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ABSTRACT 3-D ultrasound reconstruction associated with augmented reality allows physicians to explore
a region of interest in 3-D in an intuitive and user-friendly way, while leveraging the advantages of 2D
ultrasound imaging: simple, low cost and non-ionizing. It may assist many clinical tasks, such as practician
training, procedure assistance or visualization of tissues difficult to interpret through 2D visualization. Re-
cently, new unsupervised deep learning techniques based on a continuous description of the 3-Dfield, showed
promising results in terms of 3-D model estimation, robustness to noise and uncertainty, and efficiency.
Inspired by these approaches, the objective of this work is to propose a 3-D ultrasound reconstruction method
based on neural implicit representations, adapted to the challenges of an augmented reality pipeline. Results
on simulated and experimental data show the precision and efficiency of the reconstruction compared to
state-of-the-art neural and traditional reconstructions.

INDEX TERMS Ultrasound reconstruction, Neural implicit representation, 3-D ultrasound imaging, Unsu-
pervised deep learning, Augmented reality

I. INTRODUCTION
Ultrasound imaging is one of the most used medical imaging
modalities, due to its relatively low-cost, ease-of-use and non-
ionizing nature, the strong appeal of this modality has lead to
manyworks aiming to improve the accuracy and interpretabil-
ity of ultrasound images [1], [2]. The standard procedure in
most clinical applications is to acquire temporal series of 2-D
images, i.e., slices, of the examined tissues. This considerably
limits the ability of ultrasound imaging to represent the 3-
D geometry of organs, and motivates an intensive literature
on 3-D ultrasound imaging. 3-D ultrasound volumes could
represent a powerful tool to assist physicians in number of
applications such as, for example, organ volume measure-
ment [3], medical procedure assistance [4] or fetal examina-
tion [5]. 3-D ultrasound imaging can be obtained through sev-
eral techniques. The most usual are based on mechanically-
driven moving 1-D or 2-D arrays [6], [7]. However, the first
option results into low-rate volumes and low-functionality,
while the latter suffers from technological limitations related
to the high channel count and limited field-of-views.

An alternative to the above solutions is to reconstruct 3-D
ultrasound volumes from a collection of 2-D slices acquired
by manually moving a 1D ultrasound probe. To perform
such a reconstruction, the position of each 2-D image in
space needs to be known. Three main approaches are usually

employed to obtain these positions: mechanical guiding of
the probe [8], [9], computation of the relative position of
the slices [10] or tracking the probe using six degrees of
freedom (6DOF) position sensors, e.g., optical or magnetic
trackers [11]. The particular interest of 3-D freehand ultra-
sound has been shown in a number of applications, e.g., [12]–
[14].
Building on these approaches, the integration of 3-D free-

hand ultrasound with augmented reality (AR) shows promis-
ing perspectives in medical imaging and surgical applica-
tions [15]–[17]. This combination enables real-time visual-
ization of internal structures in a 3-D spatial context, im-
proving the accuracy and efficiency of diagnosis [18] and
interventional procedures [16], [19], [20] in per-operative sce-
narios. In the latter scenarios, the tracking of the ultrasound
probe and the resulting images enable precise repositioning
within a global scene, so that the tissue reconstruction can
be displayed to the physician in real-time. However, this
aim of uninterrupted, real-time combination of 3-D freehand
ultrasound and AR presents several challenges, among which
a key issue is the need to minimize reconstruction time. This
constraint is necessary to ensure seamless integration and
interactive feedback during surgical procedures [15], [20].
In addition, the readability of the reconstructed volumes is
critical [17], requiring adapted algorithms to enhance volume
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clarity and reduce noise in the low resolution and high-noise
ultrasound modality.

In this article, we consider a scenario in which an ultra-
sound probe is tracked in three dimensions with a magnetic
sensor within an AR setup. The latter already provides an in-
teresting tool for visualization of the 2-D slices acquired. The
main objective here is to provide an even better visualization
of the medium under examination by reconstructing a volume
from the 2-D slices acquired and their 3-D positions, and to
display it in AR in the same time frame. This scenario poses
two main challenges: to be able to obtain a faithful recon-
struction in interactive time, and for this reconstruction to be
visually convincing and noise-free. To this effect, this paper
presents a novel approach that employs an implicit repre-
sentation of the underlying volume. This approach leverages
recent advances in Neural Implicit Representations (NIR)
to create a volume from acquired and localized ultrasound
images. Inspired by other NIR applications, our approach
uses a randomly initialized network that is trained in an
unsupervised fashion on the ultrasound images of the scene
only.

More precisely, this article presents an end-to-end pipeline
that employs NIR to achieve three main contributions: (i)
a rapid, efficient and accurate volume reconstruction, (ii) a
lightweight and continuous representation, and (iii) a signif-
icant reduction of the speckle noise that naturally contami-
nates ultrasound images.

II. BACKGROUND AND RELATED WORKS
A. 3-D ULTRASOUND IMAGE RECONSTRUCTION
Since the seminal works on 3-D ultrasound reconstruction,
algorithms based on voxel grids have been adopted as the
basis of most algorithms [11], [21]. They can be classified
in three categories: pixel-based (PBM), voxel-based (VBM)
and function-based methods (FBM).

PBM usually consist in two steps: bin-filling and hole-
filling [22]. In the bin-filling step, the pixel values of each
input 2-D image are assigned to one or multiple voxels of
the 3-D volume, based on their position. In the hole-filling
step, the voxels with no value assigned are filled using various
methods such as fast marching [23] or olympic filling [22].

In contrast to PBM, VBM directly assign a value to each
voxel of the volume of interest (VOI) based on the neigh-
boring input images. This approach has the advantage of
creating a fully filled 3-D grid in one step and is the most
commonmethod in 3-D ultrasound reconstruction [11]. How-
ever, VBM are usually sensitive to noise and spatial inconsis-
tency, i.e., widely separated inputs or region imbalance. The
most standard VBM algorithm is the voxel-nearest neighbor
(VNN) [24], which assigns to each voxel the value of the
closest pixel in the dataset. Complementarily, the distance-
weighted (DW) [24], [25] method aggregates the values of
multiple near pixels and weight them using their distance,
allowing a smoother and more robust reconstruction.

Finally, FBM use the input dataset to estimate functions
that describe the values of each voxel in the volume of interest
(VOI). Commonly used functions range from polynomial to
radial basis functions and Bézier spline [26]. Less commonly

used in ultrasound imaging, FBM suffer from large computa-
tional time [21], but benefit from strong properties in regard
to robustness to noise or missing data.
The main challenges of these methods are related to their

real-time capabilities [21], the difficulty to fill large gaps in
data, or to overcome ultrasound imaging limitations such as
low spatial resolution and signal-to-noise ratio, or variable
depth penetration of the ultrasound waves [12], [27].
Another important challenge of these approaches is re-

lated to the resulting large voxel grid, which prevents the
reconstructed volumes from being transmitted effectively to
remote devices such as AR headsets. Another difficulty is the
compromise between computational efficiency and quality of
the final volumes, in particular in ultrasound images highly
degraded by speckle noise.

B. NEURAL IMPLICIT REPRESENTATION
One of the most prominent NIR applications is novel view
synthesis. It consists in generating an image representing of
an unseen point-of-view from a collection of photographs.
This field has recently observed important advances thanks to
the use of NIR to learn intrinsic parameters of the scene [28],
[29] and inputting them in a standard rendering pipeline.
Following this seminal work, NIR has been shown to be
effective in a number of applications such as surface re-
construction [30], semantic decomposition [31] or medical
imaging [32], [33], detailed in the next section.
NIR is a family of approaches that use unsupervised

deep learning to learn a volumetric function from 3-D sam-
ples [34], [35], in NIRs, a new network is initialized for each
represented scene. Figure 1 illustrates the general functioning
of implicit representations. In most cases, NIR uses Multi-
layer perceptron (MLP) [28], [30], [32] to quantify properties
at any point in the VOI. The network in those applications
represent a function of R3 → Rn with n the number of
parameters quantified by the network.
Any point
in the VOI

x
y
z
+

Additionnal
information

Neural network

Implicit
representation

R3+n → Rm

Color
Density
Semantic
Speed
...

FIGURE 1. Neural implicit representations tie any set of properties in the
VOI to their coordinates and additional information, forming an
application of R3+n → Rm, with n the size of additional information
added to the position vector, and m the size of the property vector.

The position vector inputted in the network can be aug-
mented by additional information, or embedded to enhance
expressivity. This embedding is one of the key aspects intro-
duced by Mildenhall et al. [28] in their seminal work, and
its impact on the ability of the network to represent details
is explored and quantified in [36]. Additionally [29], [37]
continued to expand this notion by proposing other types
of encoding and providing a reflection on the order of the
elements in the input vector. This embedding phase is the
first, non-learnable, layer of the network. Its role is to increase
the dimension of the position vector, allowing the network to
represent more finely spatial variations.
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The most widely used embedding function in NeRF-
inspired networks [28], [30], and in particular in medical
applications [32], [33], is the frequency embedding [28], [36].
Each element of the input vector x, denoted by xi in (1), is
mapped fromR toR2L (with L being a meta-parameter) using
the following γ function:

γ(x) = [sin(20πxi), cos(20πxi), · · · , sin(2L−1πxi), cos(2L−1πxi)],
(1)

where i ∈ {0, 1, 2} for 3-D volume reconstruction applica-
tions.

Many works aiming to improve the accuracy and compu-
tational efficiency of this type of network take a particular
interest to this crucial embedding step [29], [37]. Its role in
ultrasound volume reconstruction is studied in-depth in this
work, and represents one of the major contributions of this
paper.

C. NEURAL-BASED 3-D RECONSTRUCTIONS IN MEDICAL
IMAGING
NIRs have a number of noteworthy applications in medical
imaging, particularly related to their close relation to the 3-D
tissue they represent. Early work associated the measured
data in the medium with their coordinates directly [32], such
that the network represented a continuous function over the
VOI. Such continuous representations further allow slicing
the VOI at any position and under any angle. An example of
this approach on ultrasound imaging can be found in [33],
[38]. Li et al. compared the results of a direct application of
NeRF to the standard VNN algorithm for the creation of a
spine volume to evaluate spine curvature [38]. Wysocki et al.
used the output of a NeRF network as multiple parameters
to render an ultrasound slice using a simulation process, and
used those learned parameters to re-slice the volume [33].

In addition, numerous works span from this line of think-
ing, and try to leverage the ability of deep learning to achieve
more complex or diverse tasks. In [39], the authors aim at
learning the relative pose of each slice of MR imaging in
addition to reconstructing the volume in the form of a NIR.
The method proposed in [40] associates a NIR with a seg-
mentation network to map not only the volume but a precise
semantic property it contains. An interesting work in this line
can be found in [32], which first proved the feasibility of
the approach by using the NeRF methodology, giving rise
to works in multiple medical fields such as dentistry [41],
otorhinolaryngology [42] and motricity [43].

Despite these appealing applications, and while NIR is
remarkably lightweight for a deep learning application, it still
suffers from too long training and inference (ranging from
days [28] to minutes [32]) for our application. Moreover,
their application in ultrasound imaging is still a big challenge,
mainly because of the intrinsic nature of ultrasound images,
contaminated by a high amount of speckle noise. In this
work, we introduce a 3-D ultrasound reconstruction algorithm
that takes advantage from NIR designing a specific learning
scheme and network architecture, to create a lightweight,
denoised (despeckled) volumetric representation in a signifi-
cantly reduced amount of time.

Algorithm 1: Training process of the network
Data:
coordinates, values :=Ultrasound acquisitions
totalEpochs := 5,000
batchSize := 50,000

see section III-A
network := randomly initialized MLP

Result:
network := Trained network representing the volume

1 see section III-B2;
2 S1 ← subsampleData(1, coordinates) ; // 1%
3 S2 ← subsampleData(10, coordinates) ; // 10%
4 S3 ← subsampleData(50, coordinates) ; // 50%

5 see section III-B1;
6 Function batchSelection(epoch):
7 if epoch ≤ 750 then
8 batch← selectRandom(S1, batchSize)

9 else if epoch ≤ 1500 then
10 batch← selectRandom(S2, batchSize)

11 else if epoch ≤ 2500 then
12 batch← selectRandom(S3, batchSize)

13 else
14 batch← selectRandom(coordinates, batchSize)

15 return batch;

16 for epoch← 1 to totalEpochs do
17 batch← batchSelection(epoch)
18 expected ← getValues(batch, values)
19 estimated ← evaluateNetwork(network, batch)

20 see section III-A1;
21 loss← MSE(expected , estimated)

22 network ← backpropagation(network, loss)

III. PROPOSED METHOD
In the context of our AR application, the ultrasound probe is
3-D tracked. This serves a double objective. First, it provides
the relative position between the 2-D slices, and consequently
the 3-D positions of each individual pixel. Second, the abso-
lute positions of the slices in the 3-D world are available, thus
allowing their placement in the original positions through the
AR headset. From this collection of 2-D ultrasound images,
the proposed method reconstructs a 3-D volume, which is
then overlaid with the real-world location of the imaged
tissue.
In contrast to standard use of NIR, we observed that

standard design improvements (e.g., embedding function,
network architecture and loss function) lead to a reduction
of the performances and quality of the reconstruction from
ultrasound images. This section presents the steps taken to
adjust those aspects and use NIR efficiently with ultrasound
imaging.
More precisely, we find that the embedding used, the net-

work architecture and the order and diversity of the sample
provided to the network during its training process is of great
importance in order to achieve fast and qualitative recon-
structions. This training process design from an initialized
network to the scene representation constitutes the core of
our proposed method, which is outlined in Algorithm 1 and
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Images and positions Subsample and
random selection
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FIGURE 2. Main steps of the proposed 3-D ultrasound reconstruction method. Given a collection of ultrasound slices and their position in the 3-D world, a
dedicated network is trained to represent the underlying imaged medium. From a collection of images and positions, each pixel represents a point
(x1, x2, x3) associated with a gray value g. A batch is then formed thanks to subsampling and random selection and the coordinate sent to the network to
obtain the cooresponding inferences ĝ. The inferences and the real values for all the batches are then compared with the MSE function to establish the
loss and train the network.

Figure 2. Each key point is subsequently discussed in the
following subsections.

A. NETWORK
The objective is to develop a lightweight and fast framework.
To achieve this goal, the network is analyzed hereafter under
three aspects: its usage, its input and its architecture.

1) Network usage
Once trained, the network represents a volumetric function
Φθ such that

Φθ(x) = ĝx, (2)

where x is a 3-D vector containing the 3-D coordinates in the
VOI and ĝx ∈ R is the estimated value of an ultrasound image
at position x.

This function can be seen as a volume of infinite resolution,
as any 3-D point x is associated with a value (within the
spatial bounds of the dataset). However, given that it is a linear
compounding of its weights and biases, the frequency of the
variations of the values associated to x are limited [36]. This
is a key aspect of our method, as constraining the network’s
capacity to represent high frequencies encourages it to cir-
cumvent the undesirable noise present in the original data,
and especially the speckle.

From Φθ, there are three possible approaches to obtain
an exploitable ultrasound volume: (i) use it directly through
a volume rendering process such as ray-marching [44], (ii)
discretize a given isovalue using marching cube [45] or a
similar algorithm, (iii) discretize the function in an arbitrarily
sized voxel grid. Given the flexibility of the network, each
of those solutions can be employed in different use cases
to represent the same volume. In this work, we primarily

utilize voxel grids and isosurface discretization to compute
metrics and provide a clear visualization of the reconstructed
volumes. Our final AR pipeline is illustrated in Figure 12.

2) Inputs and embeddings
The embedding of the input coordinates into a larger vector
representation allows the NIR-based networks to represent
finer details. However, in the case of ultrasound images,
high frequencies are mostly dominated by the speckle noise.
Therefore, such fine details are not suitable in 3-D ultra-
sound reconstructions, and consequently as network outputs.
Conversely, we propose to feed the coordinates directly in
the network, after only a normalization of their respective
elements between −1 and 1.
Figure 3 shows a comparison of the impact of different

embeddings in ultrasound imaging. One acquired image not
used in the training process is shown in comparison to the
ones obtained by re-slicing the 3-D reconstructed volumes.
In contrast to standard novel view synthesis applications
that accumulate multiple network results in a single pixel,
our method displays the inferences by visualizing each of
them, yielding unwanted artifacts when applying a frequency
embedding. Other embeddings, such as hash-grid embed-
ding [29] allow the network to recreate the speckle noise orig-
inally present in the given examples and maintain the high-
noise nature of the acquisition. On the other hand, passing
directly the coordinates to the networkmakes it more complex
to represent noise, and the effect of generalizing the shape of
the objects present and to get rid of the speckle noise.

3) Architecture
Having a small-scale architecture speeds up the learning pro-
cess by reducing the time required for each training epoch
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FIGURE 3. Comparison of volume reslicing at a known position using
different embeddings. From left to right: direct input, frequency
embedding [28] and base ultrasound image.

and its inference time. Furthermore, as presented in Sec-
tion III-A1 and explored in Section IV-C1, the architecture
selected should be minimal while allowing representation of
any dataset.

For this reason, we use an architecture consisting of four
layers of 175 fully connected neurons with ReLU activation.
The optimizer used is Adam, with a learning rate of 5×10−3.
All experiments conducted in this work use this architecture.
For all tested cases, it offers a good balance between pro-
cessing speed and denoising, compared to alternative archi-
tectures investigated in Sections IV-C1 and IV-D.

B. TRAINING PROCESS
The network’s parameters are randomly initialized for each
dataset, and trained in an unsupervised manner. Based on the
given 2-D ultrasound images collection, it to represent the
function shown in (2) at each point in the VOI. To achieve
this, the network is given examples in the form of pixels from
ultrasound images, (x1, x2, x3, gx), where x = (x1, x2, x3) are
the coordinates of the pixel in the VOI and gx is its acquired
gray value.

At each learning step, the network is given a set of coordi-
nates x = (x, y, z) to produce an estimate of the gray level ĝx
at that point in space. The estimates are then compared to the
true value using the Mean Squared Error (MSE), yielding the
following optimization problem:

argmin
θ

||Φθ(x)− gx||22. (3)

MSE is the standard loss function used in NIR applica-
tions. While many works on medical NIR (see Table 1) are
using the Structural Similarity Index Measure (SSIM) or a
weighted sum of both, MSE has significantly less computa-
tional overhead and is more compatible with the changes to
batch formation made in this article.

Indeed, the proper selection of the coordinates that make
up the batches has a major impact on the properties of the
results and the efficiency of the network. We design a batch
selection process, to enable the network to learn the desired
properties as rapidly as possible.

1) Random selection of the samples
Given the constraints of our application, the proposed net-
work needs to be able to generalize and capture the general

FIGURE 4. 2-D illustration of the selection of a learning batch. From the
original acquisition, 3 learning batches of 23 points are formed. Top: An
image is randomly selected and its 23 pixels form the learning batch,
Bottom: 23 points are randomly selected from all pixels of the dataset.

FIGURE 5. Illustration of the selection process of batches of size 6 from a
dataset composed of 28 pixels from 4 images of 7 pixels. First, the whole
dataset is subsampled by a factor of 3 and shuffled. The batches are then
created using a sliding circular window to ensure each selected sample is
used equally.

shapes present in the VOI as early as possible during the
training process.
Most of the existing approaches inherit directly from the

novel view synthesis approach and use a single ultrasound
image as a batch for each learning step [32], [33], [40]. How-
ever, in the case of ultrasound images, this reduces the repre-
sentativeness of a batch to a single plane (i.e. the ultrasound
image) through the volume. This process makes the network
oscillate at each step between the information present in each
image, at the expense of global information, as illustrated by
Figure 4. Furthermore, it provides too many fine details in the
form of closely related pixels, which the network is not able
to learn.
To address this challenge, we ignore the structure of the

ultrasound images, and rather select random pixels among all
the available points, forming a batch. However, pure random
selection has two main drawbacks: it can be very compu-
tationally expensive (randomly generating a large number
samples at each iteration) and does not guarantee a balanced
representation of the samples at any point during the learning
phase.
For these reasons, the array of points considered for a given

learning step is shuffled once, at the time of its creation. The
selections are then performed by slicing the shuffled array in
a section of the size of a batch. The slicing is performed by
progressing in the array without overlap, circularly. The i-th
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TABLE 1. Summary of the key components of some of the most prominent NeRF-inspired medical reconstruction.

Source Modality Input Embedding
Architecture
(Total number
of neurons)

Loss Time Output

Implic-
itVol[32]

Sensorless
Ultrasound Slices Frequency MLP 5 Layers of 128

neurons (640) SSIM 10 000
epochs

Density and
positions

Ultra-
NeRF[33] Ultrasound Slices Frequency MLP 8 Layers 256

neurons (2048)
SSIM +
MSE Unspecified 5 render

parameters

Carotid
Imaging[40]

Ultrasound
and

segmentation
Slices Frequency MLP 9 Layers of 256

neurons (2304)

MSE +
Semantic

loss

300 000
epochs

Density and
classification

IREM[46] MRI Voxels Random
frequency

MLP 13 Layers of
256 neurons and 2

Layers of 512 (4352)
MSE Unspecified Density

Ours Ultrasound
Subsampling

and
Random selection

Direct MLP 4 Layers of 175
neurons (700) MSE

5 000
epochs, 30
seconds

Density

batch is then composed of the elements between the indices
i × k + 1 mod n and (i + 1) × k mod n in the shuffled
array, with k the size of a batch and n the total number of
samples. This ensures efficiency and representativeness while
being decoupled from the original structure of the data set.
This process is illustrated in Figure 5.

2) Data subsampling
When the random selection of points is applied to the entire
set of available points to constitute the batches, it may be
necessary to perform numerous iterations before the network
has been trained on the entirety of the VOI.

To address this issue, we propose to form the batches
based on a subsample of all the available points (i.e. not
all samples are considered for random selection but only a
smaller subset), which size increases as learning progresses.

This results in the network having to generalize strongly in
order to fit the few samples, and then to refine its represen-
tation as the proportion of the size of the subset increases.
Furthermore, a restricted, well distributed set ensures that
each batch will represent the whole VOI.

The creation of the subsets is performed by selecting every
nth pixels in each images with ⌊n = 1

proportion⌋, ensuring that
the whole VOI is represented by each subset. The selection
process of a batch from the initial dataset is represented in
Figure 5.

In a typical application, the batches are drawn from 4 sub-
sets: S1, S2, S3, three subsamples of the full set (representing
1%, 10%, and 50% of the data, respectively), and the full data
itself. Given a fixed number of epochs, the network will first
learn from S1 for the first 15% of training, followed by S2 for
another 15%, and then S3 for 20%. The network then finishes
its training on the entire dataset to capture structures that may
have been missed during this generalization step.

IV. RESULTS
The results of our method are presented under three different
aspects that are key to our application: accuracy through the
comparison to ground truth available in simulated scenes,
perception, by studying Contrast-to-Noise Ration (CNR) and

Signal-to-Noise Ratio (SNR) in the reconstructed volumes,
and training time.
Additionally, we conduct a qualitative analysis of various

properties of the volumes reconstructed by our method, such
as resolution in relation to network size and shape profile.
This enables a more comprehensive understanding of the
behavior of our method.
Comparisons with two existing methods are also con-

ducted. The first comparative method is the standard voxel-
based reconstruction Distance Weighted (DW) [24], [25].
The second, based on the methods [32], [33], [40] (see

Table 1), is a reconstruction network with an MLP of size 8
by 256, using single ultrasound images as batches and using
a frequency encoding, referred to as Network Baseline (NB).
Despite its significantly longer train time, due to its heavy
architecture, NB is trained until convergence in the following
results.
Finally, we present an ablation study in which we desacti-

vate each step of the proposed method to study its impact on
the results. Some of the ablation cases correspond to existing
methods, providing a larger comparison base for our method.
The results are generated from three different scenes pre-

sented in Figure 6:
• Shapes: A collection of two 15-mm sided and two 10-

mm sided cubes and a sphere of 15-mm diameter.
• Pelvis: A dataset simulated from a patient pelvic MRI

constituted of two orthogonal sweeps.
• Nerve: A real linear acquisition performed on a CAE

blue phantom [47], a phantom used for vessel and nerve
puncture training.

Additionally, we provide the sizes of the datasets:
• Shapes: 210 images of 192×256 pixels, giving

10,321,920 samples, covering a VOI of 7×7×7 cm3, i.e.
686,000 voxels at 0.5 mm spatial sampling rate in each
dimension.

• Pelvis: 240 images of 500×600 pixels, giving
72,000,000 samples, covering a VOI of 6×6×5 cm3, i.e.
360,000 voxels at 0.5 mm spatial sampling rate in each
dimension.

• Nerve: 243 images of 192×512 pixels, giving
23,887,872 samples, covering a VOI of 9×6×4 cm3, i.e.
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432,000 voxels at 0.5 mm spatial sampling rate in each
dimension.

Furthermore, all simulated images include a random po-
sitional error and angular error at each slice, with a range
of ± 0.1 mm and ± 0.03 rad respectively. The simulations
were obtained by drawing scatterers in three dimensions over
the ground truth volumes and extracting individual slices of
coherent scatterers for each image, in accordance with the
methodology outlined in [48]. We use this approach because
it provides spatially coherent speckle, a typical property ob-
served in real datasets and represents a significant challenge
for reconstruction techniques.

A. RECONSTRUCTED VOLUMES
Figure 6 shows the reconstruction results obtained using the
proposed method, NB and DW reconstruction on the 4 main
datasets.

The DW reconstruction is faithful to the original data and
reproduces the speckle noise introduced by the ultrasound
imaging process. Similar to the real acquisition, the simu-
lation process described in [48] produces spatially coherent
slices, resulting in bumps and wrinkles on the surfaces and
noise in the low signal areas.

The NB performs well at reproducing the details present in
the shapes and is very close to the original data, as expected,
thanks to the contribution of the embedding. However, many
problems are raised by this method. First, the importance
given to high frequencies contribute in favor of speckle noise
and produce results noisier than DW in certain instances.
Furthermore, in the areas with fewer samples, the network
tends to reproduce the central structures due to the periodic
nature of sine and cosine function.

On the other hand, the proposed method tends to summa-
rize the shapes and smooth the surfaces, producingmore visu-
ally convincing results and significantly reducing the impact
of noise.

B. QUANTITATIVE RESULTS
This section quantifies the errors and properties of the recon-
struction method.s This is key to measuring the efficiency
of the approach and its acceptability for further use. In this
section, all methods are given the necessary time to produce
optimal results, as detailed in Section IV-B3.

The following sections consider two main aspects to quan-
tify the reconstruction results: accuracy with respect to the
ground truth, if available, and perception through the use
of Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio
(CNR).

All results presented in these sections and throughout the
article for all methods were computed on a normalized voxel
grid of 0.5 mm size, which represents the density of the
reconstruction.

1) Accuracy
The first step is to quantify the errors introduced by the
reconstructions in order to assess their acceptability in real
applications. To do this, we compare the obtained reconstruc-
tion with the ground truth of the imaged medium, which is
only possible on simulated datasets.

TABLE 2. Accuracy metrics for volumes reconstruction on datasets with
known ground truth

NB DW Ours

Shapes

MSE ↓ 513.59 414.23 260.66

MAE ↓ 14.799 13.82 8.02

NCC ↑ 0.90 0.93 0.94

SSIM ↑ 0.53 0.81 0.88

Pelvis

MSE ↓ 1105.06 1040.98 976.16

MAE ↓ 23.74 23.40 23.53

NCC ↑ 0.874 0.881 0.914

SSIM ↑ 0.621 0.623 0.642

Table 2 presents the results for four metrics: Mean Square
Error (MSE), Mean Absolute Error (MAE), Normalized
Cross-Correlation (NCC) and Structure Similarity Index
Measure (SSIM). These results highlight the competitiveness
of our method, which consistently produces comparable or
better values across all metrics. On the Shapes dataset, the
network takes full advantage of its shape generalization and
noise removal properties, showing significant improvement
on all metrics.
More importantly, on the more complex and large scene

Pelvis, our method still shows satisfactory results, but is
closely followed by the other methods, or even outperformed
by the DW for the MAE. Indeed, as it is geared towards
fast and generalized datasets, our method loses its edge on
a dataset with a very large number of samples and details
to be represented faithfully, but is still able to perform its
reconstruction correctly. Furthermore, the visual aspect which
is not captured by those metrics is more in line with our
application.

2) Perception
To represent the perceptual properties of the reconstructions,
we use two well-known metrics, SNR and CNR. Both mea-
sures have been realized on blocks of voxels extracted from
inside and outside a region of interest and computed using
the following formulas: SNR = 20× log10(

µin
σin

) and, CNR =

20 × log10(
|µin−µout |√
σ2
in+σ2

out

) with µ and σ being respectively the

mean and the standard deviation of the regions.

TABLE 3. Perception metrics for volumes reconstruction on datasets with
known ground truth

NB DW Ours

Shapes
SNR ↑ 48.80 31.82 56.51

CNR ↑ 23.86 22.93 32.82

Pelvis
SNR ↑ 21.54 23.37 30.63

CNR ↑ 17.84 18.47 27.32

Nerve
SNR ↑ 22.72 23.55 25.64

CNR ↑ 11.34 12.64 14.57

Table 3 shows these metrics for the four datasets. Similar
to the accuracy metrics, the proposed method is able to match
or outperform the baselines, with a marked convergence in
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FIGURE 6. Reconstructed volume examples. Volumes are represented as a voxel grid with a resolution of 0.5mm, for visualization purposes an
appropriate isosurface has been hand-picked. The ground-truth is provided by the explicit representations or MRI used to simulate the input images and
is not available for an experimental dataset such as Nerves

.

values for more complex datasets. This confirms the bias of
the network towards simple shapes.

3) Computational time
For all the results, both the proposed and NB networks were
run until convergence was reached. In the case of NB, this
duration depends on the dataset, since the size of the im-
ages, their spatial distribution, and their number have a direct
impact on the size and efficiency of a batch. For standard
datasets, i.e. of reasonable size and typical ultrasound image
resolution, the learning time for NB in our implementation
is about 5 minutes, as illustrated by Figure 7 on the Pelvic
dataset, our most complex one.

DW reconstruction is also susceptible to large variations
in reconstruction time depending on the dataset, and depends
on the number of voxels used to represent the volume, as each
voxel involves a specific computation, resulting in reconstruc-
tion times ranging from 30 seconds to several minutes on our
datasets.

One of the advantages of our subsampling and random
selection for batch construction is that learning times are
consistent across all datasets, at 30 seconds to convergence.

C. RECONSTRUCTION PROPERTIES
1) Ability to represent details
To study the ability of the network to represent fine de-
tails in the scene, we consider a test scene constituted of
cubes of various sizes. We then simulate ultrasound images

0 300 600
800

1,500

2,000

M
SE

NB

0 300 600

Ours

Time (seconds)
FIGURE 7. Average (10 runs) MSE over time with respect to ground-truth
for the scene Pelvis

densely packed to create a dataset and use multiple network
configurations to learn this scene. The networks represent
all combinations of 2, 4 and 8 layers of 64, 128 and 256
perceptron. Figure 8 shows the resulting volumes sliced at a
known position, on the smallest cubes in the scene.
The first observation is the degradation of details in the

input compared to the ground truth, the smallest cube of 1.25
mm being barely noticeable in the input images.
We also notice that networks with only two layers fail to

represent even large shapes. However, the same networks
and other small networks seem to be better at identifying the
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FIGURE 8. Comparison of the ability to represent between different sizes
of network at convergence (20 000 iterations). Reproduction of a selected
subset of the whole VOI with three cubes of sides 5, 2.5 and 1.25 mm.

largest cube. The most likely explanation for this is that the
networks compensate for their inability to faithfully represent
the shapes by loosely pointing out the areas of higher density.

Conversely, the larger networks are able to capture the two
cubes almost perfectly and treat the 1,25mm cube as back-
ground noise. Once the network reaches a certain threshold
(i.e., 4 layers and 128 perceptrons, or 8 layers and 64 per-
ceptrons, for a total of 512 perceptrons) and avoids abnormal
values such as only 2 layers, its reconstruction varies only
slightly and is subject more to the random component of the
learning phase than to the inability to represent the medium.

In our experiments, we observed that 4 layers of 128 per-
ceptrons occasionally encounter difficulties in representing
the most complex datasets, exhibiting some artifacts. Based
on this observation, we empirically identified 175 perceptrons
per layer as an optimal value for a network of minimal size
that is suitable for use in any situation. Our results are based
on this architecture.

2) Clear edge profile
Next, we highlight the continuous aspect of the network by
examining the boundaries of a well-defined shape at a small
discretization step. In this experiment, the network is queried
every 0.1 mm when approaching a cube of 10 mm side in the
Shapes scene. For the DW comparison, each value is the one

contained in the voxel encompassing the query point.
This experiment is performed at 100 locations and by

querying 100 networks trained from different random initial-
ization. Results are reported in Figure 9.
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FIGURE 9. Evolution of the values when traversing the edge of a cube.
Values and average over 100 runs.

This experiment shows the consistency of the network
across all runs and the high variance in the DW recon-
struction. Furthermore, the adequacy of the reconstruction is
suggested by the similarity of the mean curves of the two
methods and their intensity peaks, the averaging effect of the
DW reconstruction being reproduced by the network trying
to accommodate the peaks and valleys of the signal. One
can also observe the blurring of the boundary in all methods,
mostly introduced by the speckle noise.

D. ABLATION STUDY
We study hereafter the impact of each key feature of the
proposed method on the metrics presented in the previous
sections, and their impact on the learning time. We note that
our method with disabled or modified steps becomes similar
to other methods, as per Table 1.

As our method is geared toward fast reconstruction, the
metrics are computed at an equivalent time of 20 seconds of
training on the samemachine using the same implementation.

1) Input slices
We remove the random selection mechanism and form each
batch with a randomly selected image among the dataset. One
point of interest is the fact that a typical ultrasound image
may be constituted of much more pixels than our fixed batch
size, making the epoch time and training dependent on the
properties of the dataset. The result of this study is reported
in Table 4 under the column "image input".

This ablation clearly shows the contribution of the random
selection proposed in this work, especially in a short time
scenario, where the network may not even have the time to be
exposed to all samples when using a random image selection.
This puts random selection as one of the main contribution of
this article as an enhancement of efficient learning. Figure 10
illustrates how the image input impairs the network’s ability
to learn. As demonstrated in Figure 4, at each step the network
is encouraged to learn only one slice of the space, which
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TABLE 4. Quantitative results (mean and standard deviation over 10 runs with 20s learning time) for volume reconstructions with various ablation
scenarios .

Image input Frequency embedding Large network SSIM + MSE UltraNeRF [33] Ours

Shapes

MSE ↓ 697.6 (± 94.8) 626.9 (± 32.2) 353.0 (± 67.6) 500.4 (± 114.7) 522.3 (± 102.2) 493.5 (± 133.5)

MAE ↓ 16.2 (± 4.16) 20.5 (± 0.98) 11.8 (± 2.72) 16.5 (± 4.19) 13.5 (± 3.23) 17.0 (± 4.35)

NCC ↑ 0.868 (± 0.019) 0.927 (± 0.008) 0.936 (± 0.012) 0.932 (± 0.007) 0.905 (± 0.016) 0.941 (± 0.005)

SSIM ↑ 0.950 (± 0.008) 0.969 (± 0.003) 0.972 (± 0.006) 0.968 (± 0.004) 0.958 (± 0.008) 0.973 (± 0.003)

SNR ↑ 43.40 (± 3.07) 47.73 (± 1.57) 51.07 (± 3.38) 46.80 (± 4.63) 49.79 (± 1.85) 47.39 (± 3.40)

CNR ↑ 23.36 (± 2.98) 26.16 (± 1.21) 34.85 (± 4.10) 30.65 (± 2.54) 20.71 (± 3.90) 36.05 (± 2.58)

Pelvis

MSE ↓ 1852.2 (± 376.2) 1215.4 (± 149.3) 1412.6 (± 554.4) 992.8 (± 126.8) 1603.3 (± 232.00) 1188.1 (± 360.5)

MAE ↓ 32.1 (± 3.75) 25.3 (± 1.98) 27.4 (± 6.59) 23.2 (± 1.85) 30.3 (± 2.69) 22.5 (± 4.09)

NCC ↑ 0.753 (± 0.023) 0.898 (± 0.004) 0.894 (± 0.01) 0.890 (± 0.009) 0.752 (± 0.017) 0.896 (± 0.009)

SSIM ↑ 0.794 (± 0.027) 0.896 (± 0.006) 0.888 (± 0.011) 0.886 (± 0.011) 0.773 (± 0.035) 0.898 (± 0.012)

SNR ↑ 26.24 (± 2.35) 28.78 (± 1.66) 33.41 (± 3.25) 37.11 (± 3.23) 25.18 (± 1.44) 35.38 (± 2.26)

CNR ↑ 19.39 (± 1.81) 23.10 (± 0.86) 26.19 (± 2.01) 24.82 (± 2.86) 16.81 (± 1.76) 26.24 (± 2.07)

Nerve
SNR ↑ 32.25 (± 2.77) 29.26 (± 0.84) 32.39 (± 2.26) 31.03 (± 31.03) 30.65 (± 2.24) 32.91 (± 2.12)

CNR ↑ 18.55 (± 3.42) 17.61 (± 0.97) 19.75 (± 1.46) 17.03 (± 2.00) 19.15 (± 1.84) 19.12 (± 1.98)

results in significant errors for the remainder of the volume.
This leads to high variance and challenging convergence.

2) Embedding of the input
Most of the NeRF-inspired methods use frequency embed-
ding, as reported in Table 1. Here we proceedwith our random
input selection but encode the 3-dimensional inputs in a 63-
dimensional frequency embedding as used in [32], [33]. The
result of this study is reported in Table 4 under the column
"Frequency embedding".

Frequency embedding has the property of enhancing the
ability of the network to represent fine details and variations.
As such, for many scenarios, this feature contributes greatly
to produce a stable result and be highly evaluated by many
metrics but comes with the cost of a larger input layer, imply-
ing a slightly slowed down learning.

More importantly for our application and as demonstrated
in Section III-A2, frequency embedding introduces artifacts
in the volumes and pushes the network to learn the noise
present in the dataset, a behavior that most metrics struggle
to represent.

The two spikes in the loss curve depicted in Figure 10
correspond to the distinct phases of learning with different
levels of resolution, as outlined in the methodology section.
As expected, frequency embedding accelerates convergence
but raise two issues, as illustrated in Figure 10: the introduc-
tion of artifacts in the reconstruction and a tendency towards
overfitting to the noise. Note that other learning schemes such
as the one presented in Section IV-D5 still present artifacts
and noise.

3) Network size
The network architecture used in our methods is minimal, as
opposed to typical NeRF implementations, with the notable
exception of ImplicitVol [32]. Here, we study the implications
of having a larger network on the quality of the results at a
fixed time. The architecture used for comparison contains 8

layers of 256 perceptrons. The result of this study is reported
in Table 4 under the column "Large network".
In all experiments, a large network produces comparable

or slightly better results than the proposed method. These
results are correlated with the content of Figure 8, where after
a certain threshold value, the network results are comparable.
However, a larger network in our application has several

drawbacks. First, more than doubling the number of neurons
means a significant increase in bothmemory size and iteration
time (iterations are about 52% longer in our implementation).
The former lessen the interest of the method for transmission
to the AR device, while the latter may lead to less efficient
convergence on a strict time budget, but is largely offset by
the additional degrees of freedoms offered. Second, when
the network has access to more degrees of freedom and the
ability to represent fine details, its convergence may try to
accommodate noise and imprecision, further away from our
goal as illustrated in Figure 11 where a large network is
trained for 30 minutes and distorts to fit the noise. Third, as
illustrated in Figure 10, a larger network has a less predictable
convergence and lead to higher variance.

4) Loss function
Among the available choices for the loss function, the liter-
ature is dominated by MSE and SSIM. This study compares
our method with the weighted MSE and SSIM sum proposed
in [33], as pure SSIM loss tends to push the network to con-
verge toward an empty result due to the relatively restricted
size of the objects in the VOI. The result of this study is
reported in Table 4 under the column "SSIM + MSE".
As with the preceding sections, the results presented here

are closely related to those of the proposed method. The
principal disadvantage of this approach is the additional com-
putational burden of calculating two losses, particularly the
complex SSIM. In our experiments, the iterations using the
SSIM+MSE losswere about 23% longer. This loss in number
of iteration seem to offset the benefits of this more tailored
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FIGURE 10. Top: Example volumes after 20 seconds of learning. Middle: Mean loss evolution (10 runs) over the first 20 seconds for the Shapes for the
MSE-based loss. Bottom: Mean loss evolution (10 runs) for SSIM-based loss.

FIGURE 11. Illustration of the overfit of a large network over a long time
period. Left: Typical result of our method (20 seconds), middle: result
after 30 minutes of learning with a large network, right: input image

loss.

5) Combination of ablations
The modifications made to our base method are largely in-
spired by other methods described in the literature. Con-
sequently, multiple ablations correspond to a state-of-the-
art network and methodology, namely an 8 by 256 layers
network, with image input, frequency embedding and the
SSIM and MSE mixed loss. This is equivalent to the method
employed in UltraNeRF [33] without their rendering process,
which is beyond the scope of this study. The results in Table 4
for this study are reported under "UltraNeRF [33]".

This version combines a number of promising features,
but it is hindered by the accumulated bloat of its compo-
nents in terms of speed. In particular, as demonstrated in
Section IV-D1, it lacks efficiency due to the image input
format. The most notable outcome of this experiment is that
it performs better than pure image input, suggesting that its

other features are able to improve the results.

6) Conclusion on ablation study
This ablation study primarily demonstrates the efficacy of our
batch construction method. The image input is not optimized
for a reduced time scenario and is highly contingent upon the
quality of the acquisition. The other features yield comparable
results in terms of metrics, and the selection among them is
influenced by the temporal and visual necessities of our ap-
plication: a more seamless reconstruction without frequency
embedding, less noise at convergence, and a more lightweight
representation with a smaller network and accelerated learn-
ing through the use of the simple MSE loss.

E. APPLICATION TO AUGMENTED REALITY
This section presents the application of our methods in an AR
scenario. Figure 12 illustrates the display of a reconstructed
3-D volume to assist practitioners, enabling easier and more
precise operations.
Our custom software employs a Hololens 2 [49] to au-

tomate the entire process, enabling the visualization of the
procedure in AR. The initial step involves acquiring spatially
localized ultrasound images, which are then displayed in real-
time at their respective locations. This allows the practitioner
to observe the entire image collection as the reconstruction
process unfolds. Subsequently, the volume is presented after
the short (≈ 30sec) reconstruction delay, to facilitate the
guidance during any procedure on this medium.
This scenario can be applied to many procedures [16],

[19], [20] such as tumor localization, cardiac interventions
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FIGURE 12. Display of the reconstructed volume in an AR framework. Top:
Acquisition of the freehand ultrasound images, Bottom: reconstruction
overlapped with acquisitions.

to visualize and navigate catheter placement, or obstetrics to
monitor fetal development and assist in amniocentesis.

F. CODE AND DATASETS
The code for the volume generation and the pub-
lic datasets are available at github.com/STORM-IRIT/
Neural-Ultrasound-Field

V. CONCLUSION AND PERSPECTIVES
This work showed that the 3-D freehand ultrasound recon-
struction under the constraint of an augmented reality pipeline
problem can be efficiently addressed using NIR and unsu-
pervised deep learning. The method presented in this paper
produces smooth volumes in tens of seconds with accuracy
comparable or better than state-of-the-art method.

This article puts forward the unique nature of the 3-D ultra-
sound volume reconstruction, associated with its associated
set of difficulties and specificities that must be accounted
for. Taking these challenges into account, this work proposes
encouraging results on the use of NIR for efficient volume
reconstruction and enhancement.

Promising perspectives remain to be explored, as they have
been shown to be fruitful by this article:

• Design a dedicated embedding function in order to en-
hance shape generalization and accelerate learning, as
the NIR community already demonstrated feasible on
other applications.

• Automatically determine the dimension of the network
for each scene, based on the specific properties of the
dataset (e.g. total number of images, resolution, volume
covered...).

• Formally quantify the representation capacity of given
network dimensions and correlate it to the ultrasound
systems resolutions, noise level and imprecision.

• Explore more tailored loss function, as the one used in
the denoising literature, and their impact on both the
results and the length of the reconstruction process.

• Study more in depth the impact and implication of the
many networkmeta parameters, such as subset and batch
sizes, iterations per subset, learning rate or number of
epoch.
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