table 6.1: Data for the one-dimensional test cases.

#zones 5
C

as
e

1

Length 2.0 1.0 2.0 1.0 2.0
σs 0.0 0.0 0.0 0.9 0.9
σt 50.0 5.0 0.0 1.0 1.0
q 25. 0.0 0.0 .5 0.0

#cells 25 25 25 25 25
B.C. Vac.

#zones 1

C
as

e
2

Length 10.0
σs 100.0
σt 100.0
q 0.0

#cells 100
B.C. ψ5(0) = 1

#zones 1

C
as

e
3

Length 10.0
σs 10.0
σt 10.0
q 0.05

#cells 100
B.C. Vac.

#zones 1

C
as

e
4

Length 100.0
σs 0.09999
σt 0.1
q 0.5

#cells 100
B.C. Vac.

Figure 6.1: Comparisons between the present method using cG1 and the upwind dG1 method.
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(d) Case 4, ψh,1, zoom

The results of the simulations are reported in Figure 6.1. We show in Panels (6.1a)-(6.1c) the426
total scalar flux, 2ψh, obtained with the dG1 approximation (labeled dG1) and with the proposed427
method (labeled cG1). We observe a fair agreement between the two methods given the number428
of grid points (recall that dG1 has two times has many grid points as cG1). Panel (6.1d) shows429
the angular flux ψh,1 for case 4 in the last cell close to the right boundary. For this case the430
dG1 approximation gives negative values at x = 100 on the angular fluxes 1, 2, and 3 (the values431
are −0.24, −0.22, −0.066, respectively (approximated to 2 digits)). In all the cases the proposed432
method is always nonnegative.433

6.3. Grazing incidences. We now focus on the second test case discussed in §6.2. A grazing434
incidence is enforced on the left boundary of the domain (only ψh,5(0) is nonzero). We also have435
σth = σsh = 10; that is, the diffusive regime is dominant. The conjunction of these two conditions436
produces a boundary layer as shown in Chandrasekhar [6], Malvagi and Pomraning [21]. Moreover,437
as established in Theorem 5.4 in [9], convergence of the dG approximation only occurs in a weak438
norm; more precisely, convergence on ψh occurs in the Sobolev space Hs(D) only for smoothness439
indices s strictly less that 1

2 . That is to say, the values of ψh at the boundary does not converge440
(recall that boundary traces do not exit when s < 1

2 ). Let us for a moment denote by α∂(Ω,x) the441
boundary data of the problem. Then as observed in Adams [1, Eq. 66] (see also Prop. 3.6 in [9])442
the leading term of the diffusion expansion of the dG approximation at the boundary is443

(6.1) ψh(x)|∂D ≈
1

2π

∫
Ω·n≤0

(|Ω·n|+ 3
2 |Ω·n|

2)α∂(Ω,x) dΩ,444
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which is almost equal to 1
2π

∫
Ω·n≤0

√
3
2 |Ω·n|H(|Ω·n|)α∂(Ω, x) dΩ, (where H is Chandrasekar’s func-445

tion), because
√
3
2 µH(µ) ≈ 0.91µ + 1.635µ2 ≈ µ + 3

2µ
2 up to a “a few percents” over the interval446

µ ∈ [0, 1]. Hence, although, strictly speaking, the dG approximation is not asymptotic preserving447
when there are grazing incidences (unless the mesh or the shape functions are designed to resolve448
boundary layers), due to the above observation, it is a common practice in the radiation trans-449
port literature to say that the dG approximation with the upwind numerical flux is asymptotic450
preserving regardless of whether the boundary data is isotropic or not.451
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Figure 6.2: Total scalar flux, 2ψh, for the grazing problem with cG1, cG2, cG3, and dG1. Left: 100
grid points. Center: 400 grid points. Right: 1600 grid points

Note that the above comments regarding dG are independent of the polynomial degree, i.e.,452
(6.1) does not depend on p. Note also that the numerical results reported in the second panel of453
Figure 6.1 show that the result holds true as well for the stabilized cG1 approximation. The key454
here is that in both cases the boundary condition is enforced weakly using the bilinear form bk455
defined in (4.8). We show in Figure 6.2 simulations done with the proposed method using cGp,456
p ∈ {1, 2, 3}, on meshes composed on 100 (left panel), 400 (center panel), and 1600 (right panel)457
grid points. In each case, the number of cells is adjusted so as to maintain the same number of grid458
points for all p ∈ {1, 2, 3}. We also report in this figure the results from the dG1 approximation459
with 200, 800, and 3200 grid points. The red line labeled “exact” is obtained by using cG3 with460
300000 grid points. We observe that, for each number of degrees of freedom all the methods give461
almost exactly the same results (regardless of whether the method is dG or cG). We notice also that462
with 100 grid points the numerical solution is indeed “a few percents” away from the exact solution,463
as claimed in [1, Eq. 66]. The reader is invited to zoom on the right panel where we used 1600464
gridpoints: the dG1 solution and the three cG solutions all align on one line that is still slightly465
away from the exact solution. This confirms the theoretical result established in Theorem 5.4 in [9]466
where it is shown that when grazing incidences are enforced, convergence occurs in weak norms only467
and the convergence rate is weak (the convergence rate behaves like O(h 1

2 ) in one space dimension).468

Remark 6.1 (Comparison with [11]). The positive and asymptotic preserving method presented469
in [11] behaves properly in the diffusion limit with grazing incidences only if the asymptotic bound-470
ary value (6.1) (or Chandrasekar’s exact value) is enforced weakly (just enforcing α∂(Ω,x) is not471
asymptotic preserving). This is not the case here. The present method properly works in every472
regime by just enforcing the boundary conditions using the bilinear form bk defined in (4.8). □473
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18 J.-L. Guermond and Z. Wang

We finally repeat the above test by adding a vacuum region on the left while still enforcing the474
same grazing incidence boundary condition as above. This test is meant to assess the behavior of475
the proposed method in the presence of interfaces with vacuum and grazing incidences. We show476
the results in Figure 6.3 using 200 grid points in the center panel and 800 grid points in the right477
panel. We observe that the proposed method properly behaves. The cG and dG results almost478
coincide in both cases. We observe again, that due to the grazing incidence all the methods are479
(almost) asymptotic preserving up to “a few percents”.480

#zones 2
Length 10.0 10.0
σs 0.0 100.0
σt 0.0 100.0
q 0.0 0.0

B.C. ψ5(0) = 1
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Figure 6.3: Total scalar flux, 2ψh, for the grazing problem with a vacuum interface using cG1, cG2,
cG3, and dG1. Left: data. Center: 200 grid points. Right: 800 grid points

6.4. Diffusion limit with constant cross sections. To verify that the method does not481
lock in the diffusion regime, we consider the two-dimensional test reported in [11, §5.2.1]. The482
computational domain is D = (0, 1)2. The cross sections are constant σt = σs = 1

ϵ with ϵ > 0. The483
source is isotropic and given by q(x) = ϵ 23π

2 sin(πx1) sin(πx2). When ϵ → 0, the regime becomes484
dominated by diffusion. The asymptotic limit in this case is ψ0(x) = sin(πx1) sin(πx2).485

We solve (4.1) with the method described in the paper using linear elements (p = 1). The tests486
are done using five meshes with 140, 507, 1927, 7545, and 29870 Lagrange nodes, respectively; the487
corresponding mesh-sizes are approximately h ≈ 0.1, 0.5, 0.025, 0.125, and 0.00625. We use the S6488
quadrature (24 angular directions).489

Table 6.2: Diffusion limit. Convergence test with respect to the mesh-size and ϵ.

ϵ I rel(∥e∥L2) rate rel(∥∇e∥L2) rate

1
0
−

3

140 3.48E-02 – 7.57E-02 –
507 5.19E-03 2.96 1.91E-02 2.14
1927 2.35E-03 1.18 5.88E-03 1.77
7545 2.91E-03 -.31 2.32E-03 1.36
29870 3.05E-03 -.07 1.44E-03 0.69

1
0
−

4

140 1.52E-02 – 3.92E-02 –
507 3.39E-03 2.33 1.20E-02 1.84
1927 6.35E-04 2.51 4.23E-03 1.56
7545 1.82E-04 1.83 1.19E-03 1.86
29870 2.70E-04 -.57 3.14E-04 1.93

ϵ I rel(∥e∥L2) rate rel(∥∇e∥L2) rate

1
0
−

5

140 1.25E-02 – 2.24E-02 –
507 3.16E-03 2.13 6.98E-03 1.81
1927 7.66E-04 2.12 2.65E-03 1.45
7545 1.70E-04 2.21 7.11E-04 1.93
29870 2.81E-05 2.62 2.38E-04 1.59

1
0
−

6

140 1.23E-02 – 1.95E-02 –
507 3.14E-03 2.12 5.75E-03 1.90
1927 7.84E-04 2.08 1.98E-03 1.60
7545 1.92E-04 2.06 7.06E-04 1.51
29870 4.59E-05 2.08 2.35E-04 1.60

We show in Table 6.2 the results of the test for the following four values of the small parameter490
ϵ ∈ {10−3, 10−4, 10−5, 10−6}. We report in this table the relative L2-norm and the relative H1-491
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semi-norm of the difference between ψh and the Lagrange interpolant of the asymptotic limit ψ0.492
We observe that, as proved in [9, Th. 5.3] for the upwind dG1 approximation, the scalar flux ψh493
converges optimally to ψ0 when ϵ is significantly smaller than the mesh-size. The convergence order494
is O(h2) in the L2-norm. It seems that some super-closeness phenomenon occurs in the H1-semi-495
norm since the rate behaves like O(h1.5). Tests with quadratic and cubic elements demonstrate the496
same behavior. These tests are not reported for brevity.497

6.5. Reflection effects. We now reproduce a test case proposed in [11] using exactly the498
same finite element grids and angular discretization in order to illustrate that the proposed method499
is indeed more accurate than that from the reference.500

Figure 6.4: Grazing and reflection effects: Top: scalar intensity ψh. Bottom: first angular intensity,
ψh,1. Left, P1, 76230 grid points. Center P2, 303893 grid points. Right: P3, 682990 grid points.

We consider the two-dimensional domain D = (0, 1)2 composed of two regions: one that501
is optically thick and one without any scattering. The cross sections are distributed as fol-502
lows: σt(x) = 100, σs(x) = 99 if x2 ≥ 0.5 (optically thick and diffusive zone), and σt(x) =503
σs(x) = 0 if x2 ≤ 0.5 (void). The angular approximation is done with the S6 quadrature (24504
angular directions). We enforce a grazing incidence boundary condition on the leftmost bound-505
ary: this boundary is illuminated with intensity 1 along the first direction of the quadrature506
Ω1 := (0.93802334, 0.25134260, 0.23861919) (eight digits truncation). All the other incoming an-507
gular fluxes are set to zero on this boundary. All the incoming angular fluxes are set to zero on508
the other three boundaries. The approximation in space for the asymptotic-preserving method is509
done on a non-uniform grid composed of 151434 triangles. There are 76230 P1 grid points (i.e.,510
1 829 520 dofs in total), 303893 P2 grid points (i.e., 7 239 432 dofs in total), 682990 P3 grid points511
(i.e., 16 391 760 dofs in total).512

The results are shown in Figure 6.4. Comparing these results with what is shown in the two513
leftmost panels in Fig. 3 in [11], we observe that the present method is significantly more accurate514
than that in [11] while being positivity-preserving and asymptotic preserving. We also notice the515
ray effect in the vacuum region {x2 ≤ 0.5}, which is an artifact of the SN method (recall that we516
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20 J.-L. Guermond and Z. Wang

are just using 24 angular directions on purpose). That the ray effect is so crisply captured clearly517
demonstrates that the space approximation is very accurate; one cannot discern any smoothing518
induced by numerical dissipation.519

6.6. Crooked pipe problem. We now solve a problem known in the literature as the crooked520
pipe problem. We adopt here the setting used in Olivier et al. [22, §7.3]. The geometry of the521
problem is shown in the left panel of Figure 6.5, D = (0, 7)×(−2, 2). In the pipe we have σs = 0.2,522
σa = 10−3, q = 10−7. The characteristics of the material composing the walls are σs = 200,523
σa = 10−3, and q = 10−7. The boundary condition is Ψ(x, y) = 2/|S| = 1/2π on {x = 0, |y| ≤ 0.5}524
and Ψ(x, y) = 0 on the rest of the boundary.525

Figure 6.5: Crooked pipe problem. Left: setting of the problem. Center: profile of the total scalar
flux, |S|ψh for various meshes and polynomial degrees. The symbol “Ref.” stands for the data from
[22]. Right: total scalar flux distribution (P3)
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We use unstructured triangular Delaunay meshes. The meshes are generated so that the526
pipe/wall interface is exactly represented. The computations are done on various meshes and527
with various polynomial degrees ranging form P1 to P3: P1 with 13226 grid points, P1 with 51916528
grid points, P2 with 13529 grid points, P2 with 524621 gridpoints, P3 with 30274 grid points, and529
P3 with 117706 grid points.530

We show in the center panel of Figure 6.5, the profile of the total scalar intensity, |S|ψh, along531
the segment {0 ≤ x ≤ 7, y = 0}. There are six different simulations. The angular discretization is532
done as in [22, §7.3] using the S24 angular quadrature ( 12N(N + 2) = 312 angles). We also report533
in this panel the results given in Olivier et al. [22, Fig. 10] (red line). We observe that the results534
from the six simulations with the proposed method collapse on a single curve, suggesting that all535
the spatial features are resolved. There are slight discrepancies of a few per cents with the results536
from [22], but overall the agreement is satisfactory.537

6.7. Lattice problem. We continue with a benchmark test from Peng and McClarren [23,538
§5.2] called “Lattice problem” therein. The computational domain is D = (0, 7)2. The material539
is organized in a checkerboard fashion. Each elementary region has size 1×1. The details of the540
geometry are shown in the left panel of Figure 6.6. There are 11 purely absorbing regions (σt = 10,541
σs = 0, black boxes in Figure 6.6), there are 37 regions that are purely scattering (σt = 1, σs = 1,542
white boxes in Figure 6.6), and there is one region with a strong source and scattering material543
(q = 1 σt = 1, σs = 1, yellow box). The homogeneous Dirichlet boundary condition is enforced544
over the entire boundary of the domain.545

The meshes are generated so that the material interfaces are exactly represented. The compu-546
tations are done on three meshes with polynomial degrees ranging from P1 to P3. Five different547
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simulations done: P1 with 11236 grid points, P1 with 44521 grid points, P2 with 44521 grid points,548
P2 with 177241 grid points, and P3 with 99856 grid points. The angular quadrature is done with549
312 angular directions (this is the S24 quadrature).550

Figure 6.6: Lattice problem. Left: setting of the problem. Center: profile of the total scalar flux,
|S|ψh for various meshes and polynomial degrees. The symbol “Ref.” stands for the data collected
from [23]. Right: total scalar flux distribution in logscale (P3, 99856 grid points)
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We show in the center panel of Figure 6.6 the profile of the total scalar intensity, |S|ψh, along the551
segment {x = 3.5, 0 ≤ y ≤ 7}. We also report in this figure results from Peng and McClarren [23,552
Fig. 8(e)]. These results are shown in red and identified with the symbol “Ref.” The representation553
is done in log scale along the y-axis. We observe that the agreement between the present method554
and the reference results is overall quite satisfactory.555

6.8. Hohlraum. We finish with a test that is purely qualitative and loosely inspired from the556
hohlraum problem in Southworth et al. [27, IV.B]. The objective is to give some feeling on how557
the method behaves when solving a somewhat realistic problem. The problem under consideration558
is a very simplistic representation of a hohlraum device used in the indirect-drive approach of559
inertial confinement fusion. The dimensions are not given in the reference, but we use a square560
domain D = (0, 10)2 (i.e., 10cm×10cm). These values are significantly larger than those of an561
actual hohlraum, but as the problem is linear, everything can be recalled by a length scale. The562
zero incidence boundary condition is imposed. The thickness of the walls of the cavity is 0.3. The563
width of the opening at the top and bottom of the cavity is 5.1. The “spherical” capsule inside the564
cavity is centered at (5., 5.). Its internal radius is 3.3 and its external radius is 3.6. The opening565
on the right side of the capsule (simulating a filling hole) is a cone with half angle equal to 5◦ and566
vertex located at (5., 5.). The sources are meant to simulated simulate the heating of the wall by567
lasers, hence the sources are only located in the walls of the cavity in the region composed of the568
points x = (x1, x2) where (0 ≤ x1 ≤ 0.3 or 9.7 ≤ x1 ≤ 10) and (2.7 ≤ x2 ≤ 3.3 or 4 ≤ x2 ≤ 6 or569
6.7 ≤ x2 ≤ 7.3). The constant value of the source is arbitrarily set to q = 108. The cross sections570
are distributed as follows. “Gold” wall of the cavity: σt = 102, σs = 2.5. “Helium filling” around the571
spherical capsule: σt = 10−4 σs = 10−4. “Plastic” capsule wall: σt = 10, σs = 6. “Hydrogen fuel”572
inside the capsule: σt = 10−2, σs = 10−2. Again, these values are inspired from [27, IV.B] and are573
not to be taken as actual values. Note that the problem is heterogeneous. It involves streaming574
and diffusive regions.575
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Figure 6.7: Hohlraum problem. Left: geometry of the problem. Center, scalar flux, ψh, P1, 682261
grid points, S12 quadrature. Right, scalar flux, ψh, P3, 864754 grid points, S12 quadrature.

We show in the center and right panels of Figure 6.7 the results of two simulations using576
continuous P1 and P3 elements. The meshsize is approximately 0.0125 for the P1 approximation577
(682261 grid points) and 0.035 for the P3 approximation (864754 grid points). We use the S12578
angular quadrature as in [27, IV.B]. This makes 84 directions. The figure shows the scalar flux, ψh,579
in both cases. The results look visually similar to what is reported in Figure 3(b) in [27] although580
the color scheme is slightly different.581

Appendix A. Preconditioned source iteration and limiting.582
We explain here the preconditioned source iteration method that is used in the radiation trans-583

port tests reported in the paper. We start with a few definitions to help us make the algorithm584
more concise. We define the mapping Φ : Vh → Vh so that for all p ∈ Vh (not to be confused with585
the polynomial degree), Φ(p) solve the diffusion equation a(Φ(p), v) =

∫
D
pv dx for all v ∈ V (notice586

that the boundary condition is homogeneous). For all angular quadrature index k ∈ L, we define587
the mapping Ψ0

k : Vh → Vh so that for all scalar flux ϕ ∈ Vh, Ψ0
k(ϕ) solves (4.9) with homogenous588

boundary condition (i.e., zero incidence) and zero source term (i.e., q ≡ 0). Likewise we define589
Ψ∗

k ∈ Vh so that Ψ∗
k solves (4.9) with the correct boundary condition and the correct source term590

q. In summary, Φ(p), Ψ0
k(ϕ) and Ψ∗

k are defined so that the following holds for all v ∈ Vh:591

a(Φ(p), v) =

∫
D

pv dx,(A.1)592

t(Ψ0
k(ϕ), v) + sh(Ψ

0
k(ϕ), v) + bh(Ψ

0
k(ϕ), v) =

∫
D

σsϕv dx,(A.2)593

t(Ψ∗
k, v) + sh(Ψ

∗
k, v) + bh(Ψ

∗
k, v) =

∫
D

qv dx+ bk(α
∂
k , v).(A.3)594

We set Ψ0(ϕ) := (Ψ0
1(ϕ), . . . ,Ψ

0
L(ϕ)) ∈ V L

h and Ψ∗ := (Ψ∗
1, . . . ,Ψ

∗
L) ∈ V L

h . Then Ψ(ϕ) := Ψ0(ϕ)+Ψ∗595

solves (4.9) iff Ψ(ϕ) = ϕ. Hence, we have to solve the linear system: Find ϕ ∈ Vh so that596

ϕ−Ψ0(ϕ) = Ψ∗.(A.4)597

This can be done in a multitude of ways. The simple algorithm we use in the numerical simulations598
reported in the paper proceeds as follows. We initialize the algorithm by setting Φ0 = Φ(q). Using599
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Krylov’s method to construct the solution, it is natural to define the first search direction to be600
the residual of (A.4), i.e., p0 = ϕ0 − Ψ0(ϕ0) − Ψ∗. Let ϕn (here n ∈ N is the loop index) be some601
estimate of ϕ. We add the direction induced by the diffusion limit rn := Φ(σspn). Then we search602
for αn, βn ∈ R so that the new update603

(A.5) ϕn+1 = ϕn + αnpn + βnrn,604

minimizes ∥ϕn+1−Ψ(ϕn+1)∥ where ∥ · ∥ is some norm induced by some inner product (·, ·) that can605
be chosen by the user. As the next search direction is the residual pn+1 = ϕn+1 −Ψ0(ϕn+1), after606
some algebraic manipulations we obtain607

pn+1 = pn + αn(pn −Ψ0(pn)) + βn(rn −Ψ0(rn)).(A.6)608

To avoid stalling, which is a standard for steepest descent methods, we enforce pn+1 to be orthogonal609
to pn. Setting dp := pn−Ψ0(pn) and dr := rn−Ψ0(rn), the two constraints on αn and βn are then610

∥pn∥2 + αn(pn, dpn) + βn(pn, drn) = 0,(A.7)611

min
[
∥pn∥2+ 2αn(pn, dpn) + 2βn(pn, drn) + ∥αndpn + βndrn∥2

]
.(A.8)612

The solution to this quadratique system is613

βn = ∥pn∥2 ∥dpn∥2(pn, drn)− (dpn, drn)(pn, dpn)

2(dpn, drn)(pn, dpn)(pn, drn)− ∥dpn∥2(pn, drn)2 − ∥drn∥2(pn, dpn)2
,(A.9)614

αn =
−∥pn∥2 − βn (pn, drn)

(pn, dpn)
,(A.10)615

and (A.5) gives the next estimate of the solution. At this point one applies the global mass616
conserving limiting algorithm (2.6) to {ϕn+1}i∈V with the global mass M :=

∑
i∈V miϕ

n+1
i and617

ϕmin
i = 0 (and one can also enforce ϕmax

i if it happens that the maximum is a priori known). The618
algorithms stops when ∥pn+1∥/∥ϕn+1∥ is smaller than some tolerance.619

The final and key part of the algorithm is the conservative limiting (local and global). For620
each angle k ∈ L, we proceed as follows: (1) For every i ∈ V, we use the method of characteristics621
explained in §3 to compute the lower and upper bounds on the angular intensity, {Ψmin

i,k ,Ψ
max
i,k }i∈V .622

(2) We then apply the local mass conserving algorithm (2.2)–(2.5) to {Ψi,k}i∈V using the bounds623
{Ψmin

i,k ,Ψ
max
i,k }i∈V computed above. (3) Finally we apply the global mass conserving algorithm (2.6)624

to {Ψi,k}i∈V with the global mass M :=
∑

i∈V miΨi,k, Ψ
min

i,k = 0 (one can also enforce Ψ
max

i,k if the625
maximum happens to be a priori known).626
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Algorithm A.1 Preconditioned source iteration

Require: Tolerance δ > 0, upper bounds {Φmax
i }i∈V (optional).

1: n = 0, e =∞. ▷ initialize iteration count and error
2: ϕ0 = Φ(q), p0 = ϕ0 − (Ψ0(ϕ0) + Ψ∗)← solution of (A.3). ▷ Initialize scalar flux and residual
3: while e > δ do ▷ iteratively update Ψ0(ϕ)

dpn ← pn −Ψ0(pn) ▷ set dpn
rn ← Φ(σspn), solution of (A.1) with source σspn. ▷ set rn
drn ← rn −Ψ0(rn) ▷ set drn

4: βn ← ∥pn∥2(∥dpn∥2(pn,drn)−(dpn,drn)(pn,dpn))
2(dpn,drn)(pn,dpn)(pn,drn)−∥dpn∥2(pn,drn)2−∥drn∥2(pn,dpn)2 . ▷ optimize βn

αn ← −∥pn∥2−βn (pn,drn)
(pn,dpn) . ▷ optimize αn

5: pn+1 ← pn + αndpn + βndrn. ▷ update pn
6: ϕn+1 ← ϕn + αnpn + βnrn. ▷ update ϕn
7: M :=

∑
i∈V miΦ

n+1 ▷ compute the global mass
Φn+1,min

i = 0 for all i ∈ V. ▷ set lower bound
Optional: Φn+1,max

i ← Φmax
i for all i ∈ V. ▷ set upper bound

{Φn+1
i }i∈V ← (2.6) with above parameters. ▷ post-processing by global limiter

8: e← ∥ϕn+1−ϕn∥
∥ϕn+1∥ . ▷ estimate error at current step

9: n← n+ 1 ▷ go to next iteration
10: end while
11: {Ψi,k}i,k∈V×L ← Ψ0(ϕn) + Ψ∗. ▷ Compute final solution
12: return (Ψi,k)i,k∈V×L

Algorithm A.2 Conservative limiting

Require: Numerical solution {Ψi,k}i,k∈V×L, Iteration number itmax.
1: for it ∈ {1 : itmax} do ▷ iteratively apply local limiter
2: for (i, k) ∈ V × L do ▷ loop on each DoF
3: Ψmax

i,k ,Ψmin
i,k ← (3.3) with scattering source defined with Ψi. ▷ estimate local bounds

Ψmax
i,k ,Ψmin

i,k ← Relaxation Algorithm A.3. ▷ relax local bounds
Ψi,k ← (2.2)–(2.5) with above bounds. ▷ Local conservative limiting

4: end for
5: end for
6: Mk :=

∑
i∈V miΨi,k for all k ∈ L. ▷ set global mass for each angular

Ψmin
i,k = 0 for all (i, k) ∈ V × L. ▷ set lower bounds for global limiter

Optional: Ψmax
i,k ← input data, for all (i, k) ∈ V × L. ▷ set upper bounds for global limiter

{Ψi,k}i,k∈V×L ← (2.6), with above bounds. ▷ apply global conservative limiter
7: return {Ψi,k}i,k∈V×L
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