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Université Bordeaux 1, 3 rue La Boétie, 33600 PESSAC, France

Abstract

The coupled criterion predicts crack nucleation at a stress concentration point.
It is a twofold criterion that uses conditions for energy and tensile stress and
involves both the toughness and tensile strength of the material. In general,
the crack jumps a finite length and then either stops or goes on growing.
The criterion has proven its effectiveness in many situations encountered
in homogeneous materials like V- and U-notches and predictions agree
reasonably with experimental measurements. It can also be used to study
specific mechanisms of degradation of composites such as delamination or fibre

debonding. It has recently been used successfully to predict the initiation of
delamination from a stress-free edge; the application discussed in this chapter
is the deflection of transverse cracks by an interface. However, it is valid for
both delamination between layers and fibre debonding.

10.1 Introduction

Delamination is the main cause of failure of multimaterials and especially

of composite laminates: the components separate leading to total failure

or at least to a weakened structure. This topic is still the subject of

numerous contemporary works and a detailed and recent list of references

can be found in Martin et al. [1], which will give a better overview of the

problem. There are at least two important origins of delamination under

Accepted Manuscript

1



static load [2]: the first is the classic initiation process, which occurs at the

intersection of a free edge with the interface between two layers. It is a zone

of stress concentration described in elasticity by a singular displacement

field [1, 3]. The other is less obvious because it is an internal process and

therefore not directly detectable: the deflection of transverse cracks present

in the most disoriented layers relative to the tensile direction [4–6]. The

classical situation in a laminate concerns the presence of plies oriented

90◦ with respect to the loading direction. Transverse microcracks are then

generated, which coalesce to form a transverse crack that is deflected when

it reaches the interface with a 0◦ ply. This deflection mechanism creates a

delamination crack [7]. Crack deflection at the fibre/matrix interface is also

a prerequisite for the activation of toughening mechanisms like multiple

matrix cracking in ceramic matrix composites (CMCs) [8, 9].

We propose in this chapter to present the coupled criterion, which

predicts crack nucleation at stress concentration points [10]. It combines

stress and energy conditions that do not require the definition of a

characteristic fracture length selected more or less arbitrarily. This

criterion has been applied successfully to several situations in composite

materials: delamination originating from a stress-free edge within a

generalized plane-strain elasticity framework [1, 11] and crack kinking out

of an interface within a plane-strain framework [12, 13]. It is illustrated here

by the second mechanism mentioned above, transverse crack deflection by

an interface. The analysis will be developed for plane strain and could be

theoretically extended to 3D although a number of technical difficulties

remain [14].

10.2 The Coupled Criterion

To establish this criterion, a good generic model is the three-point bend-

ing test on a V-notched specimen made of a homogeneous material

(Fig. 10.1).

In composite materials, the criterion applies at the intersection of the

interface between two layers and a free edge for instance [1], or at the end

of a transverse crack impinging on an interface as illustrated in the next

sections.

The coupled criterion uses two conditions to predict the nucleation of

cracks in areas of stress concentrations in brittle materials: the maximum

tensile or shear stress that the structure can sustain and an energy balance

between the stored energy and the energy required to induce fracture [10].
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Fig. 10.1. The three-point bending test on a V-notched homogeneous specimen.

The first condition refers to the tensile strength σc (or shear strength τc)

while the other relies on the toughness Gc of the material (or interface).

These two conditions must be satisfied simultaneously.

The form taken by these two conditions is from the theory of

singularities and the asymptotic expansions of the displacement field U

and the stress field σ in the vicinity of the origin, the so-called Williams’

expansion (in polar coordinates with origin at the singular point formed by

the notch root):

{

U(r, θ) = R + krλu(θ) + · · ·

σ(r, θ) = krλ−1s(θ) + · · ·
(10.1)

λ is the singularity exponent (1/2 ≤ λ ≤ 1 for a V-notch), k (MPa·m1−λ)

is the generalized stress intensity factor (GSIF), u(θ) and s(θ) are two

angular functions and R is a constant (the rigid translation of the origin).

Coefficient k depends on the whole geometry of the structure and on the

remote applied load. The exponent and the angular functions depend only

on the local geometry and elastic properties; they are solutions to an

eigenvalue problem and are either known analytically in some simple cases

or can anyway be determined numerically using a simple algorithm. Clearly

the stress components tend to infinity as r → 0; this is why it is called a

singular point.

Note that here and in the following, we only address the tensile stress

but extension to the shear component is straightforward.

The GSIF k can be computed using a path-independent integral Ψ

[15, 16], valid for any elastic fields satisfying the equilibrium to 0 (i.e.

vanishing boundary conditions and the balance equation within the domain
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surrounded by the integration path):

k =
Ψ(U(r, θ), r−λu−(θ))

Ψ(rλu(θ), r−λu−(θ))
with

Ψ(U, V ) =
1

2

∫

Γ

(σ(U)·n·V − σ(V )·n·U)ds, (10.2)

where Γ is a contour encompassing the notch root and starting and finishing

on the stress-free edges of the notch and n is its normal pointing toward

the origin. Relation (10.2) is based on two properties:

(1) If λ is an eigenvalue then so is −λ. The so-called dual mode [15] or

‘super singular’ function [17] r−λu−(θ) is a mathematical solution to

the previous eigenvalue problem, which has presently no special physical

meaning (in particular, the elastic energy associated with this function

is unbounded in the vicinity of the origin).

(2) For any pair of eigensolutions rαuα(θ) and rβuβ(θ), β �= − α⇒
Ψ(rαuα(θ), rβuα(θ))=0. This is a kind of bi-orthogonality property

(note that Ψ is not a scalar product), which allows extraction of the

coefficient k. This result is a consequence of the path independence

of Ψ.

Here, the only role of the dual mode is to be a mathematical extraction

function; however, these modes will play a greater role in the matched

asymptotic procedures both for the inner and outer expansions (see (10.14)

and (10.15) in Section 10.3).

The stress condition (e.g. the maximum tensile stress criterion) involves

the tensile component σ of the stress tensor σ acting on the presupposed

crack path defined by the direction θ0 prior to its onset; it provides an

upper bound to the admissible crack extension lengths a (λ − 1 < 0):

σ = krλ−1s(θ0) + · · · ≥ σc for 0 ≤ r ≤ a ⇒ kaλ−1s(θ0) ≥ σc. (10.3)

The coefficient s(θ0) is a dimensionless constant derived from s, which can

be normalized to s(θ0) = 1 if the failure direction (i.e. θ0) is known [15].

Relation (10.3)2 is enough to imply σ ≥ σc along the whole presupposed

crack path since σ is a decreasing function of the distance to the singular

point.

As will be shown in Section 10.3, expansions (10.1) can be used to

define an expansion of the potential energy variation when a small crack
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extension appears in direction θ0. Its leading term provides a lower bound

of the crack extension length (2λ − 1 > 0):

Ginc(θ0) = −W (a) − W (0)

a
= A(θ0)k

2a2λ−1 + · · · ≥ Gc, (10.4)

where W (x) is the potential energy of the structure embedding a crack

extension with length x. Ginc(θ0) is the so-called incremental energy release

rate, because it depends on the increment a; emphasis is put on the fact

that we do not consider the limit as a → 0 as for the Griffith criterion [18].

The incremental and differential criterion are identical if λ = 1/2. Ginc(θ0)

is the rate of potential energy change prior to and following the onset of a

new crack with length a. The scaling coefficient A(θ0) (MPa−1) is another

constant depending on the local properties and on the direction θ0 of the

short crack but not on the remote applied load which occurs in (10.4)

through the only coefficient k. A complete definition of A is given in the

following section.

The compatibility between these two inequalities provides a

characteristic length ac at initiation (Fig. 10.2):

ac =
Gc

A(θ0)

(

s(θ0)

σc

)2

. (10.5)

Initiation is in general (i.e. if λ > 1/2) an unstable mechanism. The crack

jumps the length ac and then continues to grow or not, but ac is not defined

as a crack arrest length. Essentially, below this length the balance between

the stored energy and the energy consumed during failure does not hold: no

crack smaller than ac can be observed. This jump length is still a function

of θ0.

Then we deduce an Irwin-like [19] condition on the GSIF k, which plays

the classical role of the stress intensity factor (SIF) KI

k ≥ kc =

(

Gc

A(θ0)

)1−λ (

σc

s(θ0)

)2λ−1

. (10.6)

For a crack embedded in a homogeneous body, then λ = 1/2 and

k = KI , relation (10.6) coincides with the well-known Irwin criterion. A

straight edge in a homogeneous material is a limit case where there is no

stress concentration, then λ = 1 and inequality (10.6) coincides with the

maximum tensile stress criterion.
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Fig. 10.2. Schematic view of the determination of ac (10.5). (1) For a small remote load,
crack extension lengths fulfilling the stress and the energy conditions are incompatible.
(2) When the remote load increases, the two bounds are closer to each other. (3) Failure
occurs when the two bounds merge giving ac. Arrows indicate the motion of the curves
and points when the remote load increases.

The direction θ0 was assumed to be known; if not, one has to check

all the possible directions and maximize the denominator in (10.6), i.e.

minimize the value of kc.

A single mode is involved in (10.1); for a V-notch this corresponds

to the symmetric case as shown in Fig. 10.1. Generalizations can be

made to account for more complex loadings, where it is then necessary to

determine both the load causing failure and the direction of the nucleating

crack [20].

The computation of the scaling coefficient A(θ0), using matched

asymptotic expansions, will be the topic of the next section. For simplicity

the dependency on θ0 will be omitted.

Remark : Martin [1, 21, 22] and Hebel [23] and their co-workers apply the

coupled criterion numerically without going through the semi-analytical

asymptotic expansion procedure. The tensile stress σ along the presupposed

crack path and the incremental energy release rate Ginc (10.4) are extracted

from a direct finite element (FE) computation, which requires taking special
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care with the mesh refinement in the vicinity of the region where the

new crack initiates. Inequalities (10.3) and (10.4) are employed without

calculating λ, k, s and A, and reduce to

σ = σFE(r) ≥ σc for 0 ≤ r ≤ a and

Ginc = −WFE(a) − WFE(0)

a
≥ Gc. (10.7)

a is the smaller length fulfilling the two inequalities. Indeed (10.7) is the

most general definition of the coupled criterion and can be used in all cases.

This approach allows situations to studied, which cannot be taken into

account in the asymptotic approach, like crack arrest after a short initiation

for instance. However, it does not reveal directly (analytically) the role

played by the different geometric parameters of the structure, such as the

layer thickness for an adhesive layer or an interphase for instance [24].

10.3 Matched Asymptotic Expansions

Numerically solving an elasticity problem in a domain Ωa embedding a

short crack of length a at the root of a V-notch (Fig. 10.3) presents some

difficulties because of the small size of the perturbation. Drastic mesh

refinements are needed for the very small details.

It is better to represent the solution in the form of an outer expansion

or far field:

Ua(x1, x2) = U0(x1, x2) + small correction, (10.8)

where U0 is the solution to the same elasticity problem but now posed on

the unperturbed domain Ω0 (Fig. 10.1), which can be considered as the

limit of Ωa as a → 0 (the short crack is not visible).

Fig. 10.3. Onset of a short crack of length a at the root of the V-notch.
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It is clear that this solution U0 is a satisfying approximation of Ua

away from the perturbation, i.e. outside a neighbourhood of it, hence its

designation as the outer field (or far field or remote field).

Evidently, this information is incomplete, particularly when we are

interested in fracture mechanisms. We therefore dilate the space variables

by introducing the change of variables yi = xi/a. In the limit when a → 0,

we obtain an unbounded domain Ωin (looking like the enlarged frame in

Fig. 10.3) in which the length of the crack is now equal to 1.

We then look for a different representation of the solution in the form

of an expansion known as the inner expansion or near field:

Ua(x1, x2) = Ua(ay1, ay2) = F0(a)V 0(y1, y2)

+F1(a)V 1(y1, y2) + · · · , (10.9)

where F1(a)/F0(a) → 0 as a → 0. Since there are no conditions at infinity

to give well-posed problems for V 0 and V 1, matching rules are used. There

must be an intermediate zone (close to the perturbation for the far field and

far from it for the near field) where both the inner and outer expansions

are valid.

The behaviour of the far field near the origin is described by the

expansion in powers of r as previously encountered in Eq. (10.1):

U0(x1, x2) = R + krλu(θ) + · · · (10.10)

Then the matching conditions can be written as follows:

F0(a)V 0(y1, y2) ≈ R, F 1(a)V 1(y1, y2) ≈ kaλρλu(θ), (10.11)

when ρ = r/a =
√

y2
1 + y2

2 → ∞ (the symbol ≈ means here ‘behaves as at

infinity’), thus

F0(a) = 1; V 0(y1, y2) = R; F1(a) = kaλ; V 1(y1, y2) ≈ ρλu(θ).

(10.12)

This matching statement is nothing else than the so-called remote load at

infinity. Using superposition, it becomes:

V 1(y1, y2) = ρλu(θ) + V̂
1
(y1, y2) with V̂

1
(y1, y2) ≈ 0. (10.13)
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More precisely, the behaviour of V̂
1
(y1, y2) at infinity can be described by

the dual mode ρ−λu−(θ) to ρλu(θ) (see Section 10.2):

V̂
1
(y1, y2) = κρ−λu−(θ) + · · · (10.14)

This expansion is analogous to (10.10) but is at infinity; κ is the GSIF and

missing terms tend to 0 faster than ρ−λ at infinity. This detail is generally

useless for our purpose but it may play a role elsewhere. It has been used

recently to determine the length of a crack using full field measurements

and digital image correlation (DIC) [25]. It allows the small correction

mentioned in (10.8) to be specified:

Ua(x1, x2) = U0(x1, x2) + kκa2λ(r−λu−(θ) + Û
1
(x1, x2)) + · · · (10.15)

Finally Eq. (10.9) becomes

Ua(x1, x2) = Ua(ay1, ay2) = R + kaλV 1(y1, y2) + · · · (10.16)

The function V 1(y1, y2) is computed using FEs in an artificially bounded

(at a large distance from the perturbation) domain with either prescribed

displacements or forces along the new fictitious boundary.

We have now at our disposal a description of the elastic solution prior

to and following the onset of a short crack and we are able to calculate the

change in potential energy W (a)−W (0), which can be expressed using the

path independent integral Ψ encountered in (10.2)

−(W (a) − W (0)) = Ψ(Ua, U0). (10.17)

Then, substituting the above expansions, once for a = 0 and once for a �= 0,

into (10.17) leads to the expression (10.4) with Ginc = −(W (a)− W (0))/a

and

A = Ψ(V 1(y1, y2), ρ
λu(θ)). (10.18)

Figure 10.4 shows the dimensionless function A∗ = E∗A (where E∗ = E

for plane stress and E∗ = E/(1−ν2) for plane strain, with E being Young’s

modulus and ν Poisson’s ratio for the homogeneous isotropic material)

for different V-notch openings ω (Fig. 10.1) and for a crack located along

the bisector (symmetric case). It can be used as a master curve valid for

any elastic isotropic material; the role of Poisson’s ratio in A has been

verified numerically. Note that A∗ = 2π for ω = 0
◦ as a consequence of the

normalization of the eigenmode (10.1). The tensile stress σ = k/rλ−1 along
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Fig. 10.4. The dimensionless coefficient A∗ vs. the V-notch opening ω in the symmetric
case.

Fig. 10.5. PMMA Compact Tension V-notched Specimen (CTS).

the bisector, leading to σ = k/
√

r for ω = 0
◦ (a crack) whereas it is usually

σ = k/
√

2πr.

10.4 Application to the Crack Onset at a V-Notch

in a Homogeneous Material

Tensile tests have been carried out on poly(methyl methacrylate) (PMMA)

V-notched specimens (E = 3250MPa, ν = 0.3, Gc = 0.325MPa.mm, σc =

75MPa) for different V-notch openings from 30 to 160◦ (Fig. 10.5) [26].

The tensile test was then numerically simulated by finite elements for an

arbitrary prescribed load F0 (note here that special care must be taken given
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Fig. 10.6. Applied force F at failure of V-notched specimens of PMMA as a function of
the notch opening ω. Comparison between experiments (diamonds) and prediction (solid
line) using the coupled criterion [26].

Fig. 10.7. Schematic view of a transverse crack impinging on an interface.

the lack of symmetry of the specimen) and the GSIF k0 was extracted using

(10.2). A scaling with the critical value kc (10.6) provides the corresponding

force F = F0 × kc/k0 at failure. A comparison between predicted and

measured failure forces is illustrated in Fig. 10.6, which exhibits a fair

agreement.

10.5 Application to the Deflection of Transverse Cracks

We now consider a transverse crack as depicted schematically in Fig. 10.7.

Despite there being a pre-existing crack, the singular exponent at its

tip, which impinges the interface, is not 1/2 as usual and the situation

differs from that of a crack in a homogeneous material (Fig. 10.8). For
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Fig. 10.8. Singular exponent vs. ratio of Young’s moduli for two adjacent materials
with the same Poisson’s ratio ν1 = ν2 = 0.3.

homogeneous isotropic components, if E2 > E1 (the first case) then λ > 1/2

(a weak singularity, which is less harmful than a crack) and vice versa if

E2 < E1 (the second case) then λ < 1/2 (a strong singularity, more harmful

than a crack). Here Ei is Young’s modulus for ply number i (it is assumed

that the two Poisson’s ratios ν1 and ν2 are equal, otherwise the rule is close

to the above but slightly altered by the contrast in ν). This obviously leads

to substantially different results in terms of rupture. We immediately notice

according to (10.4) that if a → 0 then Ginc → 0 in the first case whereas

Ginc → ∞ in the second.

This property also affects the (differential) energy release rate G of

a crack approaching and crossing the interface. As the crack approaches

the interface, there remains a ligament of length l between the crack tip

and the interface (Fig. 10.13) and G → 0 (respectively, G → ∞) for a

weak singularity (respectively, strong singularity) as l → 0. Symmetrically,

after crossing the interface the crack tip is at a distance a from it (Fig. 10.7)

and G increases from 0 (weak singularity) or decreases from infinity (strong

singularity) as a increases. This behaviour is shown in Fig. 10.9 for different

ratios of Young’s moduli: E2/E1 = 0.1, 0.2, 0.5, 1, 2, 5 and 10. The results

were obtained using FEs and a variable crack tip location, counted negative

if the crack is growing toward the interface and positive after the crossing

(Fig. 10.9). Even if the energy is globally calculated at the structure level,

it requires strong mesh refinement in the area of interest to give a good

geometrical description.
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Fig. 10.9. The behaviour of the energy release rate when a crack approaches an interface
(left) and then crosses it (right) for different ratios of Young’s moduli: E2/E1 = 0.1
(dashed line and diamonds), 0.2 (dashed line and squares), 0.5 (dashed line and triangles),

1 (solid line and circles), 2 (solid line and triangles), 5 (solid line and squares) and 10
(solid line and diamonds). The units are not important, the emphasis is on the general
trends — whether they are increasing or decreasing functions when approaching the
interface.

Fig. 10.10. The mechanisms of crack penetration and deflection.

The question that arises now is: does such a transverse crack stop,

penetrate Material 2 or deflect along the interface to give a delamination

crack (Fig. 10.10)?

Let us consider again inequality (10.4) for two cases: penetration of

Material 2 (index p) and deflection along the interface (index d). G
(I)
c and

G
(2)
c are the interface and Material 2 toughness, respectively:

Ginc
d = Adk

2a2λ−1
d + · · · ≥ G(I)

c and Ginc
p = Apk

2a2λ−1
p + · · · ≥ G(2)

c .

(10.19)

Two cases can be considered: a doubly symmetric deflection (Fig. 10.10) or

a single asymmetric one; the only change is in the coefficient Ad but this
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Fig. 10.11. Dimensionless ratio Ad/Ap vs. ratio of Young’s moduli for two adjacent
materials for a doubly symmetric deflection.

does not lead to a big difference [27]. The following analysis will be carried

out for the first case.

Deflection is promoted if the first inequality in (10.19) is fulfilled

whereas the second one is not, then:

G
(I)
c

G
(2)
c

= R ≤ Ad

Ap

(

ad

ap

)2λ−1

. (10.20)

The dimensionless ratio Ad/Ap is plotted in Fig. 10.11 for various values of

E2/E1 (Ei is the Young’s modulus of material i and ν1 = ν2 = 0.3).

He and Hutchinson [28] obtained a similar result (although differently)

but simplified thanks to a dubious assumption. They considered the

(differential) energy release rates Gp and Gd respectively at the tip of a

penetrated crack and a deflected one, the two crack extensions being equal,

i.e. ad = ap, and obtained a condition for the toughness ratio of the interface

and Material 2, which is clearly equivalent to the ratio Ad/Ap according to

(10.19) if ad = ap:

R ≤ Gd

Gp

. (10.21)

A discussion of this specific point can be found in [29, 30].

Clearly it is possible to determine the two characteristic lengths ad and

ap in (10.20) using the stress condition, provided λ > 1/2 (otherwise both
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G and σ are decreasing functions of the distance to the singular point and

the coupled criterion can no longer be used).

10.5.1 λ > 1/2

If λ > 1/2, according to (10.5) (σ
(I)
c and σ

(2)
c are the tensile strengths of

the interface and Material 2, respectively):

ad =
G

(I)
c

Ad

(

sd

σ
(I)
c

)2

; ap =
G

(2)
c

Ap

(

sp

σ
(2)
c

)2

. (10.22)

Thus deflection is promoted if

R ≤ Ad

Ap

(

sd

sp

σ
(2)
c

σ
(I)
c

)

2λ−1

1−λ

. (10.23)

The special case λ = 1 cannot be met; it would correspond to an infinitely

compliant Material 1 compared to Material 2. Knowing that the ratio sd/sp

remains of the same order of magnitude as 1, it is clear from (10.23) that

the tensile strength ratio plays a crucial role, which can significantly alter

the criterion proposed by He and Hutchinson.

As illustrated in Fig. 10.12, deflection will be favoured even more as

Material 2 becomes increasingly resistant (i.e. σ
(2)
c > σ

(I)
c ). Note that

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5
Ln(E2/E1)

0.25

1

4
R

Fig. 10.12. Failure map of the criterion (10.23) for different values of the ratio of

strengths σ
(2)
c /σ

(I)
c = 0.25, 1, 4 as a function of the material contrast E2/E1. The

dashed line corresponds to Ad/Ap (Fig. 10.11). Below the continuous line conditions are
favourable for deflection along the interface, and above to penetration of Material 2.
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Parmigiani and Thouless [31] derived the same tendency with cohesive zone

models (CZMs).

Reference is made in both cases to the tensile stress; this is clear

for penetration but less obvious for deflection. However, considering the

eigenmode governing the stress field before crack propagation, one can check

that the tensile component σ is equal to or larger than the shear one τ : the

ratio σ/τ grows from 1 to 2.8 as E2/E1 varies from 1 to 10. In addition,

knowing that shear failure is generally more difficult than tension, it seems

reasonable to consider only the tensile component.

This analysis could be included in a homogenization process where

the domain shown in Fig. 10.7 would be a representative volume element

(RVE). The slenderness of this cell can be used to take into account the

different densities of transverse cracks [5].

10.5.2 λ < 1/2

If λ < 1/2 then this coupled criterion approach is not valid because

the energy release rate is now a decreasing function of the distance

to the singular point (see (10.4)) and the energy condition no longer

gives any lower bound for the crack extension length [27, 32]. Under a

monotonic loading the crack grows continuously: there is no crack jump.

Moreover, according to (10.19), Gd and Gp tend to infinity as ad and ap

decrease to 0, which prevents the direct use of the energy release rate at

the very start of the crack growth process. No rigorous conclusion can

be derived in this situation. He and Hutchinson [28] still proposed to

use (10.21) or equivalently the ratio Ad/Ap. Another approach based on

the maximum dissipated energy is proposed in Leguillon et al. [27]; however,

this corresponds better to the geometrical situation analysed in the next

section (Fig. 10.13).

10.6 The Cook and Gordon Mechanism

Due to the decay to 0 or the unbounded growth of the energy release rate

(Fig. 10.9), it should be pointed out that the geometric situation shown

in Fig. 10.7 cannot be achieved by a crack growing in Material 1 and

approaching the interface. It can only be obtained by a mechanical action

like a saw cut.

Otherwise, we have to consider a crack in Material 1 with its tip a small

distance l from the interface as shown in Fig. 10.13 [32, 33].
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Fig. 10.13. A crack growing in Material 1 and approaching the interface, at a distance l.

Assuming a small increment δl ≪ l at the tip of this crack and according

to (10.4), the (differential) energy release rate is

G1 = − lim
δl→0

W (l + δl) − W (l)

δl
= k2A1 lim

δl→0

(l + δl)2λ − l2λ

δl
+ · · ·

= 2λk2A1l
2λ−1 + · · · (10.24)

A1 is given by (10.18) where the perturbation is the small ligament with

width l instead of a crack extension. Moreover, since the crack is growing

in Material 1:

G1 = G(1)
c ⇒ k2l2λ−1 =

G
(1)
c

2λA1
. (10.25)

This relation means that in these conditions knowing l or the applied load

is somewhat equivalent.

10.6.1 λ > 1/2

If λ > 1/2, G1 decreases to 0 as l → 0 and thus drops below G
(1)
c (Material

1’s toughness). An overload must occur for the situation to evolve. There

is a three-way conflict: the crack still grows in Material 1, the interface

debonds ahead of the crack tip or the crack jumps and penetrates Material 2

(Fig. 10.14) [34]. The latter mechanism will not be discussed here. Another

mechanism called step-over, where the crack reinitiates in the second

material, leaving a ligament in its wake, was discussed in [22, 32, 35].

There are now two small parameters l and ad (respectively, ap) for

debonding (respectively, penetration), which is an additional difficulty.

If one is very small compared to the other, it can be neglected in a first

step. If they are of the same order of magnitude the expansions can be

carried out with either of them. For technical reasons it is easier to use l.
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Fig. 10.14. The conflict between the crack growing in Material 1, the crack jumping in
Material 2 and the interface debonding.
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Fig. 10.15. Bd(µ) (MPa−1) for material contrast E2/E1 = 10.

By analogy with the single parameter case, the stress and energy conditions

are now (see [36] for details of the proof):







σ = klλ−1σ̃(µd) ≥ σ
(I)
c

Ginc
d = k2Bd(µd)l

2λ−1 ≥ G
(I)
c ,

(10.26)

where µd = ad/l. The function Bd (Fig. 10.15) is an increasing function

of µ and replaces Ad. It is derived from the calculation of A (10.18).

There are four cases: the ‘unperturbed’ one (Fig. 10.7) and the successive

cases illustrated in Fig. 10.13 and the middle and right of Fig. 14. σ̃ is

a decreasing function (Fig. 10.16), which replaces s and is the tensile

stress associated with V 1 along the presupposed crack path prior to any

crack extension (i.e., with the inner term calculated for the geometry of

Fig. 10.13).
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Fig. 10.16. σ̃(µ) for material contrast E2/E1 = 10.

The equation for the dimensionless characteristic length µd is derived

from (10.25) and (10.26)2:

Bd(µd) = 2λA1
G

(I)
c

G
(1)
c

. (10.27)

The dimensionless debonding length µd is small if the interface toughness

G
(I)
c is small.

For material contrast E2/E1 = 10, λ = 0.667 (Fig. 10.8), A1 =

0.479MPa−1, thus if G
(I)
c = G

(1)
c , then from (10.25) Bd(µd) = 0.639MPa−1,

µd/2 = 1.9 (Fig. 10.15) and σ̃(µd) = 0.345 (Fig. 10.16). Thus the condition

for an interface debonding ahead of the primary crack is

k ≥ kc =

(

G
(I)
c

Bd(µd)

)1−λ (

σ
(I)
c

σ̃(µd)

)2λ−1

. (10.28)

Note that (10.25) and (10.26)1 give l, which is not useful for criterion (10.28)

which requires only µd:

l =
G

(1)
c

2λA1

(

σ̃(µd)

σ
(I)
c

)2

. (10.29)

The ligament width is small if the tensile strength σ
(I)
c is high. Since ad =

µdl and according to (10.27) and (10.29) the debond length is large for a

high toughness and a small tensile strength of the interface, which is often

the case for polymer adhesives for instance.
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Fig. 10.17. The evolution of the energy release rate (normalized by G
(1)
c ) at the tip of

the primary crack after the onset of interface debonding for material contrastE2/E1 = 10.

The primary crack may stop at a distance l: it depends on how the

energy release rate G1 evolves after the onset of the debonding. Figure 10.17

shows the ratio γ = G1/G
(1)
c as a function of the dimensionless debonding

length µd for E2/E1 = 10 and with ν = 0.3 in both materials.

Obviously, on the one hand, if the characteristic debonding length µd is

smaller than a given value (roughly µd/2 = 4 in the present case, Fig. 10.17)

the energy release rate increases as debonding occurs and the primary crack

restarts and definitely breaks the ligament. On the other hand, this ligament

does not disappear and can only be observed if the debonding length is large

(µd/2 = 4 in the present case).

10.6.2 λ < 1/2

If λ < 1/2, G1 increases as l → 0. For a given l, if the load (i.e. a given

GSIF k) is such that (10.25) holds then the crack accelerates toward the

interface. As it impinges on the interface, there is an excess of energy in

the balance:

∆W1 = kA1l
2λ − G(1)

c l = G(1)
c

(

1

2λ
− 1

)

l. (10.30)

Hence, the crack will deflect and the (differential) energy release rate Gd

will decrease as the debond length increases (which is calculated using a

small increment δad ≪ ad at the tip of the deflected crack and passing to

the limit δad → 0 as for G1, see (10.24)). Following (10.24) and (10.25), it
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drops below the interface toughness at a distance ad such that

Gd = 2λk2Ada
2λ−1
d = G(I)

c ⇒
(ad

l

)2λ−1

=
G

(I)
c

G
(1)
c

A1

Ad

. (10.31)

At this point, the excess energy is now

∆W = ∆W1 + ∆Wd =
(

G(1)
c l + G(I)

c ad

)

(

1

2λ
− 1

)

. (10.32)

Thus the crack will continue to grow with a characteristic length δad until

it consumes this excess energy:

δad =
∆W

G
(I)
c

=

(

G
(1)
c

G
(I)
c

l + ad

)

(

1

2λ
− 1

)

. (10.33)

Of course ad + δad is an upper bound of the delamination length. Some

of the excess energy will be dissipated by dynamic effects, such as elastic

waves producing noise for example.

As already mentioned, comparison with a crack advancing in a straight

line and penetrating Material 2 is not considered here. This mechanism is

more difficult to describe and is the subject of a work in progress.

The modelling described in Sections 10.5 and 10.6 can be extended to

the anisotropic case provided it can still be split into plane and antiplane

problems. This is the case for cross-ply laminates of carbon-fibre-reinforced

polymers, where each layer is orthotropic in the appropriate basis, but not

for angle-ply laminates [1].

10.7 Conclusion

Plane-strain elasticity is the main framework of this chapter. The coupled

criterion can be extended without major difficulty to a generalized plane-

strain assumption in the analysis of delamination of angle-ply laminates

[1, 11]. It is also possible to describe in the same way crack kinking out

of an interface [12, 13], although this makes use of complex exponents and

SIFs [37, 38]. Together with the analysis of crack deflection by the interface

developed here, this covers a wide range of problems of failure in composite

laminates; especially since anisotropy, which has not been mentioned in this

chapter, does not complicate things too much as long as the assumption of

plane or generalized plane elasticity still holds.

Obviously the extension to 3D raises the most difficulties. There are

no major conceptual changes, but everything becomes technically much
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more complicated. The crack extension is no longer simply described by

two parameters, e.g. direction and length: the complete geometry must be

taken into account. An attempt was made to predict the nucleation of small

lens-shaped cracks along a straight crack front subject to Mode III remote

loading [14]. Nevertheless it is clear that much remains to be done in this

domain.
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