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Abstract Poroelastic coupling between fractures and the surrounding rock is important to numerous
applications in geosciences. We measure the in‐situ fluid pressure and local strain response of a fractured
carbonate sample to hydrostatic pressure oscillations. A linear poroelastic model that represents the rock sample
is parameterized using X‐ray imaging and ultrasonic wave transmission measurements. The numerical solution,
based on Biot's quasistatic equations, is consistent with the measured frequency dependent dispersion of the
apparent bulk modulus of the background matrix and the in‐situ pore pressure response, which is caused by fluid
pressure diffusion from the compliant fractures into the stiffer matrix. The observed fluid pressure diffusion is
causally related to the numerically quantified intrinsic attenuation at seismic frequencies, which is a major
contributor to the dissipation of seismic waves. Our analysis supports the use of a simple approximation of
fractures as compliant and planar inclusions in numerical simulations based on linear poroelasticity.

Plain Language Summary Fractures control the flow of fluids through rocks as well as their
mechanical properties. Finding ways to accurately simulate coupled hydro‐mechanical processes in fractured
rock is important to a variety of applications in geosciences (e.g., subsurface storage of carbon dioxide or
enhanced geothermal energy extraction). Physics‐based simulations require accurate parameterization and
validation against experiments. In our experiment on a fluid saturated fractured rock sample, we applied an
oscillating confining pressure to the sample and measured the corresponding deformation and the change in the
pore fluid pressure in a fracture and the porous matrix. By adjusting the frequency of the oscillations, we
observed a divergence in the pore pressure amplitude in the fracture and the matrix, which is a consequence of
flow from the fracture into the porous matrix becoming restricted at elevated frequencies. The laboratory
measurements were in close agreement with the results of our simulations, which were based on a simplified
model of the rock sample. The outcome of our work supports the use of a widely applied approximation of
fractures as simple planar inclusions in numerical simulations based on linear poroelasticity.

1. Introduction
While fractures may account for only a small portion of the total porosity, they can dominate the rock's hydraulic
and mechanical properties. Poroelastic coupling between fractures and the surrounding rock is important to slip
on fracture surfaces, because the rate of pore pressure increase acts as a control on the likelihood of initiating
seismic rupture (Alghannam & Juanes, 2020; Passelègue et al., 2020; Rudnicki & Zhan, 2020). Seismic waves are
also impacted by this poroelastic coupling, because fluid pressure diffusion from the compliant fractures to the
stiff matrix can be a significant source of inelastic or intrinsic seismic wave attenuation and velocity dispersion
(Brajanovski et al., 2005; Gurevich et al., 2009), which is distinct from elastic or extrinsic attenuation such as the
geometric spreading or reflection and refraction of a wave's energy. Improving the modeling of fractured systems
and providing validation of it with experimental observations has applications in geothermal energy production,
nuclear waste disposal or for the geological storage of carbon dioxide (e.g., Viswanathan et al., 2022).

The attenuation and dispersion of seismic waves in fluid saturated fractured rock has been widely studied in the
framework of linear poroelasticity (M. A. Biot, 1941, 1956, 1962). A simple way of representing fractures in
linear poroelasticity is to approximate them as thin compliant porous inclusions in a stiff background matrix (e.g.,
Brajanovski et al., 2005; Pride & Berryman, 2003). The approach allows for studying intrinsic attenuation arising
from fluid pressure diffusion between the compliant fractures and the stiff background (Brajanovski et al., 2005;
Gurevich et al., 2009) as well as from pressure diffusion between interconnected fractures (Quintal et al., 2014;
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Rubino et al., 2013). Caspari et al. (2019) performed an extensive comparative study, utilizing both Biot's low‐
frequency dynamic (M. Biot, 1956, 1962) and quasi‐static (M. A. Biot, 1941) equations, to simulate seismic wave
propagation in models with stochastic distributions of planar fractures to investigate the relative contributions to
seismic wave attenuation from transmission losses, scattering and intrinsic energy loss due to fluid pressure
diffusion. The sensitivity of these mechanisms to the hydromechanical properties of the rock makes them
particularly interesting in the context of seismic data processing and monitoring in fractured reservoirs (e.g.,
Daley et al., 2004; Rivet et al., 2016). Lissa et al. (2019, 2021) showed theoretically that approximating fractures
with complex geometries as planar porous and compliant inclusions is appropriate in poroelastic numerical
simulations. Such an approach of modeling fractures reduces computational costs and simplifies meshing.
However, there is limited experimental evidence to support a simplified representation of fractures in numerical
simulations based on poroelasticity, in part due to the complexity involved in conducting the experiments and the
difficulty of accurately parameterizing the models.

The challenge of parameterizing the numerical models lies in integrating different experimental methodologies.
Fracture geometry and aperture can be investigated with X‐ray computed tomography (CT), while fracture
compliance can for example, be determined from wave transmission measurements (Barbosa et al., 2019; Pyrak‐
Nolte et al., 1990). The forced oscillation method can be used to investigate the stress‐strain response of fluid
saturated rocks in the seismic frequency range (0–1,000 Hz) (e.g., Subramaniyan et al., 2014). Nakagawa (2013)
used this method by applying axial stress oscillations to investigate the quasi‐static fracture compliance of a water
saturated tensile fractured sandstone, observing dispersion in both the normal and shear fracture compliance at
ambient pressure conditions. Gallagher et al. (2022) investigated the response of a saw cut fracture in a carbonate
sample to hydrostatic pressure oscillations and, by measuring the strain locally on the sample surface, they
observed dispersion in the apparent bulk modulus of the rock matrix. In both studies, the observed dispersion in
the elastic properties was attributed to fluid pressure diffusion from the compliant fracture to the stiffer back-
ground matrix. Full characterization of the poroelastic properties of rock samples, such as the Skempton coef-
ficient (Skempton, 1954), requires also measuring the pore pressure response under undrained conditions (e.g.,
Hart & Wang, 1995). In‐situ pore pressure measurements during forced oscillations have been performed on
partially saturated and homogenous sandstone (Tisato & Quintal, 2013), however not on fractured rocks.

We measured the pore‐pressure response of a naturally fractured sample to hydrostatic pressure oscillations to
characterize its poroelastic response at different frequencies. We extend the work of Gallagher et al. (2022) by
implementing advanced pore pressure transducers (Brantut & Aben, 2021; Lin et al., 2024) to measure the in‐situ
fluid pressure, determine the fracture compliance from ultrasonic wave transmission tests and characterize the
fractures with micro‐X‐ray CT. Our experimental results validate, at first order, the linear poroelastic numerical
simulations, in which we approximate the fractures by a single planar poroelastic inclusion.

2. Materials and Methods
2.1. Sample

We us a sample of Urgonian limestone from the ‘Les Antennes’ outcrop (43.926,516° N, 5.502,709° E) near the
town of Rustrel, in the southeast of France. Urgonian limestone has been extensively studied and is considered a
close analog to carbonate reservoir rocks (Borgomano et al., 2019). The cylindrical sample (length 80 mm and
diameter 40 mm) was cored from the same block as the sample studied by Gallagher et al. (2022) and contains
natural fractures. We investigated the sample with micro‐X‐ray CT (Figures 1a–1d), which revealed a set of
fractures that approximately bisect the sample along its length. The main fracture extends from the top to the
lower third of the sample and is slightly inclined. Another fracture extends from the bottom of the sample upwards
but does not appear connected with the main fracture. The mean aperture of the fractures, at ambient pressure, is
estimated at 310 μm, the maximum aperture measured is 480 μm and the minimum aperture is below the scanning
resolution of 30 μm. The fractured volume is highest toward the top of the sample (Figure 1b), where the main
fracture connects to a larger void. The total porosity of the sample is 19.80 ± 0.02%, determined with the triple‐
weight method as well as by assuming the matrix of the sample is composed purely of calcite (e.g., Dullien, 1992).
The porosity of the matrix is 18.5 ± 0.3% and was determined from the average of two subsamples. The un-
certainty in the porosity measurements is estimated from the propagation of the weight measurement error of
0.01 g. The water permeability of the sample is 0.11± 0.03 mD, measured at an effective pressure (Peff = Pc − pf)
of 2.5 MPa.
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2.2. Experimental Methodology

To investigate the poroelastic properties of the sample, experiments were carried out in a triaxial cell (Borgomano
et al., 2020). The sensor layout is shown in Figure 1e. The deformation of the porous matrix was measured with
four pairs of bi‐axial strain gauges, placed at approximately 45° to the main fracture plane. The local pore pressure
was measured with two pore‐pressure transducers (Brantut &Aben, 2021). One transducer (Pp

1) was placed where
the fracture intersects the surface of the sample and the other (Pp

2) was placed at approximately 90° to the main
fracture plane, to measure the pore pressure in the porous matrix. A pair of ultrasound P‐ and S‐wave transducers
(0.5 MHz central frequency) were used to measure the wave velocities perpendicularly across the fractures.

Forced oscillations on the sample were performed by imposing sinusoidal oscillations of the confining pressure
(Pc). Measurements were performed in the frequency range of 0.004–1 Hz and at a maximum amplitude (ΔPc) of
0.3 MPa, which induce uniaxial strains of less than 10− 5, which are sufficiently low to assume the measurements
are in the linear elastic regime (e.g., Chapman et al., 2023; Winkler et al., 1979). A Fourier analysis was carried
out on the confining pressure, pore pressure and strain signals to determine the respective amplitudes and phases
at the imposed frequencies (e.g., Batzle et al., 2006). We determine an apparent bulk modulus K for the matrix
from the stress and strain amplitudes:

K( f ) =
∆Pc ( f )
∆εvol ( f )

, (1)

where εvol = εax + 2εrad, with εax and εrad being the axial and radial strains, respectively. We refer to the bulk
modulus as apparent because it is determined from the local strain measured on the background matrix and is there
for not representative of the entire sample deformation.

Initial measurements were performed on the dry sample, after which the sample was saturated with glycerin. We
use glycerin as a saturating fluid because of its high viscosity, which is temperature dependent, allowing us to

Figure 1. (a)‐(d) Micro X‐ray CT of the sample and the segmented fractures. The CT scan was coarsened to a resolution of
60 × 60 × 60 μm. e) Schematic of the sensor layout on the unwrapped surface of the sample. The sensors used include: a pair
of ultrasound P‐ and S‐wave transducers (Vp, Vs), two pore pressure transducers (Pp) and four pairs of strain gauges (SG) in a
bi‐axial configuration. The approximate location of the fracture plane is indicated by the red dashed line. f) Outline of the
numerical model and mesh. The volumetric strain is averaged over the small rectangular patches (red), analogous to the local
strain measured during the experiments by the strain gauges.
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observe dispersive behavior in the elastic moduli of the sample at low frequencies (<1 Hz). The pore fluid
pressure pf was maintained at 5 MPa during all subsequent measurements. Hydrostatic oscillations of the
confining pressure were performed at effective pressures of 2.5, 5 and 7.5 MPa and temperatures of 19°C, 25°C
and 45°C. All hydrostatic pressure oscillations were performed with undrained boundary conditions, by closing
the hydraulically activated micro‐valves in the sample holders (Borgomano et al., 2020). The viscosity of the
glycerin is temperature dependent, allowing us to investigate a broader frequency range, by scaling the probing
frequency with respect to the fluid viscosity. We define this apparent frequency in the following way (e.g., Jones
& Nur, 1983; Vo‐Thanh, 1990):

fapp = f
η f
η0

, (2)

where f is the frequency and ηf and η0 are the viscosity of the fluid and the reference viscosity, respectively. The
reference viscosity is the fluid viscosity at 45°C. By applying a steady state flow through the sample, the fluid
viscosity at each temperature was inverted from the fluid pressure gradients and flow rate, assuming that the
permeability is the same as in the water saturated sample.

To probe the elastic properties of the sample, P‐ and S‐waves were transmitted across or approximately normal to
the fractures. These measurements were carried out on the dry sample after the initial experiments, under ambient
and confining pressure (maximum confining pressure of 17.5 MPa). At ambient conditions only P‐waves were
transmitted, perpendicular to the fracture plane. Measurements were performed at multiple locations along the
length of the sample (z‐axis) by moving both transducers such that the travel path remained perpendicular to the
fractures. For comparison, velocity measurements were also performed on an intact (non‐fractured) sample that
was cored from the same block.

We utilize the ambient measurements on the fractured and intact samples to determine the fracture normal
compliance. The fractures are assumed to obey linear slip theory, where the displacement induced by the wave is
discontinuous across the fracture, but the stress is continuous (Schoenberg, 1980). Under this assumption the
normal fracture compliance Z can be related to the transmission coefficient |T(ω)| as follows (Pyrak‐Nolte
et al., 1990):

Z =
2
ρvω

̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T2 − 1

√

, (3)

where ρ is the bulk density of the intact rock, v is the P‐wave velocity in the intact rock and ω is the angular
frequency. We determine the transmission coefficient from the time domain ratio of the peak‐to‐peak amplitude
of the waveforms of the fractured and intact samples (Möllhoff et al., 2010). An average fracture compliance is
calculated from four measurements, where the quality of the waveforms allowed for determining a peak‐to‐peak
amplitude, giving us an effective fracture compliance. For additional details, we refer the reader to the supple-
mentary information.

2.3. Numerical Simulations

The theoretical hydro‐mechanical response of the fractured sample to pressure oscillations was studied by
numerically solving Biot's (1941, 1962) quasi‐static equations of poroelasticity. The simulations were performed
with COMSOL Multiphysics, where the discretized finite element expressions of the equations (Quintal
et al., 2011) were solved in the frequency domain. A cylindrical numerical model represents the laboratory sample
(Figure 1f). The fracture and matrix are treated as isotropic porous materials saturated by a single fluid. The
fracture network observed in the rock sample is approximated in the model as a single porous layer of 0.31 mm
thickness. Such a simplified approach has been shown to be appropriate for modeling the effective poroelastic
response of fractures (Lissa et al., 2019). The bulk and shear modulus of the planar fracture in the model are
determined from the average normal fracture compliance derived from the ultrasound measurements. The other
material properties, such as the porosity, permeability and bulk and shear moduli of the solid matrix, used for the
numerical simulations, are based on direct experimental measurements, which are described in the supplementary
information and summarized in Table S1 of Supporting Information S1.
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Boundary conditions are chosen for the numerical model that are representative of the experimental conditions. At
the outer model boundary, a relative fluid velocity of zero is considered in the finite element expressions (Quintal
et al., 2011), corresponding to the undrained boundary condition of the laboratory experiment. The confining
pressure oscillations of the experiment are simulated by applying an oscillatory displacement at the model
boundaries, corresponding to a bulk volumetric compression of the model domain. In this way, we determined the
frequency dependent evolution of solid displacement and fluid pressure. From the calculated stress and strain,
averaged over small volumes at the model surface (Figure 1f), corresponding to the local strain measurements, we
determined a local complex bulk modulus (Chapman & Quintal, 2018; Pimienta et al., 2016). From the stress and
strain averaged over the whole model, we obtain the global bulk modulus and corresponding attenuation (Jänicke
et al., 2015). For more details of the numerical simulations, we direct the reader to the Supporting Information S1,
which includes a validation of the numerical implementation against an analytical solution.

3. Elastic Wave Velocity and Fracture Compliance
The heterogeneity of the elastic properties and their pressure dependence are captured well by the ultrasonic P‐ and
S‐wave velocities measured on the dry sample. At ambient pressure conditions, the P‐wave velocity varies
significantly along the length of the sample (Figure 2a). The velocity is lowest in the center of the sample, 300–
400 m/s lower than the intact sample. The measurements at z= 2.7, 3.7, 5.7 and 6.7 cm were used to determine the
average fracture compliance of 5.9 × 10− 12 m/Pa, with a range from 2 × 10− 12 to 1.1 × 10− 11 m/Pa. The pressure
dependence of the P‐ and S‐wave velocities, measured perpendicular to themain fracture plane, reflects the closure

Figure 2. Ultrasonic wave velocities (0.5 MHz) measured on the dry sample. (a) P‐wave velocity (Vp) measured
perpendicular (⊥) to the fracture plane at ambient pressure, as a function of the position along the length of the sample
(z‐axis). The yellow dashed line indicates the P‐wave velocity measured on the intact sample. (b)‐(c) P‐wave and S‐wave
velocity (Vs), measured perpendicular to the fracture plane, as a function of confining pressure. The uncertainties in the
P‐wave and S‐wave velocities are estimated at ±2%.
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of the fractures (Figures 2b and 2c). The P‐wave velocity measured at z = 6.5 cm is significantly higher than the
velocity measured in the intact sample at ambient conditions, indicating that the nonlinear pressure dependence of
the wave velocities is due to the closing of not only the mesoscale fractures, but also microscale cracks and grain
contacts.

4. Fracture to Matrix Pore‐Fluid Pressure Diffusion
We measured the poroelastic response of the fluid saturated sample in response to sinusoidal oscillations of the
confining pressure. For brevity we focus on the experimental results measured at 2.5 MPa effective pressure,
where we observe negative dispersion in the apparent bulk modulus from 33 to 28 GPa, with increasing apparent
frequency (Figure 3a). At high frequencies the bulk modulus appears to converge to the undrained limit for an
ideal porous material, which was calculated with Gassmann's (1951) equation. We also observe a negative phase
difference between the confining pressure and locally measured volumetric strain (Figure 3b), indicating an
apparent lagging of the applied pressure behind the strain response. The induced pore pressure response is the
same at the fracture and the matrix at low frequencies (Figure 3c), with a pore pressure to confining pressure ratio
of 0.71± 0.02, indicating that the pore pressure throughout the sample is equilibrated. With increasing frequency,
the pore pressure response at the fracture and matrix diverges. At the fracture, the ratio increases to 0.77 ± 0.01,
while at the matrix it decreases to 0.48± 0.03. The divergence in the pore pressure response shows that fluid flow
from the compliant fracture to the stiff matrix is progressively reduced with increasing frequency, that is, the time
scale is too short for pressure diffusion to occur. The phase difference between the confining pressure and pore
fluid pressure is positive in the matrix and negative in the fracture, for frequencies >0.1 Hz (Figure 3d).

The poroelastic response of the sample was also measured at effective pressures of 5 and 7.5 MPa. With
increasing effective pressure, we observed an increase in the bulk modulus of the dry matrix and an overall
reduction in the pore pressure to confining pressure ratio of the saturated sample. Dispersion with respect to
frequency in the apparent bulk modulus and the corresponding phase shift between pressure and strain also
decrease with increasing effective pressure. At frequencies >0.1 Hz, we again observe the divergence between the

Figure 3. Experimental results of the hydrostatic pressure oscillations on the fluid saturated sample and the poroelastic
numerical solution. (a) Apparent bulk modulus K calculated from the local strain on the surface of the rock sample and the
numerical model. (b) Phase difference between the confining pressure and local volumetric strain. (c) Ratio of pore pressure
to confining pressure amplitude, measured by the pore pressure transducers at the fracture and the matrix. (d) Phase
difference between the confining pressure and local pore pressure. Blue shaded regions indicate an estimate of the
measurement uncertainty based on a moving standard deviation (window size of 10). The effective pressure during the
experiments was 2.5 MPa.
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pore pressures measured at the fracture and porous matrix. We summarize the key observations in Table S2 of
Supporting Information S1.

The numerical simulation reproduces at first order the experimental observations. Indeed, there is good agreement
with the measured low and high frequency limits of the bulk modulus (Figure 3a). Both the numerically calculated
dispersion and phase difference show a transition over a narrower frequency band than the experimental results
(Figures 3a and 3b). At low frequencies, the numerical solution reproduces well the measured pore pressure
response, predicting a pore pressure to confining pressure ratio of 0.73 compared to the measured ratio of
0.71 ± 0.02 (Figure 3c). At high frequencies, the numerical solution overestimates the pressure response in the
fracture, reaching the limit of 1. The numerical solution predicts that the pressure in the matrix decreases and then
stabilizes at a ratio of 0.6. The phase difference predicted by the numerical solution is in reasonable agreement
with the experimental observations (Figure 3d). For the fracture the negative phase difference is generally
overestimated, while for the matrix the results diverge from the experimental observations at high frequencies,
reaching a maximum at 0.5 Hz before decrease again.

5. Discussion
The experiments we performed on a rock sample with natural fractures are an extension and generalization of
experiments performed by Gallagher et al. (2022) on a sample with a saw cut fracture. The dispersion in the
apparent bulk modulus as well as the phase difference between stress and strain (Figures 3a and 3b) are consistent
with the experimental observations of Gallagher et al. (2022). The numerical solution, based on poroelasticity, for
our simple model captures to first order our observations. The model accurately predicts the characteristic fre-
quency, at which the maximum phase difference occurs, as well as the high and low frequency limits of the bulk
modulus dispersion. However, the numerical solution shows a sharper transition than the experimental results
and, while the pore pressure response is accurately modeled at low frequencies, the measurements and numerical
solution diverge at high frequencies. These discrepancies are likely due to a lack of heterogeneity in the numerical
model. The fractures are approximated as a simple planar feature embedded in a homogenous background matrix,
which imposes a single characteristic time over which fluid pressure diffusion occurs. The heterogeneity of the
rock sample is clearly shown in the variation of the P‐wave velocity along its length (Figure 2a), though it is not
clear whether this is due only to variations in the fracture compliance or also includes variations in the stiffness of
the background matrix. Heterogeneity in the permeability of the matrix is probably another important factor that
could explain the deviations (Figure 3c), as it would introduce a range of characteristic times over which fluid
pressure diffusion occurs. The subsample‐scale permeability can be quite variable even in porous rocks
considered to be homogeneous (Pini & Benson, 2017). We also do not account for the fact that the fractures are
slightly inclined and possibly not fully connected, though we expect this to minimally impact the diffusion time
from the fractures to the porous background. The overestimation in the numerical solution of the pore pressure
response in the fracture may be because we use an effective fracture compliance whereas the sensor, at high
frequencies, is probing a smaller portion of the fractures that is comparatively stiffer. This interpretation is
supported by the X‐ray CT images showing a larger void connected to the fracture at the measurement location
(Figure 1b).

The approximation of fractures as compliant and fluid saturated poroelastic inclusions of simple geometries is
widely used to theoretically investigate the attenuation and dispersion of seismic waves (e.g., Brajanovski
et al., 2005; Gurevich et al., 2009; Quintal et al., 2014; Rubino et al., 2013). The appropriateness of such an
approach has been numerically demonstrated by Lissa et al. (2019, 2021) and is supported by our experimental
study. More generally, our experiments and numerical simulations provide strong evidence that the hydro‐
mechanical coupling of fractures to a porous background matrix can be modeled in the framework of linear
poroelasticity. Furthermore, by measuring the pore pressure response at the fracture and the matrix, we directly
observe fluid pressure diffusion from the compliant fractures into the porous matrix in response to frequency
dependent oscillations of an externally applied stress (Figures 3c and 3d). Fluid pressure diffusion is an important
source of intrinsic attenuation of seismic P‐ (Brajanovski et al., 2005) and S‐waves (Quintal et al., 2014) in fluid
saturated fracture rock.

We could not directly calculate the attenuation from the measured phase shift between stress and strain (Masson &
Pride, 2014; O’Connell & Budiansky, 1978). To determine the attenuation in this way, stress and strain must be
averaged over the entire domain (Jänicke et al., 2015). In our experiment this condition was not met, because we
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measured the strain locally on the surface of the sample with strain gauges and the material properties of the
sample vary spatially by orders of magnitude because of the presence of the mesoscale fractures. To quantify the
attenuation and dispersion associated with the observed fluid pressure diffusion we can, however, average the
stress and strain from our numerical simulations over the entire model domain. Unlike when stress and strain are
averaged locally (Figure 3), the globally measured bulk modulus increases from high to low frequencies
(Figure 4a). The attenuation reaches a maximum at 0.63 Hz, which is at the lower end of the seismic wave
frequency band (Figure 4b). In the context of a subsurface reservoir, the attenuation peak could easily occur at
higher frequencies due to a lower fluid viscosity, with an increase in permeability of the background matrix or
with a decrease in the spacing between fractures (Brajanovski et al., 2005). More experimental research is needed
to investigate the attenuation and dispersion in fluid saturated rocks due to fluid pressure diffusion between inter‐
connected fractures, where attenuation is expected to be significantly greater and at higher frequencies (Quintal
et al., 2014; Rubino et al., 2013). Such experiments would be greatly improved by measuring the strain over the
entire sample and not locally with strain gauges.

6. Conclusions
We investigated experimentally and numerically the poroelastic response of a fluid saturated rock sample with
natural fractures to hydrostatic pressure oscillations. With advanced pressure transducers we were able to probe
the in‐situ pore fluid pressure of the sample at two locations, allowing us to observe the poroelastic coupling
between the fractures and the porous background. We were able to observe mesoscopic fluid pressure diffusion
from the compliant fractures to the stiffer porous background, which is a source of intrinsic attenuation of seismic
waves. Our poroelastic numerical simulations reproduce at first order our experimental observations. Even

Figure 4. Numerical results from the poroelastic rock model of (a) bulk modulus dispersion and (b) corresponding attenuation
Q− 1 determined from the global strain. The dashed lines correspond to the numerical results presented in Figures 3a and 3b,
where the strain was locally averaged corresponding the location of the strain gauges in the experiment.
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though the complex fractures that bisect the sample are approximated as a single compliant porous layer in our
model, we accurately predict the characteristic frequency at which the phase difference between stress and strain
reaches a maximum and the high and low frequency limits in the apparent bulk modulus of the matrix. Our
observations and analysis provide experimental support for such a modeling approach, based on Biot's theory of
linear poroelasticity, that is widely used to study seismic wave propagation in fluid saturated and fractured rock.

Data Availability Statement
The data presented in this article are available at the following repository via Chapman et al. (2024).
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