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ABSTRACT

Federated Learning (FL) enables collaborativemodel training among
several participants while keeping local data private. However, FL
remains vulnerable to privacy membership inference attacks (MIAs)
that allow adversaries to deduce confidential information about
participants’ training data. Existing defense mechanisms against
MIAs compromise model performance and utility, and incur sig-
nificant overheads. In this paper, we propose DINAR, a novel FL
middleware for privacy-preserving neural networks that precisely
handles these issues. DINAR leverages personalized FL and follows
a fine-grained approach that specifically tackles FL neural network
layers that leak more private information than other layers, thus,
efficiently protecting FL model against MIAs in a non-intrusive way,
while compensating for any potential loss in the model accuracy.
The paper presents our extensive empirical evaluation of DINAR,
conducted with six widely used datasets, four neural networks,
and comparing against five state-of-the-art FL privacy protection
mechanisms. The evaluation results show that DINAR reduces the
membership inference attack success rate to reach its optimal value,
without hurting model accuracy, and without inducing computa-
tional overhead. In contrast, existing FL defense mechanisms incur
an overhead of up to +35% and +3,000% on respectively FL client-
side and FL server-side computation times.
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1 INTRODUCTION

Advancements in Machine Learning (ML), along with the need for
better privacy, have given rise to the Federated Learning (FL) para-
digm. FL enables collaborative model training among decentralized
participants’ devices, while keeping local data private at the partici-
pants’ premises [26]. Thus, participants contribute by training their
respective local models using their private data, and only transmit
their local model parameters to a FL server, which aggregates these
parameters to produce a global model. FL has various applications,
such as e-health monitoring [47], disease diagnosis [20], and fraud
detection in banking systems [8].

Despite the privacy benefits offered by FL, recent studies have
highlighted the vulnerability of FL systems to privacy inference
attacks [24, 34]. These attacks, in particular Membership Inference
Attacks (MIAs), exploit the parameters of the shared models to
infer sensitive information about the training data of other partici-
pants [41]. In a white-box FL system where the model architecture
and parameters are known by all participants, MIAs pose a signifi-
cant threat to privacy. An attacker on the server side could discern
from a client’s model parameters whether a specific individual’s
data was included in the training process. Similarly, a malicious
participant on the client side could deduce from the FL model pa-
rameters whether the data was used for training, and potentially
uncover sensitive information.

To address these privacy concerns, various FL defense mecha-
nisms have been proposed [1, 33, 36, 37]. These mechanisms lever-
age techniques such as cryptography and secure multiparty compu-
tation [4, 48, 52], trusted hardware execution environments [19, 28],
perturbation-based methods and differential privacy [33, 43, 50].
Software and hardware-based cryptographic solutions provide in-
teresting theoretical privacy guarantees, although at the expense
of high computational overheads. On the other hand, in order to
provide effective privacy, existing perturbation-based methods neg-
atively impact model utility and quality, and incur significant over-
heads.

Our objective is to precisely strike a balance between FL model
privacy, model utility and costs for enabling effective privacy-
preserving FL, especially in the case of cross-silo FL systems where
the FL server shares the global model with the participating clients
and not with external parties (e.g., FL-based banking systems, hospi-
tals, etc.). In this paper, we propose DINAR, a novel FL middleware
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for privacy-preserving neural networks that handles MIAs. DINAR
is based on a simple yet effective approach that consists in protect-
ing more specifically the FL model layer that is the most sensitive to
membership privacy leakage. This approach is motivated by recent
studies [29, 30], and by our empirical analysis in §3, which reveal
the existence of a model layer that leaks more private information
than other layers. DINAR follows a fine-grained and specialized
approach that specifically tackles FL neural network layers that
leak more private information than other layers, thus, efficiently
protecting the FL model against MIAs in a non-intrusive way. And
in order to compensate for any potential loss in the accuracy of the
protected model, DINAR leverages personalized FL and combines
it with efficient adaptive gradient descent.

DINAR runs at the FL client side, and allows protecting both
the global FL model and the client models. Whereas for its own
model predictions the client uses its privacy-sensitive layer as part
of the model, that privacy-sensitive layer is obfuscated before send-
ing client model updates to the FL server. Thus, the aggregated
model produced by the FL server includes an obfuscated version
of the privacy-sensitive layer. When the client receives the pro-
tected global model from the server, it first restores its local privacy-
sensitive layer (i.e., the non-obfuscated version of that layer) that
was stored during the previous FL round, and integrates it into
its copy of the global model, before actually using the resulting
personalized model for client predictions. Furthermore, in order
to improve the utility of the protected model, DINAR leverages an
efficient adaptive gradient descent technique to further maximize
the model accuracy [6].

Scientific Contributions. In particular, the paper makes the fol-
lowing contributions:
• We conduct an empirical analysis on real datasets and neural
networks to characterize how much each layer of a neural
network leaks membership privacy information.
• To the best of our knowledge, we propose the first fine-
grained FL privacy-preserving middleware against MIAs,
that specifically obfuscates the most privacy-sensitive layer,
for an effective yet non-intrusive privacy protection.
• We conduct extensive empirical evaluations of DINAR with
six widely used datasets and four neural networks. We also
compare DINAR against five state-of-the-art FL privacy pro-
tection mechanisms. Our evaluation results show that DI-
NAR reduces the membership inference attack success rate
to reach its optimal value, without hurting model accuracy
and without inducing overheads. In contrast, existing FL
defense mechanisms incur an overhead of up to +3(% and
+3,000% on respectively FL client-side and FL server-side
computation times.
• The software prototype of DINAR is available for other re-
searchers and practitioners at:
https://github.com/sara-bouchenak/DINAR/

Paper Roadmap. The remainder of the paper is organized as fol-
lows. In §2, we provide an overview of the background and related
work pertaining to FL defenses against MIAs. Section 3 motivates

DINAR’s approach, and §4 elaborates on the design principles that
underpin DINAR. To substantiate the efficiency of the proposed
solution, empirical evaluations are presented in §5. Finally, in §6
we draw our conclusions.

2 BACKGROUND AND RELATEDWORK

2.1 Federated Learning

At each Federated Learning (FL) round, the FL server selects N
participating clients, which train their local models θi using their
own data Di . Then, clients transmit their model updates to the FL
server, which aggregates them to produce a global model θ shared
with the clients. The classical algorithm used for model aggregation
is FedAvg, a weighted averaging scheme that assigns a weight to a
client’s model parameters according to the relative amount of data
contributed by that client. Furthermore, we consider the case where
the FL server shares the global model with the participating clients
and not with external parties. This is usually the case in cross-silo
FL systems, such as banking systems, or hospitals [11, 12, 35, 53].

2.2 Membership Inference Attack Threat

Model

Membership Inference Attacks (MIAs) aim to infer whether a data
sample has been used to train a given model. Such attacks exploit
vulnerabilities in the parameters and statistical properties of the
trained model to reveal information about the training data.

Thus, it is important to safeguard individuals’ confidentiality
against MIAs that cause significant privacy violations, in particu-
lar, in areas involving highly sensitive information such as health
applications, financial systems, etc.

Attacker’s Objective andCapabilities.We consider the standard
setting of a MIA and its underlying attacker’s capabilities [41].
Namely, the objective of the attacker is to determine whether a
given data sample was used for model training. An attacker can
be on the client side or on the server side. If the attacker is on the
client side, its goal is to determine, based on the received global FL
model, whether a data sample has been used for training by other
clients, without knowing to which client it actually belongs. If the
attacker is on the server side, it is also able to determine, based on
a received client model, whether a data sample has been used by
that client for training.

2.3 Related Work

Cutting-edge research in countering MIAs has made significant
strides through innovative approaches, encompassing cryptographic
techniques, secure hardware, and perturbation-based methods as
summarized in Table 1. Cryptography-based solutions such as
PEFL [52], HybridAlpha [48], Secure Aggregation (SA) [54], or
Chen et al. [4], offer robust privacy solutions, with interesting theo-
retical guarantees. However, they tend to incur high computational
costs due to complex encryption and decryption processes. Fur-
thermore, these solutions often protect either the client-side or the
server-side model, but not both, leaving potential vulnerabilities in
the other unprotected component. Interestingly, solutions based on
Trusted Execution Environments (TEEs) emerge as another alterna-
tive for better privacy protection [19, 28, 31]. However, because of
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Table 1: Comparison of FL privacy-preserving methods

Privacy-preserving category Protection method Model privacy Model utility Negligible overhead

Cryptography-based methods
PEFL [52] ✓ ✓ ✗✗

HybridAlpha [48] ✓ ✓ ✗✗

Chen et al. [4] ✓ ✓ ✗✗

Secure Aggregation [54] ✓ ✓ ✗

TEE-based methods
MixNN [19] ✓ ✓ ✗✗

GradSec [28] ✓ ✓ ✗✗

PPFL [31] ✓ ✓ ✗✗

Perturbation-based methods

CDP [33] ✓ ✗ ✗

LDP [3] ✓ ✗ ✗

FedGP [44] ✓ ✗ ✗

WDP [43] ✗ ✓ ✗

PFA [21] ✓ ✓ ✗

MR-MTL [22] ✗ ✓ ✗

DP-FedSAM [40] ✓ ✓ ✗

PrivateFL [50] ✗ ✓ ✗

Gradient Compression Fu et al. [7] ✓ ✓ ✗

Our method DINAR ✓ ✓ ✓

the high dimension of underlying models, striking a tight balance
between privacy and computational overhead remains challeng-
ing. A recent work on TEE-based privacy-preserving FL reports a
performance overhead of up to +646% on training times, and up to
+5968% [31] on FL aggregation times.

On the other hand, perturbation methods such as differential pri-
vacy (DP), with algorithm-specific random noise injection, serve as
interesting safeguards against potential information leakage. When
applied in the context of FL, DP has two main forms, namely Local
Differential Privacy (LDP) that applies on client model parameters
before transmission to the FL server [3], and Central Differential
Privacy (CDP) where the server applies DP on aggregated model
parameters before sending the resulting model to the clients [33].
There is also Weak Differential Privacy (WDP) which applies norm
bounding and Gaussian noise with a low magnitude for better
model utility [43].

Recent works, such as PFA [21], MR-MTL [22], DP-FedSAM [40],
and PrivateFL [50], follow such approaches. However, in practice,
to effectively protect privacy, existing DP-based FL methods induce
a significant impact on utility and model accuracy, as shown in
the evaluation presented later in the paper. Another approach to
counter MIAs in FL is through Gradient Compression (GC) tech-
niques, which reduce the amount of information available for the
attacker [7]. However, such techniques also decrease the model
utility.

In summary, existing FL privacy-preserving methods tackling
MIAs either rely on cryptographic techniques and secure envi-
ronments which induce a high computational overhead, or reduce
model utility and quality with classical perturbation-based methods.
In contrast, we propose a novel method that follows a finer-grained
approach, applying obfuscation on specific parts of model parame-
ters that leak privacy-sensitive information. This results in good
privacy protection, good model utility, and no perceptible compu-
tational overhead.

3 MOTIVATION FOR A FINE-GRAINED

PRIVACY-PRESERVING APPROACH

Recent studies analyzed the privacy risks of neural networks at
a fine-grained level, to better characterize how much each layer
of the model leaks privacy information [29, 30, 49]. As claimed in
these studies, a similar pattern appears in all models, namely, there
is a layer that leaks more private information than other layers.
To better illustrate this behavior, we conduct an empirical analysis
with four different datasets and their underlying models, deployed
in a FL setting∗.

(a) GTSRB (b) CelebA

(c) Texas100 (d) Purchase100

Figure 1: Neural network’s layer-level analysis of divergence

between member data samples and non-member data sam-

ples, when FL models are not protected against MIAs

∗A description of the used datasets (GTSRB, CelebA, Texas100, Purchase100) and
their underlying models can be found in §5.1 and §5.3.
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More precisely, we aim to characterize how much each layer of
a model contributes to an attacker’s ability to perform membership
inference attacks (MIAs). As described in §2.2, such an attacker is
able to determine whether a particular data sample was part of the
model’s training set. In other words, the attacker aims to distin-
guish between data samples that are members of the training set
and those that are not (i.e., non-member data samples). To investi-
gate this, we use a trained FL model to make two sets of predictions:
one with member data samples, and another one with non-member
data samples. Then, we calculate the gradients of each layer pro-
duced by the predictions with member data on the one hand, and
with non-member data on the other hand. Next, we determine the
generalization gap for each layer, that is the difference between
the gradients of member and non-member samples. The higher the
generalization gap, the more successful MIA is, i.e., the easier it is
for the MIA to differentiate between members and non-members,
as shown in recent studies [10, 46].

Our empirical results are presented in Figure 1, where the gener-
alization gap is computed using the widely used Jensen-Shannon
divergence [27]. We observe that different layers of a model may
exhibit different generalization gaps. Here, we also observe a sim-
ilar behavior in all datasets and model architectures, namely, the
generalization gap of the penultimate layer is notably higher than
the generalization gap of the other layers. Thus, that layer leaks
more privacy-sensitive information (i.e., membership-related in-
formation), as shown in other studies [29, 30]. This motivates the
design of DINAR, a fine-grained privacy-preserving approach that
tackles precisely the most sensitive neural network layer to protect
against MIAs while reducing the impact on utility and overhead.

4 DESIGN PRINCIPLES OF DINAR

We propose DINAR, a novel FL middleware for privacy protection
against MIAs. The objective of DINAR is threefold: (i) improving
the resilience of neural network models against MIAs, (ii) preserv-
ing the model utility, and (iii) avoiding additional computational
overheads. Whereas existing privacy-preserving FL methods ei-
ther apply perturbation on all model layers, or use cryptographic
techniques and secure environments which induce a high computa-
tional overhead (as discussed in §2.3), the intuition behind DINAR
is to specifically handle the most privacy-sensitive layer of a FL
model, i.e., the layer which reveals more data privacy information
than the others. This allows a non-intrusive yet effective solution
to protect FL models against MIAs.

DINAR runs on the client side. Its overall pipeline is described
in Figure 2. In a preliminary phase, FL clients run a distributed
consensus protocol to agree on the most privacy-sensitive layer,
as described in §4.1. Then, each selected FL client interacts with
the FL server at each round as usual. In addition, the client runs
DINAR’s privacy protection Algorithm 1 at each FL round. This
consists of the successive stages of client model personalization,
efficient adaptive model training for improving model utility, and
model obfuscation, as respectively detailed in §4.3, §4.4 and §4.2.

4.1 DINAR Initialization

This preliminary phase of DINAR runs before the FL learning pro-
cess (i.e., the successive FL rounds), and aims to determine the most

Algorithm 1: DINAR privacy protection on FL Clienti
Inputs: θ : global model parameters; p: private layer index
Output :θi : client model parameters

Local variables: θ
p
i
∗: parameters of private layer of client

model; (Bi ,Y ) = {(Bi1,Y1), . . . , (B
i
x ,Yx )}:

training batches of Clienti ; η: learning
rate

1 Model Personalization

2 for j in {1..J } do
3 if j , p then

4 θ
j
i ← θ j ; // Use jth layer parameters from global model

5 else

6 θ
j
i ← θ

p
i
∗ ; // Restore parameters of client’s private

layer

7 Adaptive Model Training

8 G ← 0 ; // Set initial accumulated gradients matrix

9 foreach local training epoch do

10 foreach (Bik ,Yk ) ∈ (B
i ,Y ) do

11 Ŷk ← θi (B
i
k ) ; // Perform local prediction

12 loss ← L(Yk , Ŷk ) ; // Compute model loss

13 G ← G +∇θ · loss
2 ; // Compute new cumulated gradients

14 θi ← θi − η
∇θ ·loss√
G+1e−5

; // Update local model

15 Model Obfuscation

16 θ
p
i
∗
← θ

p
i ; // Save parameters of client’s private layer

17 θ
p
i ← random_values ; // Obfuscate parameters of private

layer

18 return θi

privacy-sensitive layer p of the neural network. To do so, the FL
clients run a distributed consensus protocol. Each Clienti has a set
of raw data Di , that will first be prepared following classical data
preprocessing techniques [38], which results in a set of data Dm

i
that will be actually used for model training, and a set of data Dn

i
not used for training.

We assume each Clienti has a set of data used for training, Dm
i ,

and a set of data not used for training, Dn
i . Clienti evaluates the

privacy sensitivity of its model layers by measuring the general-
ization gap, computing the Jensen-Shannon divergence between
the gradients of each layer resulting from the predictions of mem-
ber data samples Dm

i , and non-member data samples Dn
i . Layers

exhibiting higher generalization gaps indicate greater privacy sen-
sitivity. Consequently, the layer with the highest generalization
gap is the Clienti most privacy-sensitive layer pi .

To achieve a consensus on the index of themost privacy-sensitive
layer p to obfuscate among all clients, even in the presence of
Byzantine faults where some clients may be compromised or behave
maliciously, we use a broadcast distributed voting method [2] which
is based on distributed multi-choice voting (DMVR) algorithm [39].
This method involves each client broadcasting its pi to all other FL
clients. Upon receiving all indices, it ensures that the value with the
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DINAR Initialization DINAR Privacy Protection

Distributed 
consensus protocol

FL Clienti

p
The most 
privacy-
sensitive 

layer 

parameters θi

Client model
parameters θ
FL model

Figure 2: DINAR middleware

absolute majority, is chosen as the final index of the FLmost privacy-
sensitive layer to obfuscate. Based on experimental results that align
with prior studies [29, 30], the algorithm typically converges to the
penultimate layer of the model. At the end of DINAR Initialization
phase, once the index p of the layer to be obfuscated is chosen by
the consensus protocol, all clients (whether correct or not during
DINAR Initialization phase) that are afterwards involved in the FL
learning rounds will apply obfuscation on that same layer p of their
local models.

4.2 Model Obfuscation

In the following, we consider a model θ with J layers, where
θ1 . . . θ J are the parameters of the respective layers 1 . . . J . At each
FL round, Clienti that participates in that round updates its model
parameters θi through local training. Before sending the local model
updates to the FL server, the client obfuscates the privacy-sensitive
layer of its model, namely θpi that is the client model parameters
of layer p. This obfuscation can be performed by simply replacing
the actual value of θpi by random values. The resulting local model
updates are sent to the FL server for aggregation. Note that the raw
parameters of the privacy-sensitive layer (i.e., before obfuscation)
are stored at the client side in θpi

∗, and will be used in other stages
of the DINAR pipeline.

4.3 Model Personalization

As a first step of DINAR pipeline for Clienti , it first receives the pa-
rameters of the global model θ . Here, θp , i.e., the model parameters
of the privacy-sensitive layer p, correspond to obfuscated values.
Clienti integrates to its local model parameters θi all global model
layer parameters, except the parameters θp of the layer p. Instead,
for that layer, the client restores θpi

∗, its previously stored, non-
obfuscated layer p parameters. Thus, while the global FL model
is protected against MIAs, Clienti makes use of an effective per-
sonalized local model. This approach contributes in maintaining
good model utility. Client model’s privacy-sensitive information
remains protected, while client data still contributes to the overall

improvement of the global model through collaborative training.
Finally, with personalized FL, the resulting personalized client mod-
els are used by the clients for their predictions, whereas the global
FL model is used for the overall learning process but not for predic-
tions.

4.4 Efficient Adaptive Model Training

To overcome model convergence challenges, DINAR uses adaptive
gradient descent to optimize the loss function L for each Clienti .
This method updates model parameters θi at each local epoch with
a learning rate η ∈ [0, 1], effectively handling local minima and
saddle points [6]. As described in Algorithm 1, lines 13-14, the
optimizer first updates the cumulative errors G of the model. Then,
model parameters θi are updated by adjusting them based on the
gradient direction ∇θ · loss, taking into account the accumulated
sum of squared gradients G, which allows to apply an adaptive
coefficient to the initial learning rate ∇ over time.

The use of adaptive gradient descent is motivated by its effec-
tiveness in managing convergence with complex models such as
Convolutional Neural Networks (CNNs). It generally exhibits a
slower learning rate compared to algorithms such as Adam and
RMSProp, particularly during the initial iterations [16, 32]. Fur-
thermore, it dynamically adjusts the learning rate across different
dimensions, similarly to Adam. However, Adagrad’s lack of mo-
mentum can prevent client drift and worsen convergence issues in
environments with increasing number of client participants and
non-IID data distributions [14, 15].

In summary, DINAR provides a heuristics-based fine-grained
privacy protection of FL neural networks. We acknowledge that a
theoretical analysis of the proposed privacy-preserving FL solution
is desirable. However, many recent works recognize that the formal
quantification of the leakage of private information associated with
the model layers and gradients is still a scientific conundrum [29,
30, 49].
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5 EXPERIMENTAL EVALUATION

In the following, we first describe the various datasets (in §5.1)
and baselines (in §5.2) we used in our experiments, as well as the
underlying experimental setup (in §5.3). Then, we present analytical
insights of the pertinence of DINAR (in §5.4), before describing the
experimental results when evaluating privacy protection (in §5.5),
its cost (in §5.6), its trade-off with utility (in §5.7), and the behavior
of DINAR under different non-IID settings (in §5.8).

5.1 Datasets

We conduct experiments using a diverse set of datasets and models,
encompassing four image datasets (Cifar-10, Cifar-100, CelebA, and
GTSRB), two tabular dataset (Purchase100, Texas100), and a raw
audio dataset (Speech Commands). For each dataset, half of the data
is used as the attacker’s prior knowledge to conduct MIAs [41], and
the other half is partitioned into training (80%) and test (20%) sets.
These datasets are summarized in Table 2, and detailed below.

Table 2: Used datasets and models

Dataset #Records #Features #Classes Data type Model

Cifar-10 50,000 3,072 10 Images ResNet20
Cifar-100 50,000 3,072 100 Images ResNet20
GTSRB 51,389 6,912 43 Images VGG11
CelebA 202,599 4,096 32 Images VGG11

Speech
Commands 64,727 16,000 36 Audio M18

Purchase100 97,324 600 100 Tabular 6-layer FCNN
Texas100 67,330 6,170 100 Tabular 6-layer FCNN

CelebA.CelebFaces Attributes Dataset is a large face images dataset,
with 202,599 images for facial recognition and attribute detection.
A subset of 40,000 images, resized to 64x64 pixels, was randomly
selected. We create 32 classes by combining five pre-annotated bi-
nary facial attributes (Male, Pale Skin, Eyeglasses, Chubby, Mouth
slightly opened) for each picture [23]. The VGG11 architecture was
employed for image processing [42].

Cifar-10 and Cifar-100. These are image datasets that consist of
60,000 images categorized into 10 classes for Cifar-10, and contains
100 classes for Cifar-100 [18]. These datasets encompass a wide
range of objects such as airplanes, automobiles, birds, cats, and
more. Each image in these datasets has a resolution of 32x32 pixels.
For our experiments, we employ the ResNet-20 model.

GTSRB. German Traffic Sign Recognition Benchmark dataset com-
prises 51,389 records across 43 classes, specifically designed for traf-
fic sign recognition. It captures real-world traffic scenarios, includ-
ing variations in lighting, weather conditions, and camera angles.
This dataset is widely used for evaluating traffic sign recognition al-
gorithms and developing machine learning models for autonomous
driving. We use VGG11 model architecture for this dataset [9, 42].

Purchase100. It is a tabular dataset adapted from Kaggle’s "Ac-
quire Valued Shoppers" challenge, consisting of 97,324 records with
600 binary features representing customer purchases. The goal was
to classify customers into 100 types based on their buying behav-
ior [41]. For classification, we use a fully-connected neural network

architecture with layers of sizes 4096, 2048, 1024, 512, 256, and
128, leveraging Tanh activation functions and a fully-connected
classification layer [13].

Speech Commands. This dataset is a Google-released audio wave-
form for speech recognition classification [45]. It consists of 64,727
utterances from 1,881 speakers pronouncing 35 words (respectively
35 classes). Each audio record was transformed into a frequency
spectrum with a duration of 1 second. For classification, we use
the M18 classifier, a convolutional model with 18 layers and 3.7M
parameters [5].

Texas100. This is a tabular dataset derived from the hospital dis-
charge data published by the Texas Department of State Health
Services [41]. It contains 67,330 records with 6,170 binary features
representing patient information such as external causes of injury,
diagnosis, procedures, hospital ID, and length of stay. The dataset’s
primary objective is to classify patient data into 100 classes based
on the most frequent medical procedures. For classification, we use
the same neural network model used for the Purchase100 dataset.

5.2 Baselines

Our evaluation compares DINAR with different defense scenarios,
including five state-of-the-art solutions, as well as the no defense
scenario. Thus, we consider LDP, CDP, and WDP state-of-the-art
solutions that use differential privacy (DP). We also consider a
cryptographic solution based on Secure Aggregation (SA) [54], and
another defense solution based on Gradient Compression (GC) [7].
For LDP and CDP, we set the privacy budget parameter ϵ = 2.2 and
the probability of privacy leakage δ = 10−5, following the findings
of [33]. In the case of WDP, a norm bound of 5 is considered, and
Gaussian noise with a standard deviation of σ = 0.025 is applied.
These settings ensure an optimal level of privacy preservation in
our experiments.

5.3 Experiment Setup

The software prototype of DINAR is available in https://github.com/
sara-bouchenak/DINAR/. All the experiments are conducted on an
NVIDIA A40 GPU. We use PyTorch 1.13 to implement DINAR, and
the underlying classificationmodels. For the state-of-the-art defense
mechanisms based on differential privacy, we employ the Opacus
library [51]. In our experiments, we consider a FL system with 5 FL
clients using Cifar-10, Cifar-100, GTSRB, CelebA and Speech Com-
mands datasets, and 10 clients using Purchase100. The data are
carefully divided into disjoint splits for each FL client. The number
of FL rounds was chosen in such a way that the FL model reaches
a stable state. That is, 50 FL rounds were necessary for Cifar-10,
Cifar-100, GTSRB and CelebA, 80 FL rounds for Speech Commands,
and 300 rounds for Purchase100. Each FL client performs 5 local
epochs per round with all datasets, but Purchase100 that needed
10 local epochs. Each dataset is split into 80% for training, and 20%
for testing. The learning rate is set to 10−3, and the batch size is
64. We evaluate FL privacy-preserving methods by measuring the
attack AUC, as well as the model accuracy, and several cost-related
metrics, as described in Appendix A.
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(a) No Defense (b) LDP (c) CDP (d) WDP (e) DINAR

Figure 3: Model loss distribution with different FL privacy-preserving techniques. The dark curve shows the loss distribution

for member data samples, and the light curve shows the distribution for non-members of Cifar-10 dataset

5.4 Analytic Insights on the Pertinence of

DINAR

In order to provide an insight on DINAR’s ability to preserve both
privacy and model utility, we analyze the impact of DINAR on
the behavior of the protected model, and compare it to state-of-
the-art solutions. First, in Figure 3, we measure the loss of the
attacked model separately for member data samples that were used
for training by clients, and non-member data samples, considering
different defense methods. We evaluate the effectiveness of each
defense technique in reducing loss distribution discrepancies be-
tween members and non-members, and in minimizing loss values.
Ideally, the loss distribution of members and non-members should
match, thus, resulting in model’s lack of insightful information to
distinguish members and non-members. Here, we observe that in
the no defense case, the loss distributions between members and
non-members are very different, thus, enabling successful MIAs.
DP-based techniques (i.e., LDP, CDP, WDP) reduce loss distribution
discrepancies, however, at the expense of more frequent high loss
values (i.e., lower model utility) due to the noise added to all model
layers’ parameters. In contrast, a fine-grained obfuscation approach
as followed by DINAR results in similar and more frequently low
loss distributions of members and non-members, making MIAs
more difficult and maintaining a good model quality.

(a) Members vs. non-members

(b) Local model privacy

Figure 4: Analysis of fine-grained protection applied to each

layer – CelebA dataset based on a neural networkwith 8 con-

volutional layers

Furthermore, we analyze the behavior of the fine-grained privacy
protection approach of DINAR if it is applied more specifically to

the one or the other of the layers of the neural network. Figure 4
puts into perspective two aspects of this analysis. On the one hand,
Figure 4(a) shows how much one can determine the divergence
between member data samples that were used for model training
and non-member data samples, by analyzing the one or the other of
model layers. On the other hand, Figure 4(b) presents the result of a
fine-grained protection that obfuscates the one or the other of local
model layers. We observe that obfuscating the layer that leaks more
membership information is actually sufficient to reach the optimal
protection of the overall client model against MIAs†. Whereas
obfuscating other layers that leak less membership information is
not sufficient for the protection of the overall client model. This is
the basis of the heuristics provided by DINAR.

We also evaluate the impact of protecting more than one layer
of the model, as presented in Figure 5. Here, obfuscating more
layers does not improve model privacy, which is already optimal
by protecting a single layer. On the other hand, the more layers are
obfuscated, the more the utility of the model is negatively impacted.
Note that a similar behavior is observed with other datasets and
models, although not presented here due to space limitation.
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(a) Model privacy (b) Model utility

Figure 5: Impact of protecting more than one layer on local

model privacy and utility – Purchase100 dataset based on a

neural network with 6 layers

5.5 Evaluation of Privacy Protection

In the following, we evaluate the effectiveness of DINAR and other
protection mechanisms in countering MIAs, i.e., minimizing the
attack AUC against both global FL model and clients’ local models.

†50% is the optimal attack AUC that could be reached by a random protection
approach, since determining the occurrence of a MIA is a binary decision.
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(a) Purchase100 – global model
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(b) Purchase100 – local models
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(c) Cifar-10 – global model
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(d) Cifar-10 – local models
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(e) Cifar-100 – global model

N
o
 d

e
fe

n
se

W
D

P

LD
P

C
D

P

G
C

S
A

D
IN

A
R

50

60

70

A
tt

a
ck

 A
U

C
 (

%
)

64 64
61

52

58

50 50

(f) Cifar-100 – local models
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(g) Speech Commands – global model
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(h) Speech Commands – local models
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(i) CelebA – global model
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(j) CelebA – local models
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(k) GTSRB – global model
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Figure 6: Privacy evaluation – The horizontal dashed line represents the optimal value of attack AUC (50%)

The attacker runs the MIA described in [41], on different datasets
and their underlying models. Figure 6 presents the average attack
AUC against global model and local models. The results show that
DINAR exhibits privacy protection rates reaching the optimal value
of 50% of attack AUC†, across all datasets, on both server and client
sides, indicating a strong level of privacy protection. Differential
privacy-based methods (i.e., WDP , LDP , CDP are less consistent,
often failing to mitigate attacks effectively. LDP and CDP reach
50% attack AUC for the Purchase100 dataset, but struggle with the
remaining datasets. GC fails in most cases, while SA reduces the
privacy leakage of local models to 50% but does not protect the
global model.

5.6 Cost of Privacy-Preserving Mechanisms

We evaluate the overheads induced by DINAR and various privacy-
preserving FL mechanisms on three key metrics including client-
side model training duration, server-side model aggregation du-
ration, and peak GPU memory usage for training and privacy
protection. In Table 3, we compare the costs of the different de-
fense mechanisms to the FL baseline using the GTSRB dataset with
VGG11 model, although other evaluations were conducted with
other datasets and models, resulting in similar observations.

The methods mitigating MIAs that operate on the client side
to preserve privacy, including LDP, WDP, GC, and SA, increase
client-side model training duration. We observe that differential
privacy-based methods can significantly increase training duration.
Despite Opacus framework improvements, there is still a significant
cost. In the worst-case scenario, WDP increases training time by
35%. Similarly, GC increases it by 21% due to gradient compression
operations, and SA by 21% due to client cryptographic operations.
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Figure 7: Trade-off between privacy and utility for local models in different FL defense scenarios

Table 3: Overhead of FL defense mechanisms compared to

FL baseline.

Training Duration

per FL round

on client side (s)

Aggregation

duration on

server side (s)

GPU Memory

usage on

client side (Mb)

WDP +35% +0% +257%

LDP +7% +0% +267%

CDP +0% +3000% +261%

GC +21% +0% +252%

SA +21% +4% +0%
DINAR (Ours) +0% +0% +0%

However, DINAR mitigates these overheads without compromising
performance. For aggregation time, CDP increases duration by up to
30 times due to noise addition to the aggregated parameters before
client transmission, while SA increases duration by 4% due to cryp-
tographic operations on the server side. In contrast, DINAR, LDP ,
WDP and GC show similar aggregation times to the FL baseline,
presenting a more efficient alternative.

Regarding GPU memory usage, differential privacy methods in-
crease usage by 267% due to noise storage, privacy budget manage-
ment, and aggregation buffer maintenance. GC increases memory
usage by 252% due to storing the difference between original and
compressed gradients. However, DINAR, which avoids noise ad-
dition and privacy budget management, has no significant impact
on GPU memory usage. Overall, DINAR optimizes cost metrics,

exhibiting performance similar to the FL baseline while preserving
data privacy without compromising cost performances.

5.7 Analyzing Privacy vs. Utility Trade-off

With the objective of empirically confirming DINAR’s ability to
balance both privacy and model utility in a FL system, we conduct
the experiments on different datasets. We run the same attack
scenario as presented in §5.5, introducing both privacy and model
utility metrics. Due to space limitations, we report the local models’
results only.

Figure 7 shows our results by plotting both metrics on two axes:
the x-axis represents the average local model accuracy, while the
y-axis plots the overall attack AUC we previously defined. In a
best-case scenario, the dot should be located in the bottom-right
corner of each plot, meaning that the effective defense mechanism
both preserves the model accuracy and decreases the attack AUC
to 50%. We observe that WDP , CDP and LDP achieve reasonable
attack mitigation but often reduce model utility. For example, on
the Purchase100 dataset, WDP reduces attack AUC by 2%, while
CDP reduces it by 28%; however, with a significant reduction of
model accuracy by 20%. In contrast, DINAR reaches the optimal
attack AUC, with a model accuracy drop lower than 1%. In most
cases, DINAR strikes a balance between privacy preservation and
utility, demonstrating the effectiveness of mitigating membership
information leakage in a fine-grained FL approach.
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(d) α = ∞ (i.e., IID)

Figure 8: Privacy leakage vs. model utility under different non-IID FL settings – GTSRB dataset

5.8 Privacy Protection under Non-IID FL

Settings

In the following, we consider different non-IID FL settings, and
evaluate their impact on the actual privacy protection achieved by
different protection methods. We vary the non-IID FL dataset dis-
tribution using the Dirichlet function [17] and its α parameter. The
lower the Dirichlet’s α value is, the more non-IID FL distribution is.
Figure 8 presents the results of the evaluation of different non-IID
distributions of the GTSRB dataset, and compares the utility and
the resilience of clients’ models to membership inference attacks
when different privacy protection methods are applied, as well as
when no defense is applied. Overall, for all cases except DINAR, the
lower the non-IID distribution is, the higher the attack success rate
is since the membership inference shadow model is able to better
learn on such data. In the case of DINAR, the privacy protection is
independent of the underlying non-IID setting and remains mini-
mal at 50%. When it comes to model utility, obviously, the lower
the non-IID distribution is, the higher the model utility is, although,
DINAR reaches the highest model accuracy when protecting the
model.

5.9 DINAR under Different Numbers of FL

Clients

We evaluate the impact of varying numbers of FL clients on the
actual performance of DINAR. Figure 9 reports the attack AUC
and the accuracy of client models, with different numbers of the
FL clients, comparing DINAR against the no defense baseline. In

each case, the whole Purchase100 dataset was divided into subsets
for the different FL clients. Obviously, the fewer the clients are,
the higher the client model accuracy is, since fewer clients implies
more data per client. However, and independently of the number of
clients, DINAR is able to counter MIAs with an attack AUC of 50%.

(a) Model privacy (b) Model utility

Figure 9: Model privacy and model utility under different

numbers of FL clients – Purchase100

5.10 Differential Privacy-Based Mechanisms

with Different Budgets

We evaluate the resilience of LDP to MIAs with several differential
privacy budgets [50]. We also compare LDP against DINAR, and
the case where no defense is applied, as presented in Figure 10.
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Obviously, small privacy budgets which apply higher noise provide
better privacy. However, in order to reach the best privacy protec-
tion of 50%, LDP drastically degrades the model accuracy to 13%.
Whereas, DINAR is able to keep a high model accuracy close to the
no defense baseline, while effectively protecting against MIAs.
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Figure 10: Privacy leakage vs. model utility under different

DP budgets – Purchase100

5.11 Ablation Study

In order to evaluate the impact of adaptive learning in DINAR
on the actual performance of the model, we conduct an ablation
study where DINAR uses other state-of-the-art optimization tech-
niques, such as Adam [16], ADGD [25], and AdaMax [16]. Figure 11
shows the effectiveness of model accuracy in DINAR. Furthermore,
although not shown in the figure, all considered optimization tech-
niques provide the same privacy protection level, i.e., an attack
AUC of 50%.
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Figure 11: Ablation study – Comparing DINAR that uses

adaptive training with variants of DINAR using other op-

timization techniques – Purchase100

6 CONCLUSION

We propose DINAR, a heuristic-based method to better protect the
privacy of FL systems against membership inference attacks both
for global FL model and client models.

DINAR follows a simple yet effective fine-grained approach that
consists in protecting more specifically the model layer that is

the most sensitive to membership privacy leakage. This provides
effective and non-intrusive FL privacy protection. Furthermore, DI-
NAR compensates for any potential loss in model accuracy through
the use of personalized FL models and adaptive gradient descent,
thereby maximizing model utility. We empirically evaluate the pro-
posed method using various widely used datasets and different
neural network models, comparing it to state-of-the-art FL privacy
protection mechanisms. The results demonstrate the effectiveness
of DINAR in terms of privacy, utility, and cost. Future research
directions include investigating DINAR’s resilience against other
privacy threats, such as property inference attacks and model in-
version attacks.
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A APPENDIX – DETAILED DESCRIPTION OF

EVALUATION METRICS

Attack AUC. The attack success rate on a given model measures
the percentage of successful MIAs conducted by an adversary. The
attack AUC (Area Under the Curve) is a single value that measures
the overall performance of the binary classifier implementing MIAs.
The AUC value is within the range [50%–100%], where the mini-
mum value represents the performance of a random MIA attacker,
and the maximum value would correspond to a perfect attacker. The
attack AUC is a robust overall measure to evaluate the performance
of MIAs because its calculation involves all possible attacker’s bi-
nary classification thresholds. Since the weakest (i.e., most naive)
MIA attacker would reach a minimum attack AUC of 50%, the best
defense against MIAs would approach that optimal value of attack
AUC of 50%. Thus, we use attack AUC as a means to evaluate the
privacy of a model.

Overall Model Privacy Metric. In a FL system that consists of a
global FL model θ and N client models θ1, . . . ,θN , we define two
privacy metrics. The first metric measures the privacy leakage from
the global model θ , and the second metric assesses the local privacy
from the client side by evaluating the average privacy leakage from
all clients’ local models. Given the function FAUC for computing
the attack AUC of a model, the local model privacy of the FL system
is computed as follows: ∑N

i=1 FAUC (θi )

N

Overall Model Utility Metric. We evaluate the utility of a pro-
tected model by measuring its accuracy, namely the ratio of cor-
rectly classified instances to the total number of instances. Con-
sidering DINAR’s approach for protecting FL clients’ models, we
consider the average of accuracy of clients’ protected models. Given
N clients, θi the model of each Clienti , and FAcc the function that
calculates accuracy of a model, the overall model utility metric is
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as follows: ∑N
i=1 FAcc (θi )

N

Cost-Related Metrics. We also evaluate the additional costs that
can be induced by a privacy-preserving FL mechanism, both in
terms of execution time and memory usage. We measure the neces-
sary time for a client to train a model during a FL round. We also
measure the necessary time for the FL server to perform aggrega-
tion of client model updates. Finally, we measure the memory used
by a client during model training.
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