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Abstract

New meta-materials appear with the usage of piezoelectric transducers’ networks. Within the
number of controlling strategies for vibration mitigation, this study uses the classical derivative
control law as a basis. As a preliminary work in optimization with AI, an automatic algorithm
using Reinforcement Learning (RL) approached with TRPO (Trust Region Policy Optimization)
tunes a controller on an experimental cantilever beam. The control law is a simple derivative
feedback between two colocated piezoelectric transducers close to the beam-clamped end. The RL
algorithm trains offline on an estimated model of the experimental setup. The study compares
control methods between Reinforcement Learning results and a classical published approach.

Keywords : Vibration Control, Reinforcement Learning, Active Control, Cantilever Beam, Meta-
material.

1 Introduction

Materials define properties and functions. Nowadays, they can be more functional by interacting with
electromechanical systems. A new category of materials appears as ”smart” materials. Piezoelectric
materials are part of these new materials. As multi-physics materials, piezoelectric elements allow
transferring of mechanical energy into electrical energy with a reciprocity effect [Tie69] and be used
as sensors or as actuators. Structures and smart materials combination lead to smart structures with
tunable smart transducers.

Indeed, many strategies have been developed to control smart beams and show their efficiency as
LQR/LQG [SFHT05], |H||s optimization, or Fuzzy logic with sliding mode control [LSO09]. Re-
searchers implement control strategies on numerical models, develop them experimentally with one
set of co-localized piezoelectric transducers [VRO7], or use it on multi-patch with distributed control
[SW17]. Control strategies using Neural Networks with Neuro-controllers can suppress vibration with
piezoelectric transducers [DT95, JH04, MCK15]. Numerical simulations and experimentations prove
the methods’ efficiency. The method’s limit is the requirement of a computation unit during the
training and during the controller usage.
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Besides, this study aims at using neural network tools on a ”smart” structure to optimize an
Active Damping strategy based on a derivative feedback loop displacement and a piezoelectric patch
[CWDO03]. Thus, the computation unit is needed only during the training part. A Reinforcement
Learning method named TRPO (Trust Region Policy Optimization) [SLA*15] is used to train neural
networks. A cantilever beam with two colocated piezoelectric patches is also chosen to test this method
as a preliminary experimental setup with the aim of vibration minimization of the free end.
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Figure 1: System architecture representation with a feedback control law Eq. (1)

2 Problem formulation

A combination of Laplace transfer functions can describe every smart structure within the linear
domain. Figure 1 shows a block diagram architecture representation of a system where r is the target
signal, e is the error, C'(s) is the control law, ug4 is the perturbation signal, u. is the correction signal,
w is the input signal, G 2(s) is the system, and y; o are the output signals. The reference signal r
is null here. One canal u introduces both the input perturbation signal and the control signal to the
system.

The study aims at minimizing the vibration displacement at the beam-free end y,. As shown in Fig. 1,
a derivative feedback control law is chosen as:

C(s) = Ds (1)

With s the Laplace variable of the transfer functions, D € R is the derivative value.
An optimization process tunes the feedback gain D based on the H2 norm minimization of the
controlled system [DGKF89] within the frequency domain Q = [wy, ..., we] in (rad/sec) :

G

1+G.C (2)

|Gezll2 = \/ Ge(jw)?dw and G =

The result obtained with this tuning method is shown in Tab. 2 and used as a reference to compare
with the new method implemented here. Thus in this study, a Reinforcement Learning algorithm tunes
the controller’s parameter to minimize the free-beam end vibrations.

3 Algorithm Development

Within the Artificial Intelligence area, many algorithms exist. The Machine Learning domain differ-
entiates three main categories: Non-Supervised Learning, Supervised Learning, and Reinforcement
Learning (RL) [SB92]. Unlike the two other methods, this study chooses RL methods as it does not
need any database.

RL algorithm in Fig. 2 learns how to achieve a goal by an iterative process in a limited environment.
An agent leads the algorithm to associate Ng € N observations of states S; € RS from the environ-
ment with N4 € N actions A, € RN4 to choose at an Episode ¢t € N. The reward function R; € R
estimates the efficiency of the selected action on the environment. The agent uses the reward value to
adjust his policy of action. The reward increases as the action selected gets close to the goal.



Y

Agent

Actor : w(A|S,0) | Critic: V(S,¢)

\

Observation : Sy Reward : R; Action : A

T

Environment

A

Figure 2: RL algorithm: schematic representation

Two neural network (NN) functions define the agent: the Critic and the Agent.

The Critic V(S, ¢) evaluates the expected reward Ry (S;) € R according to the observation state
S, € R**!. ¢ defines bias BU) € R**! and weights W)

corresponding number of neurons ¢ € N as in Fig. 3 with:
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Figure 3: Neural Network definition: Critic function.



Equations (4),(5), and (7) define the hidden layers neurons computations with a¥) € R**1 W) ¢
R>i71 a(0=1) ¢ Ri=1x1 Kh() ¢ RP*1 j the layers, i the number of neurons and a(® = [S; Sy]T.

‘ - .

agj) w11 w12 ... Wii-—1 a(lj ) bgj)

() Wy Wap ... W1 (-1 p)
= f : S : a2. + |2 (4)

agj) Wil Wiz ... Wig—1 agil) bl(_j)
a¥) = FWWal—b 4 BU)) (5)

The critic output Ry is explicit in Eq. (6) and (7)
Ry = f(W®a? L BO®) (6)
r x>0

f(x)—{o <0 x€R (7)

The Actor 7(A|S, #) makes the decisions. It chooses the best action A;, according to the observation
state S; € R?*1. @ defines bias BU) € R*™*! and weights W) € R?**~! of each layers j € N and its
corresponding number of neurons i € N as in Fig. 4 with:
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Figure 4: Neural Network definition: Actor function.

The Actor’s NN output A and o are expressed in Eq. (9) and the hidden layers with Eq. 4 and 5.

T = JW®a® 1 B®), xig€ R
T2

A = tanh(xq)
o =In(1l+ e*?)



As a first RL approach, this study uses the TRPO algorithm developed by Schulman [SLAT15].
This method guarantees improvement in policies with neural network. The critic parameters ¢ and
the Actor parameters 6 are updated with a gradient minimization of their loss function based on an
advantage function F; € R in Eq. 10 with the discount factor 6y € R and A € R the Generalized
Advantage Estimator (GAE). It follows the steps defined in Fig. 5

Ey = Ao¢(Ry — V(S ) (10)
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Figure 5: TRPO Training Algorithm
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At the end of the training, when the number of episodes equals N, the action chosen by the actor
leads to a maximum reward from the environment. The critic output value equals this reward. In our
case, the maximal reward value achieves when the derivative control law value leads to the maximal
minimization of vibrations at the free-beam end.



4 Experimental Implementation

The RL method is implemented on a cantilever beam as a simple structure. The beam has length
Ly, width [, and thickness h,. Two collocated piezoelectric elements are attached to the beam at
a distance e, from the supported end. Piezoelectric elements’ dimensions are length L,, width I,
and thickness h,. The experimental values are available in Appendix A. Figures 6 and 7 show the

experimental setup.

Figure 6: Experimental setup: picture
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A band-limited white noise (0-1000Hz) is the input perturbation d in one piezoelectric element.

Figure 7: Experimental setup: scheme

This frequency range brings out the 2 first modes of the beam.




The second piezoelectric patch is used as a sensor with an output y;. A laser localized at the beam-
free end measures the relative displacement with an output sensor voltage ys. According to Fig. 1, the
system representation is composed of 2 transfers functions between the input and the outputs in the

Laplace domain:
Yi(s) = G1(s)Uqa(s) and Ya(s) = Ga(s)Ua(s) (11)

With Yi(s), Ya(s) and Uy(s), the Laplace transform respectively of y1, y2 and u4. Experimental mea-
surements of y; and yo allow computing these two transfer functions.

Transfer functions are numerically estimated as SISO systems with poles and zeros as:

K H?zzzl(l — z;ls)

G = - =
12(8) = 55 ;7 (1-p;'s)

(12)

With K € R as the constant gain, ng € Z as the number of null poles (integrator if ny > 0, derivative
if ng < 0, and with taking care of causality), z; € C zeros and p; € C poles of the system, n, € N the
number of zeros and n, € N the number of poles. Numerical transfer function estimations consider a
frequency range between 1 and 2000 Hz to include potential experimental spillover effects.

The feedback control law C(s) is applied to these estimated functions to simulate the beam behavior.
To reduce the time needed for outputs y; and ys measurements, the agent trains on a numerical
representation of the system. One numerical RL episode runs 10 times faster than one experimental
RL episode.
The algorithm aims at tuning the control law derivative parameter. In the objective of minimizing
vibrations at the beam-free end, the reward R; is based on the laser measurement ys:

10

1 1
Ry = — _ 13
10 iTzzl(ZZ:il yz(ik)2> (9

With 41 = 0.9(¢, — 1)N, + 1, ia = 1.1 x 4, X Ny, 10 x N, € N the signal ys length and i, € N signal
sample index.
Figure 8 shows reward variations with derivative value D. The reward function is computed with time
dependency to consider both control performances and stability.

According to the reward function, the optimal parameter estimation achieves the maximum value
of the reward.
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Figure 8: Average reward values variations with derivative D control values (red line) and the 0.95
confidence interval (blue area) for 10 executions.

As an input, the RL algorithm takes continuous derivative values around the stable domain: D =
{—1x107%,...,7 x 107°}. Mean over time of y; and y absolute values are environment observations
S1 and Ss.



5 Results and Discussions

A derivative feedback control applies on the piezoelectric patch system G1(s) to reduce free-beam end
vibrations.

Derivative control value tuning done by the RL algorithm needs data to be estimated. Since the
algorithm parameters € and ¢ are set randomly, 10 independent training run on the system. Figure 9
and Table 1 show the different training results with the algorithm parameters defined in Appendix B.
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Figure 9: Average reward values variations with Episode number (dark blue line), the 0.95 confidence
interval (blue area) for D tuning (10 Trainings).

Table 1: Training Results

Training Real Reward Expected Reward Absolute Error Reward Dy X 10-5 Dgpistd

1 11.4043 9.8996 1.5046 7.0000 0.7389
2 6.8019 6.9282 0.1262 3.0284 0.0041
3 7.6028 8.1113 0.5085 3.7546 0.0007
4 8.9178 8.6256 0.2922 4.8198 0.0005
) 10.6305 10.3559 0.2746 7.0000 0.1055
6 9.1947 9.3549 0.1603 9.3210 0.0018
7 10.7293 10.7644 0.0351 7.0000 0.1231
8 7.8461 7.2981 0.5479 4.1012 0.0012
9 7.1317 7.5333 0.4016 3.3272 0.0005
10 11.4273 10.2298 1.1975 7.0000 0.5041
Mean 9.3699 8.5889 0.8441 5.2824 0.3121

At the end of the training, the algorithm maximizes the reward and finds an optimal control value
in the stability domain. The D value estimated by the different training does not lead to the same
value after 250 episodes because of the randomness of the process. Some unfinished training leads to
a local minimum. The D value with the best performance is the one with the best training end for
both the real R; and the expected Ry rewards.

Table 2 presents the D values obtained with the best training and an average with all training.
Measurements are made on the experimental setup to estimate control performances. Figures 10a and
10b evaluate transfer functions Gy (s) and Ga(s) with control off and on. Figure 10a shows a decreasing
phase implying a small delay in the experimental setup. However, the algorithm still finds an efficient
and stable control value.

|H||2 minimization and RL tunning methods lead to a control performance of 10 dB vibrations
attenuation at the free beam end considering the first mode as in Fig. 11.



Table 2: Case continuous action

Method | D x 107° | RMS,, [mm] | |Ga|l2 | Aup
None 0.00 0.0020 10.76 -
|| H||2 7.00 0.0013 5.93 -10.6
TRPOqug 5.29 0.0014 6.59 -9.6
TRPOpest 7.00 0.0013 5.93 -10.6
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Figure 10: Transfer Functions with control off (blue), control on with D =7 x 10~° (red) and control
on with D = 5.88 x 10~° (orange) computed from y; (t) and y»(t) experimental measurements
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6 Conclusion

As a preliminary approach, this study shows the RL algorithm performances in an experimental con-
text for tuning controller parameters. The TRPO method finds a derivative control value to minimize

cantilever beam-free end vibrations.

The proposed method can tune an optimal derivative value D

with 12% confidence in a 250 samples training of 3.5 seconds/sample. Depending on the initial setup,
the method can be time-consuming. It is possible to improve the training by setting the training

hyperparameters (Appendix B).

Future works will introduce stability issues in the IA tuning process.

This algorithm offers possibilities to implement on complex distributed systems with multi-parameters

control methods to tune.
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A Experimental setup dimensions
Table 3 resumes the experimental setup dimensions.

Table 3: Experimental setup characteristics

Beam Piezoelectric Patch
Materials Aluminium Pz26

Name Value Unit || Name Value Unit
Ly 105  [mm] L, 50 [mm]

Dimensions Iy 52 [mm)] L, 50 [mm]
hp 3 [mm] hy 1 [mm]
ep 3 [mm)]
Laser sensitivity 0.1 [mm/V]

B Experiment Algorithm Parameters

Table 4 resumes the algorithm parameters set during the training.
*In this study, the agent only interact once with the environment before changing the policy.

Table 4: Algorithm Characteristics

Name Symbol Value
Experience Horizon N 512%*
Mini Batch Size M 128*
Entropy Loss Weigth w 0.01
Number of Epoch k 3
Average Estimate Method 7 gae”
GAE Factor A 0.95
Conjugate Gradient Damping g 0.1
KL-Divergence Limit ) 0.01
Number Iteration Conjugate Gradient Ncg 10
Number Iteration Line Search n 10
Conjugate Gradient Residual Tolerance Cyr le-8
Normalized Advantage Method ”none”
Advantage Normalizing Window N, -
Learning Rate Lp 0.01
Gradient Threshold Nyp, inf
Gradient Threshold Method ”12norm”
L2RegularizationFactor 12 le-4
Training Algorithm ”adam”
Sample Time ts 1 (Event Base)
Dicount Factor Of 0.99
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