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A B S T R A C T 

We introduce a no v el technique to mitigate the adverse effects of atmospheric turbulence on astronomical imaging. Utilizing a 
video-to-image neural network trained on simulated data, our method processes a sliding sequence of short-exposure ( ∼0.2 s) 
stellar field images to reconstruct an image devoid of both turbulence and noise. We demonstrate the method with simulated and 

observed stellar fields, and show that the brief exposure sequence allows the network to accurately associate speckles to their 
originating stars and ef fecti vely disentangle light from adjacent sources across a range of seeing conditions, all while preserving 

flux to a lower signal-to-noise ratio than an average stack. This approach results in a marked improvement in angular resolution 

without compromising the astrometric stability of the final image. 

Key words: methods: data analysis – methods: observational – techniques: image processing – software: simulations –
turbulence – atmospheric effects. 
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 I N T RO D U C T I O N  

odern astronomy demands data of unparalleled precision and 
esolution to further its insights and disco v eries. In their pursuit
f this goal, astronomers often wrestle with the challenges im- 
osed by the Earth’s atmosphere. Due to random fluctuations in 
ressure, temperature, and wind speed, turbulence arises in the 
tmosphere along with a stratified refractive index distribution. The 
apidly varying nature of these fluctuations causes the wavefront 
f incoming light to be dynamically distorted, leading to the 
winkle of starlight. Short exposure images reveal the starlight 
o be composed of speckles with randomly varying shapes and 
ositions around a central point. As a result, long exposures lead 
o the degradation of image resolution and the o v erall effect can
e framed as a blurring operation from a bell-like point spread 
unction (PSF). Atmospheric turbulence thus causes a significant 
oss in the spatial resolution of astronomical images and is a 
ajor impediment to obtaining high-quality imaging data (Roddier 

981 ). 
The only way for a ground-based telescope to combat turbulence 

s by recording its effects in real-time and using the information 
rom these snapshots to mo v e the speckles back to a central
oint. Adaptive optics (AO) is one such method that has emerged 
 E-mail: spencer.bialek@gmail.com (SB); emmanuel.bertin@universite- 
aris-saclay.fr (EB) 

h  

e  

s  

2024 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. Th
ommons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whic
rovided the original work is properly cited. 
s a revolutionary tool to counteract these disturbances, enabling 
elescopes to achieve near diffraction-limited observations (Beckers 
993 ; Hardy 1998 ). AO systems include a wavefront sensor to
easure the wavefront distortions, from a laser or natural guide 

tar, caused by the atmosphere, and then compensate for these 
istortions, typically with a deformable mirror, on millisecond time- 
cales. The performance of AO has seen remarkable impro v ements
 v er time, with modern systems capable of delivering images
ith resolutions that ri v al those from space telescopes (Davies &
asper 2012 ). 
Ho we ver, AO is not without its limitations. Traditional AO systems

ften have a limited field of view, correcting only a small region
round the guide star. Their ef fecti veness is also contingent on the
resence of a bright guide star or the use of artificial laser guide
tars, limiting where and when they can be used. To address these
imitations, modern AO systems have evolved to incorporate ad- 
anced techniques such as multi-conjugate adaptive optics (MCAO) 
nd ground-layer adaptive optics (GLAO). MCAO uses multiple 
eformable mirrors conjugated to specific layers of the atmosphere 
o correct o v er a wider field of view, while GLAO aims to provide
 uniform correction o v er a wide field by primarily correcting the
urbulence close to the ground (Johnston & Welsh 1994 ; Rigaut,
llerbroek & Flicker 2000 ; Tokovinin 2004 ). While these systems
av e achiev ed impressiv e corrections o v er wider fields (e.g. Massari
t al. 2016 ; Abdurrahman et al. 2018 ), the field of view still remains
ignificantly smaller compared to what is achie v able with uncor-
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ected modern imaging fields, and there are additional challenges
elated to the cost and complexity of implementing and maintaining
dvanced AO systems. Time o v erheads during observations are also
ften an issue. 
An alternative method that has gained traction in the astronomical

ommunity is high cadence imaging, in particular popularized with
he ‘lucky imaging’ technique. Lucky imaging capitalizes on the
ntermittency of turbulence and the brief moments of atmospheric
tability. By taking a rapid series of short-exposure images, only the
harpest frames – those taken during moments of optimal seeing
onditions – are selected. These ‘lucky’ frames are then aligned
nd combined to produce a single high-resolution image. While
ucky imaging can achieve impressive resolutions over wide fields
Mackay et al. 2018 ), especially for brighter targets, its ef fecti veness
s inherently tied to the whims of the atmosphere. In poor seeing
onditions, the probability of capturing lucky frames decreases,
aking the technique less ef fecti v e (F aedi et al. 2013 ). 
Another popular seeing mitigation technique using high cadence

maging is fast guiding, which focuses on compensating the image
ittering caused by atmospheric turbulence. This is only ef fecti ve in
he regime where the tilt component of the wavefront distortions
utweighs the sum of all other contributions to the total phase error
udget, that is, when the PSF features a dominant speckle which
an be used to track and compensate for random image motions
n the focal plane. In practice, the correction is most ef fecti ve for
elescopes with apertures ≈3–4 times the Fried parameter (Fried
966 ; Young 1974 ). The compensation may be done using, e.g. a
ip-tilt mirror (e.g. McClure et al. 1989 ), 2D synchronous charge
ransfers (Tonry, Burke & Schechter 1997 ), or shift-and-add stacking
f short exposures (Bates & Cady 1980 ). In the regime where the
SF features several speckles, and where a sufficiently bright star

s available inside the region of interest, one may also consider
olographic image reconstruction (Sch ̈odel et al. 2013 ). 
In all cases of fast guiding, the correction remains only ef fecti ve

 v er a limited solid angle around the reference star(s) (isokinetic or
soplanatic disc, depending on the type of correction). The diameter
f the disc depends on the altitude of the turbulent layer and ranges
rom a degree or more for the ground layer down to a few arcseconds
or the highest layers. Hence in practice this type of method is only
pplicable to small patches individually, and correcting apparent
otions o v er a wide field-of-view requires adjusting a ‘rubber’ focal

lane model (Kaiser, Tonry & Luppino 2000 ), which consists of
 distorted virtual pixel grid whose deformations are continuously
ontrolled by a number of guide stars o v er its surface. 

As the field of astronomical instrumentation continues to push the
oundaries of observational capabilities, there is a pressing need for
ore versatile and cost-ef fecti ve solutions that can operate under
 broader range of conditions. With the rapidly evolving landscape
f digital technology, there is a growing opportunity for machine
earning (ML) methods to meet these demands and help fill in some
f the gaps of AO and lucky imaging systems. 
ML has already been successfully employed to mitigate at-
ospheric turbulence effects in long-range imaging applications

Nieuwenhuizen & Schutte 2019 ; Vint et al. 2020 ; Hoffmire et al.
021 ; Zhang et al. 2024 ). These methodologies primarily rely on
raining ML algorithms on a collection of artificially distorted
mages, enabling them to predict the known ground truth and rectify
urbulence-induced aberrations, though there are other methods
hich attempt to accomplish this in an unsupervised way (e.g. Li

t al. 2021 ). In essence, ML can be used as a digital counterpart
o lucky imaging, where instead of relying on elusive high quality
xposures, algorithms infer the turbulence-free image from a video
NRAS 531, 403–421 (2024) 
equence of short exposures. This ‘DanceCam’ approach, as we call
t, offers the potential to consistently produce sharp, high-resolution
mages, even in less-than-ideal seeing conditions and with a more
fficient use of telescope time. 

Despite the success in long-range imaging, the adaptation and
pplication of ML techniques to turbulence in astronomical images
emains largely uncharted, presenting a promising frontier for future
esearch. The uniqueness of astronomical imaging poses specific
hallenges and requirements that differentiate it from long-range
maging. Characteristics like the extreme range of object brightness,
bject sizes and scales, and the requirement for ultra-high resolution
nd precision measurements, make astronomical imaging a domain
here a distinct approach is required (Tyson & Frazier 2022 ). 
In this paper, we present a no v el method to combat the deleterious

ffects of atmospheric turbulence in astronomical images using ML
rained on simulations of turbulent and noisy video-streams of stellar
elds. Section 2 outlines the method used to simulate atmospheric

urbulence and the ML methods used in this study. Section 3 describes
oth how the simulated data sets were created and how real test data
ere collected from the C2PU telescope. Section 4 is an o v erview of

he main results from e v aluating the proposed method on simulated
nd real data. Section 5 summarizes the strengths and limitations of
he proposed method, and concluding remarks are in Section 6 . 

 M E T H O D S  

.1 Simulating atmospheric turbulence 

e implement a variation of the ‘split-step’ method (e.g. Chatter-
ee & Mohamed 2014 ) for simulating the propagation of a wavefront
hrough the atmosphere, in which the atmosphere is decomposed
nto several distinct layers which perturb the wavefront as it passes
hrough. This section describes the theoretical framework used for
he split-step simulations. 

The Kolmogorov theory of turbulence (Kolmogorov 1941a , b ) was
ne of the first models used for describing the statistical properties of
tmospheric turbulence (Frisch & Kolmogorov 1995 ). It assumes that
he turbulence is isotropic, homogeneous, and fully developed, which
eans that the turbulence has reached a statistically steady state. The
olmogorov model is characterized by a power-law scaling of the

patial frequency spectrum of the turbulence, and the refractive-index
ower spectral density is given by: 

 n = 0 . 033 C 

2 
n k 

−11 / 3 for 
1 

L 0 
� k � 1 

l 0 
, 

here L 0 is the outer scale, i.e. the average size of the largest eddies,
 0 is the inner scale, i.e. the average size of the smallest eddies, C 

2 
n 

s the refractive index structure constant, which is a measure of the
trength of the turbulence, and k is the angular spatial frequency.
he spatial frequency spectrum in the Kolmogorov model has a
ower -law beha viour with an exponent of −11/3, which means
hat high spatial frequencies are strongly attenuated by atmospheric
urbulence. 

There exist more sophisticated models which include inner-
cale and outer-scale factors to impro v e fits between theory and
xperiment. In the modified von K ́arm ́an model, for example, the
efractiv e-inde x power spectral density is given by: 

 n = 0 . 033 C 

2 
n 

exp ( −k 2 /k 2 m 

) 

( k 2 + k 2 0 ) 11 / 6 
, 

here k m = 5.92/ l 0 and k 0 = 2 π / L 0 . The modified von K ́arm ́an
odel is used in the atmospheric turbulence simulations in this study
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Figure 1. An example of the phase screens used in the simulation pipeline. 
F or ev ery simulated video sequence, each layer is initialized with a different 
r 0 and wind speed to account for varying seeing conditions. 
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ecause it provides a more realistic description of the statistical 
roperties of the turbulence than the simpler Kolmogorov model, at 
he expense of more free parameters. 

Atmospheric turbulence is usually modelled using phase screens. 
 phase screen is a realization of the 2D random phase distortion field

ntroduced by turbulence at a particular altitude. In the modified von 
 ́arm ́an model, the statistical properties of the phase power spectral
ensity are given by 1 : 

 φ = 0 . 023 r −5 / 3 
0 ( f + 1 /L 

2 
0 ) 

−11 / 6 exp ( −1 . 126 l 2 0 f ) , (1) 

here f is the frequency in cycles/m, and r 0 is the Fried parameter,
hich represents the size of the region over which the wavefront 
istortion due to atmospheric turbulence is roughly constant. r 0 , L 0 ,
nd l 0 may differ from layer to layer. Fig. 1 shows an example of the
hase screens computed in our simulation software. 
To calculate the impact of the phase screens on the wavefront of

he light, we leverage the mathematical framework of Fourier optics 
n the Fresnel regime to describe the propagation of light through a
eries of planes on the line of sight, starting from the highest altitude
ayer. 

In the case of atmospheric turbulence, the i th layer carries a phase
creen represented by the 2D phase distribution φi ( x , y ), where x
nd y are the spatial coordinates on the plane. This phase screen
nteracts with a monochromatic incident wavefront, characterized 
y a complex amplitude W i ( x , y ), to generate the amplitude of the
mergent wavefront 

˜ 
 i ( x , y ) = W i ( x , y ) exp jφi ( x , y ) . (2) 

In the Fresnel (paraxial) approximation, the distorted wavefront is 
ropagated to the next layer at distance d = | z i + 1 − z i | by convolving
ith the impulse response of free-space propagation: 

 i+ 1 ( x , y ) = h i ( x , y , | z i − z i+ 1 | ) ∗ ˜ W i ( x , y ) , (3) 

here 

 ( x , y , d) = 

e 2 jπ d 
λ

jλd 
exp jπ

x 2 + y 2 

λd 
, 
 See e.g. Schmidt ( 2010 ) for the full deri v ation. 

T  

R
f

 i the altitude of the i th layer and λ the wavelength. ( 3 ) is more
onveniently computed in its ‘angular spectrum’ form in Fourier 
pace (Schmidt 2010 ): 

W i+ 1 ( f x , f y ) = H i ( f x , f y ) F 

˜ W i ( f x , f y ) , (4) 

ith 

 ( f x , f y , d) = e 2 jπ d 
λ e −jπλd( f 2 x + f 2 y ) , 

here f x and f y are the spatial frequencies on the plane. 
To mitigate aliasing effects in Fresnel propagation, we apodize 

he incident planewave from the distant point source using a cosine-
apered (Tukey) radial window (e.g. Harris 1978 ), with inner and
uter diameters 1.5 D and 2 D , respectively, where D is the diameter
f the telescope entrance pupil. 
After cascading through n atmospheric layers, the simulated 

avefront reaches the telescope where the formalism remains the 
ame except that pupil functions replace exp j φi ( x , y ) in ( 2 ), first with
 circular obstruction with diameter D 

′ by the secondary mirror or
rime focus: 

 n + 1 ( x , y ) = 

{ 

1 , if x 2 + y 2 ≥
(

D 

′ 
2 

)2 

0 , otherwise 
, 

and finally by the circular windowing from the primary mirror. 

 n + 2 ( x , y ) = 

{
1 , if x 2 + y 2 ≤ (

D 

2 

)2 

0 , otherwise 

Assuming perfect optics, the (incoherent) optical PSF on the focal 
lane is obtained by taking the square modulus of the inverse Fourier
ransform of the complex wavefront amplitude on the entrance pupil: 

SF ( x , y ) = 

∣∣∣∣
∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

˜ W n + 2 ( x 
′ , y ′ ) e 2 jπ

(
x x ′ + yy ′ 

λF 

)
d x ′ d y ′ 

∣∣∣∣
2 

, 

here F is the ef fecti ve focal length of the instrument. The PSF de-
cribes the response of the telescope and atmosphere to a point source
bject, and can be used to estimate the resolution of the imaging
ystem. Finally, the PSF is convolved with the intra-pixel response 
unction, which we assume to be a perfect 2D boxcar the size of the
amera pixel. Fig. 2 shows what the PSF of a star looks like when
maged with a 1 m aperture telescope through an atmosphere with
ifferent strengths of turbulence (characterized by r 0 in equation 1 ). 
The images are sampled at the camera pixel resolution, and initially 

enerated noiseless. A spatially constant sky background is added 
nd a constant gain factor is applied. Finally, realizations of noisy
mages are generated following a Poisson–Gaussian mixture repre- 
enting the shot noise of the collecting instrument plus stationary 
hite noise from the readout electronics. 
The entire simulation pipeline is written with PYTORCH so that 

PUs could be maximally utilized with F ast F ourier Transforms
Brigham & Morrow 1967 ). This results in the capability to render
150 000 PSFs per second, which is a couple orders of magnitude

aster than other similar implementations (e.g. Hardie et al. 2017 ).
aximizing efficiency in the simulation pipeline is required because 

he data sets we generate contain hundreds of thousands of frames. 

.2 Deep learning inference of turbulence-free images 

.2.1 Model ar chitectur e 

he cornerstone of our proposed method is the application of the
esidual U-Net, a variant of the traditional U-Net architecture known 

or its proficiency in semantic segmentation and image reconstruction 
MNRAS 531, 403–421 (2024) 
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M

(a)

(b)

Figure 2. The PSFs of the same star imaged with a 1 m telescope in (a) mild 
turbulence ( D / r 0 ≈ 3) and (b) strong turbulence ( D / r 0 ≈ 7). In the case of 
mild turbulence, the PSF is mostly concentrated in the centre with a clear Airy 
pattern around it, whereas with the strong turbulence, several Fried parameter 
length scales can fit within the area of the telescope’s aperture and so the light 
is distributed away from the centre in multiple ‘speckles’. 
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asks (Ronneberger, Fischer & Brox 2015 ; C ¸ i c ¸ek et al. 2016 ; Yao et al.
018 ; Zhang, Liu & Wang 2018 ; Mizusawa et al. 2021 ). The model
sed in this study, developed by the Medical Imaging Computing
roup at the German Cancer Research Center (MIC-DKFZ) 2 , is
art of a widely-used Python package used for deep learning-based
iomedical image segmentation (Isensee et al. 2021 ). It was selected
ased on its unique architecture and inherent properties – detailed
elow – that make it suitable for our image reconstruction task. 
A U-Net can be defined as a combination of a contracting path

encoder) and an e xpansiv e path (decoder), bridged by a bottleneck
hich helps us to reduce the computational complexity of the model.
he encoder performs consecutive convolutions and downsampling

o output feature maps , learning the contextual information while
ecreasing the spatial dimension of the input. The e xpansiv e path,
n the other hand, performs transposed convolutions on the feature
aps and then concatenates them with the corresponding feature
aps from the encoder (skip connections), allowing the decoder to
erge high-level features with preserved local information. 
The U-Net is composed of stages, each containing a certain

umber of blocks . Each block includes convolutional layers with
cti v ation and normalization functions – in our case, the leaky
ariant of the Rectified Linear Unit ( LeakyReLU ) acti v ation and
nstance normalization ( InstanceNorm ) were used, noting that
NRAS 531, 403–421 (2024) 

 https:// github.com/ MIC-DKFZ/ dynamic-network-architectures 

 

s  
nstanceNorm was chosen for its ability to perform well on
maller batch sizes (Kolarik, Burget & Riha 2020 ), which we were
imited to due to GPU memory constraints. The encoder block
educes the spatial dimension while increasing the feature channels
rogressively, and the decoder block does the inverse operation. In
ur U-Net, we used two blocks per stage. 
The residual U-Net uses residual blocks in the encoder to help

lle viate the v anishing gradient problem (He et al. 2016 ; Borawar &
aur 2023 ) and allow for deeper networks. For an input feature map
 , each residual block in the architecture performs two convolutional
perations F 1 and F 2 , separated by a LeakyReLU acti v ation func-
ion. The output of these operations is added to the input feature
ap, and another LeakyReLU function is applied. This can be
athematically represented as: 

 = g 2 ( F 2 ( g 1 ( F 1 ( X))) + W ( X)) , (5) 

here F 1 and F 2 denote 2D convolutional operations, W is a trans-
ormation operation that adjusts the input feature map’s dimensions
nd/or number of channels to match F 2 ( g 1 ( F 1 ( X ))), and g 1 and g 2 
epresent the LeakyReLU functions. Each layer consists of two such
esidual blocks along with down- or upsampling operations. 

Following the principle of deep supervision (Wang et al. 2015 ; Li
t al. 2022 ), which enables the backpropagation of gradients from the
eeper layers of the network to the earlier layers more ef fecti vely, our
pproach compares the output from each decoder block with a cor-
espondingly downsampled version of the ground truth. The loss is
alculated for each comparison, and the o v erall loss is determined by
 weighted sum of these individual losses; the weight assigned to each
ownsampled image is set to be half of that of the preceding image
n the sequence. The entire network is shown schematically in Fig. 3 .

.2.2 Tr aining configur ation 

uring training, as a batch of data is loaded, the background is
rst subtracted by iteratively determining the median and excluding
oints that deviate more than three times the mean absolute deviation
MAD) from the median. Such an approach ef fecti vely minimizes
he impact of outliers, such as stars, in the estimation of a statistically
obust background level, and ensures the varied background levels
f any test data will not negatively influence predictions. 
When working with image reconstruction or denoising, it is often

eneficial to transform the input data such that the noise level is
pproximately constant across the image. This can help algorithms,
ike those used in U-Net architectures, to perform more consistently.

e performed experiments with cross-validation on various scaling
ransformations. After e v aluating the results, in particular the flux
onservation, we converged on the Anscombe transformation for
oth the input and target images. Not only does it help stabilizing
he variance, making the noise homoscedastic in the Poisson regime,
ut it also amplifies signals in dim regions, enhancing the visibility
f faint features. The transformation is given by: 

 ( x) = 2 

√ 

x + 

3 

8 

For its inversion, we adopt the closed-form approximation of the
xact unbiased inverse as defined in Makitalo & Foi ( 2011 ): 

 

−1 ( x ) = 

1 

4 
x 2 + 

1 

4 

√ 

3 

2 
x −1 − − − 11 

8 
x −2 + 

5 

8 

√ 

3 

2 
x −3 − 1 

8 

The application of the Anscombe transform in the context of deep
upervision, particularly during downsampling of the target frames,

https://github.com/MIC-DKFZ/dynamic-network-architectures
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Figure 3. The DanceCam Residual U-Net architecture. A set of simulated short-exposure video streams of stellar fields – with turbulence and noise – along 
with their corresponding ground truth frames – with no turbulence or noise – is used to train the model. Instead of a single output, the model additionally has 
outputs from each stage in the decoder which are compared to downsampled versions of the ground truth using a weighted mean-squared error (MSE) loss 
function. Once trained, either a simulated or real video stream can be used as input and only a single (not downsampled) inferred image is retrieved. 
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resents a methodological concern. Downsampling is typically more 
f fecti ve on linear, untransformed data, yet our approach involves 
ownsampling on Anscombe-transformed data. This raises ques- 
ions about the potential need for an alternative method, such as
ownsampling untransformed data and then comparing it to de- 
ransformed outputs from the U-Net, while also considering the 
mplications for the U-Net decoder’s handling of dynamic range 
ransformations at each resolution. Alternative strategies will be 
onsidered in future iterations of the proposed method; as it stands,
he current implementation was deemed sufficient. 

For the optimization process, we employed the adaptive moment 
stimation (Adam) optimizer, a popular first-order stochastic gradient 
escent algorithm using estimates of the first and second moments 
f the gradients (Kingma & Ba 2014 ). In our implementation, the
efault values were used such that the initial learning rate was set to
.001, and beta values of 0.9 and 0.999 were used for the exponential
ecay rates of the gradient and squared gradient, respectively. 

To expedite the training process, we utilized multiple GPUs –
pecifically 32GB NVIDIA Tesla V100s – made available by the 
igital Research Alliance of Canada on their cluster. On average, 

ach epoch took approximately 14 min to complete (noting that 
w
 forward pass of a single example took fractions of a second).
he mean-squared error (MSE) loss was used, and a learning rate
cheduler was incorporated which adjusted the learning rate when 
he training MSE loss plateaued. 

Since we were particularly concerned with the image reconstruc- 
ions conserving the flux of stars, SExtractor (Bertin & Arnouts 
996 ) was run on the inferred and ground truth images in the
alidation set after every epoch to track the magnitude estimates 
f detected stars. The final model was chosen such that the mean
bsolute error between the magnitudes of the inferred and ground 
ruth stars was minimized. We note that astrometric precision was 
ot a criterion during training, but including it in future iterations of
he method may help impro v e o v erall astrometric performance. 

 DATA  

.1 Synthetic data generation 

ach stellar field of a video sequence in a training data set was created
ith one of two methods: 
MNRAS 531, 403–421 (2024) 
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3 For the sake of consistency across the vastly different regimes of source 
density and image quality, in this work we used fixed, conserv ati ve source 
extraction settings for SExtractor except where otherwise noted. 
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(i) Homo g eneous field : The number of stars to be simulated is
niformly sampled from [3, 2000] and placed on a given uniform
andomly generated x and y coordinates. An exponential law is used
o generate magnitudes for each star: p( m ) ∝ 10 α( m −m max ) , where
 max was 21 in this study and α (the slope of the differential source

ounts, i.e. dlog N / dmag) was 0.4. The inclusion of homogeneous
elds helps the model generalize better by learning to handle a diverse
et of scenarios with uniform sampling of dense and sparse fields. 

(ii) Realistic field : To include more realistic priors in our simula-
ion pipeline, we generate the fields according to the distributions of
eal star clusters of the Milky Way. The catalogue from Kharchenko
t al. ( 2013 ) includes the sky coordinates of thousands of clusters,
hich we use to query the Gaia DR3 data base (Prusti et al.
016 ; Vallenari, Brown & Prusti 2022 ) to obtain the RA, Dec, and
hot g mean mag values of each star. A random offset in both
A and Dec is uniformly sampled from [ −FO V /2, FO V /2], where
OV is the field-of-view of the telescope, and applied to get a shifted

mage, i.e. a more diverse training set. 

The data set therefore contains both randomly generated and more
ealistic stellar fields, noting that the inclusion of extended objects
like galaxies) will be included in future iterations of the method (see
ection 5.1 ). 
We generated a training data set containing 40 000 12 s video

equences; 12 s was chosen as a compromise between GPU memory
onstraints and collecting enough information about the turbulence
nd faint stars. Each frame is 256 ×256 pixels and, to match the
roperties of the C2PU Telescope (see Section 3.2 ), we used a 1-m
iameter telescope aperture, a central wavelength of 650 nm, a pixel
cale of 0.235 arcsec pixel −1 , a readout noise standard deviation of
 e −, and a sampling rate of 5.25s −1 (i.e. sampled every ∼200 ms)
noting that while this sampling rate is generally insufficient at

apturing the quickly evolving turbulence, it does offer an advantage
f having higher signal-to-noise in each frame, and in any case we
lan on increasing the sampling rate in future iterations of the method.
n each video sequence, the Fried parameter and wind speeds for each
ayer of the atmosphere are sampled from a normal distribution.
long with each video sequence, we generated the corresponding
round truth frame in which we disabled contributions from the
tmosphere and any sources of noise in our simulation pipeline. The
ata sets were split 90 per cent/10 per cent into training/validation
ets. 

.2 C2PU telescope 

he Centre P ́edagogique Plan ̀ete et Univers (C2PU) facility (Bend-
oya et al. 2012 ) is located on the Plateau de Caussols at an ele v ation
f 1260 m, approximately 50 km from Nice in southern France. The
ite benefits from good seeing in summer time, with a median of
.06 arcsec, down to 0.8 arcmin at the end of the nights (Aristidi
t al. 2020 ). 

On the night of 2022 May 27, we collected around 60 s of short-
xposure (200 ms) images of the globular cluster M92 in the SDSS
 bandpass from the wide-field camera installed at the prime focus
f the C2PU Omicron 1.04 m telescope. No guiding was used as the
racking accuracy of the telescope allows for unguided exposures up
o a few minutes without image degradation. The wide field camera
rovides a 37.6 arcmin × 25.2 arcmin field of view with excellent
mage quality, through a three-lens Wynne coma corrector, at a
esulting F/3.17 focal ratio. One important feature of this optical setup
or our project is its relati vely lo w obstruction (30 per cent linear)
or a wide-field instrument, which preserves more than 80 per cent
NRAS 531, 403–421 (2024) 
f the central peak intensity of the telescopic point spread function,
ompared to an unobstructed aperture. The camera at the C2PU
micron prime focus is a QHY600Pro equipped with a Sony IMX
55M sCMOS sensor. Despite its modest quantum efficiency at
edder wavelengths, this generation of sensors has pro v en to be
ompetitive for quantitative astronomy (Alarcon et al. 2023 ; Betoule
t al. 2023 ). The sequence images have a size of 1024 ×1024 pixels
nd a pixel scale of 0.235 arcsec. 

 EXPERI MENTAL  EVALUATI ON  

isually, the proposed method does an excellent job at taking in
 short sequence of turbulent images and producing a clear, sharp,
oise-, and turbulence-mitigated image. For example, Fig. 4 shows
he massive improvement – compared to temporally averaging the
equence – in image quality of frames inferred from sequences with
ood (0.7 arcmin) and bad (1.4 arcmin) seeing conditions. Some stars
hich are barely visible (or not visible at all) in the averaged frame

ppear quite clearly in the inferred frame. 
Validating the method quantitatively in addition to qualitatively,

o we ver, required analysing the performance metrics of a large
umber of simulated observations, as detailed in the following
ection. 

.1 Quality assurance 

o quantitatively assess the performance of the Residual U-Net,
 series of quality assurance tests were implemented. These tests
ere designed to e v aluate the impro v ements in image quality, flux

onservation, and astrometric stability in comparison to simply
tacking the images. 

A 30-s video sequence of a stellar field was simulated following the
andom field process described in Section 3.1 , including the random
ampling of Fried parameters and wind speeds for each atmospheric
ayer. We iteratively step along the sequence one frame at a time and
artition a 12-s subset to obtain an inferred U-Net frame until a full
equence of inferred frames was collected. The inferred sequence
 as stack ed by taking the mean along the temporal dimension,

esulting in a single frame representing a 30-s inferred observation.
he same 30-s sequence was used to obtain a single averaged frame.
e additionally saved the ground truth frame (simulated with no

urbulence or noise) for each sequence. The entire procedure was
epeated 500 times, resulting in a ‘quality assurance’ data set of 500
nferred frames, 500 averaged frames, and 500 ground truth frames. 
SExtractor was then used on all of the frames in the data set

o identify the stars 3 and calculate for each one the magnitude (by
sing an aperture diameter of 10 pixels to measure the total flux), the
ngular diameter (in terms of the D50, which measures the diameter
t which 50 per cent of the light is contained within an aperture),
nd the x-position, for the purpose of showing flux conservation,
mpro v ed image quality, and astrometric stability, respectively.
ig. 5 shows the residuals of these estimates, as a function of
agnitude, on the inferred and averaged frames compared to the

round truth frames. 
The magnitude estimates of stars from the inferred frames can be

een to have overall a smaller dispersion throughout the magnitude
ange than stars in the averaged stack [which is evidenced by the
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Figure 4. Two examples highlighting the ability of the proposed method to remo v e the effects of atmospheric turbulence and produce a sharp, clear image. 6-s 
sequences of random stellar fields were simulated with (a) 0.7 arcmin seeing and (b) 1.4 arcmin seeing, and the ground truth, temporally averaged sequence, and 
inferred frames are shown here. 

Figure 5. A series of quality assurance tests were made to validate the image reconstructions made by the U-Net. Hundreds of 30-s simulated observations of 
random stellar fields, with varying seeing conditions, were created and two images were made for each example: a stack made from the U-Net inferred images 
and a simple averaged stack of the raw frames. SExtractor was run on each frame, along with their corresponding ground truth frame, to collect information 
about each detected star’s ( left panel ) magnitude – using a 10 pixel diameter aperture – to test for flux conservation, ( middle panel ) source sizes – defined as 
the diameter of the aperture within which 50 per cent of the light from a star is contained (D50) – to test for impro v ements in image quality, and ( right panel ) 
centroid coordinates, to test for astrometric stability. Shown here are the residuals of those metrics for the inferred stack (red circles) and simple averaged 
stack (blue triangles) when compared to the matching stars in the ground truth frames as a function of magnitude, along with their binned means and standard 
de viations (sho wn as error bars). Also sho wn are the computed means for ‘bad seeing’ and ‘good seeing’ subsets of the data ( > 1.2 arcmin and < 0.7 arcsec, 
respectively). The ‘f ainter f atter’ effect can be seen for the inferred stacks in the D50 figure, wherein the U-Net tends to smooth the fainter stars (see Section 5.1 
for a further discussion). 
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edian absolute deviation (MAD) being 0.01 arcsec–0.03 arcmin
ower across the seeing range]. It is also the case that the magnitude
esiduals are closer to ground truth for the inferred frames, but in
ractice this could easily be resolved by using an adaptive aperture
ize on the averaged frames; we emphasize the importance of the
agnitude residual plot is showing that flux is conserved in the

nferred frames with lower dispersion than for the averaged frames.
he lowered dispersion is also shown in the astrometric stability
lot, where the MAD is 1–3 mas less for the inferred frames than the
veraged frames, a very modest reduction but importantly there is
o apparent degradation in astrometric stability. The strength of our
roposed method is showcased in the angular diameter plot, where
he average D50 residual is a factor of 3 –4x lower in the inferred
rames than the averaged frames, and for bright stars can even be a
actor of about 8 × less. 

In all cases, the performance on the inferred frames gets worse
ow ards f ainter magnitudes: at a magnitude of 16, the standard
eviations for magnitude residuals and D50 residuals are 0.01 and
.07 arcsec, respectively, whereas at a magnitude of 19, the residuals
ncrease to 0.08 and 0.1 arcsec. It appears the U-Net tends to ‘smooth’
ainter stars, leading to a ‘fainter fatter’ effect (as opposed to the
ore common ‘brighter fatter’ effect for CCDs), further discussed

n Section 5.1 . 

.2 Test case: M92 

fter ensuring that the trained model performed well in conserving
ux, increasing image quality, and stabilizing the astrometry, it was

ime to task it with a more realistic scenario: inferring the turbulence-
ree image of the globular cluster M92. With the high stellar densities
n the core of the cluster, this would be a true test of our method’s
bility to disentangle the light from nearby stars and impro v e the
patial resolution. Testing was performed on both simulated data and
eal data obtained with the C2PU telescope. 

.2.1 Simulated data 

e began the test case of M92 with a simulated observation of it
30 seconds total @ 5.25 frames/second for a total of 160 frames) to
btain a baseline to compare to. A wide field of view ( ∼4 arcmin,
024 × 1024 pixels) was used to showcase the ability of our method
o perform on larger images than it was trained on. As described in
ection 3.1 , Gaia coordinates and magnitudes were used for each
tar. We set a maximum magnitude of G = 21, consistent with the
odel’s training parameters, leading to a total of ∼12 000 stars being

imulated. A relatively poor seeing of 1.36 arcmin was chosen to test
he method’s proficiency under suboptimal conditions. 

Since the model was trained on frames of size 256 × 256
ixels, the full 1024 × 1024 frames of M92 could not be used
s input. Instead, each frame was split into tiles of size 256 × 256
ith 50 per cent o v erlap, resulting in the full 1024 × 1024 ×160
ideo sequence being split into 49 o v erlapping sequences of size
56 × 256 ×160. As described in Section 4.1 , the U-Net was
sed on each of these sequences to produce a series of inferred
mages along the temporal axis which were then averaged together
o produce a single 256 × 256 inferred image, thereby reducing the
9 sequences of size 256 × 256 ×160 into o v erlapping inferred tiles
f size 256 × 256. In the final reconstruction, the o v erlapping re gions
f these tiles were blended smoothly: masks were generated for each
ile, consisting of a central region with full contribution (value 1),
nd edge regions with a linear gradient from 0 to 1, reflecting the
NRAS 531, 403–421 (2024) 

t  
e gree of o v erlap. The final image B at each pixel was reconstructed
y calculating the normalized weighted sum of the n o v erlapping

iles, expressed as B( x , y ) = 

∑ n 
i= 1 T i ( x ,y ) ·M i ( x ,y ) ∑ n 

i= 1 M i ( x ,y ) 
, where T i ( x , y ) and

 i ( x , y ) are the value and mask at position ( x , y ) in the i th tile,
espectively. This ensured a seamless integration of the tiles, with
he centre of each tile retaining its original value and the o v erlapping
dges merging smoothly, resulting in the final 1024 × 1024 inferred
mage. 

Fig. 6 shows the ground truth frame, the inferred frame, and the
emporally averaged frame, along with zoomed in images of the
entral region of M92 which show, with red circles, stars identified
ith SExtractor . It is visually clear that the inferred frame is far

harper and had significantly more stars identified than the averaged
rame, so a more quantitative analysis was conducted to confirm this.

Fig. 7 shows the relative number of stars identified by SExtrac-
or in both the inferred and averaged frames in bins of magnitude,
here true positives were defined as being no more than 2 pixels

way from the corresponding star in the ground truth frame. We note
hat the detection threshold for SExtractor was optimized on each
rame individually to maximize both the precision and reco v ery rate
f its star identification. For the averaged frame, the precision was
7.1 per cent (i.e. 2.9 per cent false positive rate), and 63.1 per cent
f stars were successfully reco v ered. In contrast, for the inferred
rame, the detection precision was 97.8 per cent (i.e. 2.2 per cent false
ositive rate), and 86.2 per cent of stars were successfully reco v ered,
erifying that substantially more stars were identified in the inferred
rame. 

To test for the impro v ements in image quality, the D50 measure-
ents from SExtractor were used and, because it is a more

ommon diagnostic metric in AO analyses, the Strehl ratio, S, was
alculated for each star according to Roberts Jr et al. ( 2004 ): 

 = 

I ( x = 0) ∑ 

I 

∑ 

P 

P ( x = 0) 
, 

here x is the position vector, I ( x = 0) is the maximum of the
easured PSF, P ( x = 0) is the maximum of the diffraction limited
SF, and 

∑ 

I and 
∑ 

P are computed o v er squares of size 10 × 10
ixels (centred on the coordinates extracted by SExtractor ) and
sed to normalize the ground truth PSF to have the same total
ntensity as the observed PSF. This Strehl ratio estimator tends to
e noisy due to the statistical noise and crowding, but we are more
nterested in relative impro v ements between the average and inferred
tacks. Fig. 8 shows how these values change o v er the magnitude
ange. Below a Gaia G magnitude of 17.5, the inferred stars have a
 × average reduction in D50 and an average of ∼6 × impro v ement
n Strehl ratio. Beyond a magnitude of 17.5, the performance on
nferred stars drops yet still maintains a 1.5–3 × impro v ement on
50 measurements, and 2–4 × impro v ement on Strehl ratios; again
e find that the model struggles with fainter stars, tending to smooth

heir PSFs. 

.2.2 C2PU telescope data 

ll of the steps in 4.2.1 were repeated for the real M92 data collected
y the C2PU telescope. Fig. 9 shows a comparison between the
round truth (simulated with Gaia coordinates and magnitudes),
nferred, and temporally averaged images of a 30 s observation of

92 containing 160 total frames of size 1024 ×1024. The zoomed in
reas of the central regions of M92 show that the brighter stars in the
nferred image appear substantially sharper, though there are clearly
ome spurious effects in the fainter parts; in the video stream of M92,
here were indications that an intermittently very turbulent ground
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Figure 6. Our simulation pipeline was used to create a 30 s video stream – 160 frames in total @ 5.25 frames s −1 – of the globular cluster M92 using Gaia 
positions and G magnitudes and a total seeing of 1.36 arcsec. Shown here is a comparison of the simulated ground truth, a stack made from inferred images, and 
a simple averaged stack of the frames. The circles indicate stars that were detected by SExtractor , using conserv ati ve detection settings. 
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M

Figure 7. SExtractor was run on the ground truth frame, inferred stack, 
and simple averaged stack of the simulated M92 shown in Fig. 6 . The stars that 
were identified in the inferred stack and averaged stack were matched to the 
stars in the ground truth frame (by ensuring their measured positions differed 
by less than 2 pixels), and shown here is the completeness of the detected 
stars as a function of Gaia G magnitude. Note that the false positive rate for 
both frames was ∼2 per cent, i.e. of all the stars SExtractor identified in 
the inferred and averaged frames, 2 per cent were not matched to those in the 
ground truth frame. 
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ayer was causing all the stars in the field to mo v e in lockstep by up
o a couple arcseconds, an effect which is not currently accounted
or in the simulations. This and other limitations, as discussed in
ection 5.1 , contributed to a decreased visual performance on real
ata. 
As for the number of stars correctly identified, Fig. 10 shows that

lightly more stars – throughout the entire magnitude range – were
ound in the inferred frame than the averaged frame ( ∼9.6 per cent
ersus ∼8.7 per cent of the total stars in the ground truth image),
o we ver the total number of stars recovered in either frame, as well
s the precision of the detections, depends on the detection threshold
sed in SExtractor . Fig. 11 shows the relationship between the
recision and total number of stars correctly identified as a function
f detection threshold, where it can be seen that better performance
a maximum of a few per cent more stars reco v ered for a given
recision) is achieved for the inferred frame. We also investigated
here the stars were being more readily identified in both images.
ig. 12 shows that the inferred image works particularly well at de-
lending the crowded central regions of M92, reco v ering about 3 ×
ore stars within 25 arcsec from the centre than the averaged image.
Finally, Fig. 13 sho ws quantitati vely ho w the D50 and Strehl ratio
easurements on the inferred and averaged images change across

he magnitude range. Again we find that, for the inferred image, the
erformance on brighter stars (G < 17) is enhanced, with an average
f 2.5 × reduction in D50 measurements and 5 × increase in Strehl
atio measurements. For fainter stars, the performance drops in a
imilar manner as in the case of a simulated M92, leading to only
lightly decreased average PSF width than the brighter stars. 
NRAS 531, 403–421 (2024) 
The results from the analysis on the synthetic and observed M92
re summarized in Table 1 , including the results from using a smaller
emporal input context for training and testing the U-Net (described
n Section B ). Additionally, results from training on single temporally
veraged frames are discussed in Section A . 

 DI SCUSSI ON  

he proposed method introduces a no v el approach to handling
he challenges posed by atmospheric turbulence in astronomical
maging, especially when dealing with wide fields. By segmenting
he observed field into smaller overlapping tiles, producing an
nferred frame for each tile, and merging the inferred tiles, the
ethod allows for an effective mitigation of atmospheric turbulence

ffects in arbitrarily large images without compromising the quality
f turbulence correction. 
An important feature of the DanceCam approach is its indepen-

ence from the traditional reliance on guide stars, instead using the
nformation from the entire field to understand the turbulence prop-
rties. While AO systems are tethered to either natural or artificial
uide stars for measuring and correcting atmospheric distortions, our
ethod’s flexibility broadens its applicability, offering the potential

o correct turbulence even in regions where suitable guide stars might
e elusiv e. Moreo v er, the ability to analyse distortions in captured
mages paves the way for reverse-engineering the atmospheric layers
nd their respective turbulence properties. Such insights can be
eneficial for our understanding of atmospheric conditions and
efining observation strategies. 

Modern technological advancements further strengthen the effi-
acy of the method. With the requirement of short exposures to
apture the near real-time turbulence, most CCDs would produce
mages with too much readout noise, ef fecti vely dro wning out the
aint targets. The integration of sCMOS cameras, on the other hand –
enowned for their rapid readout speeds, reduced noise, and enhanced
uantum efficiency (Guidash et al. 2016 ; Zhang et al. 2020 ; Zhu et al.
022 ) – complements the turbulence mitigation technique. Modern
PUs, additionally, allow for an impressive processing speed; the

ime required to produce a single inferred frame from a fully trained
odel is mere fractions of a second, allowing for the correction of
 video stream comprising hundreds of short-exposure wide-field
mages in near real-time. 

The proposed method is also appealing due to its minimalistic
ardware requirements. Eschewing the intricate setups of traditional
O systems, which involve expensive deformable mirrors and
avefront sensors, as well as significant overheads, our approach is
redominantly software-centric. This orientation not only simplifies
ts implementation but also offers significant cost savings, making
t an attractive solution for budget-conscious observatories and
esearchers, and even amateur astronomers. 

.1 Limitations and known issues 

cknowledging the current limitations and exploring potential av-
nues for impro v ement of the proposed method is essential for
ts efficacy and ensuring its applicability in future astronomical
bservations: 

(i) Intermittent turbulence: One of the primary constraints is
he absence of intermittent turbulence in the current implementation.
ntermittent turbulence can introduce sporadic and unpredictable
istortions, which the method might not handle ef fecti vely in its
resent form. Interestingly, it could even enhance the method’s
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Figure 8. SExtractor was run on the inferred stack and simple averaged stack of the simulated M92 shown in Fig. 6 . Shown here are the distributions of 
the angular diameter of the aperture inside of which 50 per cent of the flux is contained (D50, left plot) and Strehl ratio estimates (right plot) of the detected 
stars as a function of Gaia G magnitude. 
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f fecti veness by occasionally providing ‘lucky frames’ in a sequence. 
 straightforward solution could involve incorporating dynamic 

hanges to r 0 for each atmospheric layer in the simulation pipeline. 
(ii) Motion blurring: Another limitation is the lack of mo- 

ion blurring implementation. In real-world scenarios, the shutter 
ollects light o v er a duration (e.g. 0.2 s), whereas the simulation
ipeline currently takes instantaneous snapshots at regular intervals. 
ddressing this could involve splitting each frame into N sub- 

rames, simulating turbulence at every sub-time-step, and a ver - 
ging the sub-frames together. This approach would ef fecti vely 
imulate an open shutter, offering a more realistic representa- 
ion. Alternatively, using shorter exposures could also address this 
imitation. 

(iii) Monochromatic light: The method’s current reliance on 
imulating monochromatic light simplifies the computational process 
ut o v erlooks chromatic aberrations introduced by atmospheric 
urbulence. Enhancing the simulation pipeline to co v er a broader 
and-pass of light could impro v e the method’s accuracy. 
(iv) Readout noise: In the current scheme, we assume that readout 

oise follows a Gaussian distribution. Ho we ver in sCMOS sensors
ach pixel has its own amplifier circuit, and therefore its own noise
haracteristics; some pixels are markedly noisier than others, and the 
 v erall histogram of a real uniformly illuminated sCMOS exposure 
s significantly non-Gaussian. 

(v) Rolling shutter: Today’s astronomical sCMOS sensors are 
sually operating in rolling shutter mode: lines of pixels are read 
nd reset in sequence. The efficiency of photon collection is thereby 
ptimized, but this has the inconvenience that two successive sensor 
ines are recorded at slightly different times. The maximum time 
ifference amounts to only a few milliseconds inside the current 
56 × 256 analysis windo w. Ho we ver this delay would reach
100 ms if distant parts of the full sensor were to be analysed jointly,

n which case it could not be neglected anymore. 
(vi) GPU constraints: Temporal context is currently limited 

ue to GPU memory constraints. Optimizing GPU usage, such as 
arallellizing the pipeline to distribute computational load across 
ultiple GPUs, could address this limitation. Additionally, as GPUs 
ontinue to technologically advance, the method’s capabilities will 
aturally expand. 
(vii) Only simulating stars: A major limitation of the method 

s that it is currently tailored to simulate stars only, excluding other
elestial objects like nebulae, cirri, galaxies, or planets. Integrating 
iverse light profiles and spatial structures associated with a variety 
f astronomical objects would enhance its scope and versatility. 
(viii) Transient objects: The current system does not handle 

ransient objects that appear temporarily and unpredictably, e.g. 
atellites or other moving objects, or objects that change in bright-
ess. These types of objects could be included in the simulation
ipeline. Alternatively , or additionally , owing to the high cadence 
ideo streams, frames containing transients of interest could be 
etected and saved for later processing using automated methods (e.g. 
abrera-Vives et al. 2017 ; Gieseke et al. 2017 ). Deleterious transients 

specifically telecommunications satellites) could be remo v ed before 
rocessing. This is indeed a major benefit of the video stream
pproach to observations, since with long exposures the best you 
an do is mask satellite streaks (e.g. Paillassa, Bertin & Bouy 2020 ).
ee Beskin et al. ( 2023 ) for a more in-depth look at the benefit of
ide-field, high cadence imaging for transient detection and analysis. 
(ix) High-volume data streams: Given our focus on wide fields 

nd short exposures, the method generates a significant volume of 
ata, which can be challenging to process and store efficiently. To
anage these massive data streams, it will likely be crucial to process

nd analyse the collected data in quasi-real-time using one or several
PUs, helping to filter and prioritize data for storage and detailed

xamination. 
(x) Circular stationarity of phase screens: In the current 

cheme, we initialize a static phase screen and ‘roll’ the values
long for each time-step, where the values at the edge roll o v er
o the opposite edge. This approach, while efficient, is not a problem
hen using short temporal contexts for training. Ho we ver, it could
ecome increasingly problematic when using longer video streams, 
s it introduces artificial periodicity and may not accurately represent 
MNRAS 531, 403–421 (2024) 
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Figure 9. The C2PU telescope was used to obtain a 30 s video stream – 160 frames in total @ 5.25 frames s −1 – of the globular cluster M92. Shown here is a 
comparison of the simulated ground truth using Gaia positions and magnitudes, a stack made from inferred images, and a simple averaged stack of the frames. 
The circles indicate stars that were detected by SExtractor using conserv ati ve detection settings. Note that some relatively bright stars are missing from the 
Gaia catalogue in these crowded areas. 
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Figure 10. SExtractor was run on the ground truth frame, inferred stack, 
and simple averaged stack of the real M92 shown in Fig. 9 . The stars that were 
identified in the inferred stack and averaged stack were matched to the stars 
in the ground truth frame, and shown here is the completeness of the detected 
stars as a function of Gaia G magnitude. Note that most of the stars in M92 
are fainter than G ∼ 18, so the majority of stars not detected had G > 18. 

Figure 11. The chosen detection threshold of SExtractor affects the 
precision of detected sources and total percentage of reco v ered stars. Shown 
here are the results of changing the detection threshold on a 30 s averaged 
frame and a 30 s inferred frame of M92. 

Figure 12. SExtractor was run on the inferred and simple averaged stack 
of the real M92 shown in Fig. 9 . Shown here is the cumulative number of 
stars found as a function of distance from the centre of the cluster for each 
stack, highlighting the ability of the proposed method to work in the crowded 
central regions of a stellar cluster. 
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he evolving nature of atmospheric turbulence. To address this, a more 
ynamic model of phase screens could be developed, where new 

urbulence patterns are continuously generated rather than recycled. 
his would better mimic the natural, non-repetitive behaviour of 
tmospheric turbulence o v er e xtended periods. Implementing algo- 
ithms that can generate realistic, time-evolving turbulence patterns 
ithout significantly increasing computational load would be key. 

In addition to these limitations, there are other effects not 
ccounted for in the simulations, including 16-bit quantization, 
ark currents, quantum efficiency, malfunctioning pixels, and filter 
 ariations. These ef fects can all be added in future iterations of the
ethod, either in simulations or by using a semisupervised approach 

o jointly train on real observations. 
Two notable issues that have emerged are the ‘fainter fatter’ effect,

here fainter stars are e xcessiv ely smoothed, and the ‘hallucination’
ffect, where the U-Net erroneously interprets noise as non-existent 
tars (as evidenced by imperfect precision of detected sources). These 
henomena have multiple potential causes: 

(i) Limited temporal context: Atmospheric turbulence disperses 
tarlight, reducing the signal-to-noise ratio per pixel, sometimes 
urying the signal entirely. With limited information, the U-Net’s 
endency to misinterpret noise (either as part of a faint star’s profile
r as a new star) increases, especially for faint stars with inherently
eaker signals. 
(ii) U-Net’s inherent design: The U-Net’s output, when trained 

ith a square-error cost, converges to the mean of the posterior
istribution. Indeed, the output is a probability-weighted average 
f inferred images compatible with the data, where the solution’s 
ikelihood is much more ‘peaky’ for bright sources than for faint
ources. 

(iii) Difficulty tracking faint, isolated stars: The U-Net might 
truggle to consistently ‘track’ extremely faint, isolated stars. Ex- 
MNRAS 531, 403–421 (2024) 
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M

Figure 13. SExtractor was run on the inferred stack and simple averaged stack of M92 shown in Fig. 6 . Shown here are the distributions of D50 (left plot) 
and Strehl ratio (right plot) estimates of the detected stars as a function of Gaia G magnitude. 

Table 1. Comparison of the precision, percentage of reco v ered stars, av erage angular diameter ( D50 ), and average Strehl ratio ( S ) for the various image 
processing methods used for simulated and real M92 observations. We note that the chosen detection threshold in SExtractor can affect the precision and 
recall substantially (see Fig. 11 ). In the case of real M92 observations the detection threshold for the averaged stack could be chosen such that the precision 
w as f airly close to 100 per cent but with a very small total number of stars detected, whereas the inferred stacks had a definite maximum precision. For a more 
direct comparison, the thresholds for the averaged stack were chosen such that their resulting precision was approximately equal to the maximum precision 
for the inferred stack. 

Method Simulated M92 results Real M92 results 

Precision (per 
cent) 

Reco v ered stars 
(per cent) 

D50 (arcmin) S Precision (per 
cent) 

Reco v ered stars 
(per cent) 

D50 (arcmin) S 

30s. Avg. Stack 97.1 63.1 0.63 0.13 97.1 8.73 0.50 0.20 
30s. U-Net Inferred Stack 
(6s. input context) 

96.4 85.8 0.32 0.51 97.2 10.04 0.24 0.52 

30s. U-Net Inferred Stack 
(12s. input context) 

97.8 86.2 0.23 0.60 97.2 9.57 0.19 0.74 
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ending the temporal context may offer limited improvement for this
pecific issue. 

These observed limitations highlight the complex interplay be-
ween atmospheric conditions, U-Net architecture, and the challenges
nherent in detecting faint objects. 

Addressing these limitations could involve expanding the temporal
ontext of the observ ations, as sho wn in Table 1 and discussed in
ection B , where it is confirmed that an increase in temporal context
orrelates with impro v ements in precision, Strehl ratio, and D50
easurements. This suggests that a broader temporal scope allows

or a more accurate signal reconstruction, particularly for fainter
tars. 

Future enhancements to the proposed method could benefit from
 xploring div erse approaches to uncertainty quantification. F or
xample, the method outlined by Angelopoulos & Bates ( 2021 )
f fers a frame work for creating statistically rigorous, distribution-
ree uncertainty sets for any pre-trained model’s predictions, without
elying on distributional or model assumptions. This technique
nsures that the generated sets contain the ground truth with a
pecified probability. In contrast, probabilistic or generative mod-
NRAS 531, 403–421 (2024) 
ls, such as Bayesian neural networks, generative adversarial net-
orks (GANs), or diffusion-based models, provide an alternative
eans of assessing uncertainty. These approaches could gener-

te probabilistic distributions for each pixel, offering a detailed
iew of the possible inferences and their associated uncertainties.
hese methods would allow for a more granular understanding
f uncertainty, presenting the variability of reconstructions in a
uantitatively rich manner, thus offering a distinct advantage in
cenarios where understanding the distribution of inferences is
rucial. 

Another important limitation of our current method is its inability
o significantly impro v e astrometric precision despite sharper images.
his shortcoming likely stems from the residual jitter caused by
tmospheric turbulence, as the U-Net, though capable of tracking the
urbulent PSF across exposures, cannot determine the true position
f stars. Averaging the centroids of these wandering PSFs over the 32
r 64 frames is not significantly more beneficial than averaging the
ight distrib ution, lea ving a gap in astrometric accuracy. The addition
f priors coming, for example, from the Gaia catalogue could help
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While the method has its limitations, many of these challenges 
ffer exciting avenues for future research and development. Address- 
ng these constraints can evolve the method into a more robust and
omprehensive solution for astronomical imaging in the presence of 
tmospheric turbulence. Indeed, we would like to emphasize that the 
ork presented in this paper represents only the first iteration of the
roposed method. There are numerous optimizations which can be 
mplemented to enhance the performance by, e.g. incorporating more 
ealism into the simulations, broadening the temporal and spatial 
onte xts o v er which the U-Net makes its inferences, using shorter
uration images to capture more information about the turbulence, 
nd implementing more advanced machine learning methodologies 
nd architectures. 

 C O N C L U S I O N S  

n this study, we introduced a no v el machine learning-based approach 
o counteract the challenges posed by atmospheric turbulence in 
stronomical imaging. By utilizing a U-Net architecture, we have 
emonstrated the potential to significantly enhance the sharpness of 
stronomical images. Our method, trained on simulated observations, 
s adept at inferring a turbulence- and noise-free image from a 
equence of short-exposure observations of a stellar field, ef fecti vely 
ssociating speckles with their source star and disentangling light 
rom proximate sources, while conserving flux. 

Visually, the method showcased an enhancement in image clarity, 
specially under suboptimal seeing conditions. Quantitatively, our 
esults have been compelling: when tested on the simulated M92 
ata set, the inferred frames exhibited an average reduction in D50 
easurements by a factor of 3 for stars brighter than a Gaia G
agnitude of 17.5, and an average 6 × impro v ement in the Strehl

atio. This performance, ho we ver, tapered for fainter stars, indicating 
reas for further refinement. Furthermore, our quantitative analysis 
sing SExtractor revealed that, when using the inferred frame, 
p to 36 per cent more stars were identified relative to the averaged
rame, with a precision rate of ∼98 per cent. This is a testament to
he model’s ability to enhance image quality and resolution, even in 
ensely populated stellar fields. 
In real-world tests, using a 30 s video sequence of the globular

luster M92 as a case study, our method demonstrated its ability 
o de-blend crowded regions. Specifically, the inferred image re- 
o v ered about 3 × more stars within 25 arcsec from the centre of
92 compared to the temporally averaged image, with an average 

eduction in D50 measurements by a factor of 2.5 and an average
.5 × impro v ement in Strehl ratio. Ho we ver, the performance metrics,
articularly for fainter stars, indicated a more rapid decline in the 
eal data scenario than in the simulated one. This highlights the 
hallenges posed by real-world conditions, such as the intermittent 
urbulent ground layer observed in the M92 video stream and the 
on-Gaussian behaviour of pixel noise in sCMOS devices. The 
odel’s tendency to ‘smooth’ and/or possibly ‘hallucinate’ fainter 

tars is an expected limitation that warrants further investigation. 
he performance on real data, while promising, highlights areas of 

mpro v ement, particularly in handling effects not currently accounted 
or in simulations. Indeed, given the suite of current limitations in 
he simulations mentioned in Section 5.1 , it was not granted that

eaningful inferences could be made on real data. 
In conclusion, this first ‘DanceCam’ study presents a machine 

earning-based approach to addressing the challenge of atmospheric 
urbulence in astronomical imaging. The results obtained from both 
imulated and real data demonstrate the capabilities and potential 
f this method. Ho we ver, it is important to acknowledge that
urther development and refinement are necessary for the DanceCam 

pproach, particularly in enhancing the reconstruction of fainter stars 
nd improving astrometric precision. The method, in its current 
orm, shows promise for contributing to the field of astronomical 
esearch. Approaches like ours, while still in their nascent stages, 
ould play a role in improving the clarity and accuracy of wide-field
round-based observ ations. Ne vertheless, we recognize the need for 
autious optimism regarding the method’s scientific potential, and 
e encourage continued exploration and testing to fully ascertain its 

fficacy in diverse observational scenarios. 
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PPENDI X  A :  C O M PA R I S O N  TO  I NFERENCE  

N  TEMPORALLY  AV ER AG ED  FRAME  

ur primary methodology for mitigating atmospheric turbulence
n astronomical images utilizes short video sequences to train a
esidual U-Net. An alternative approach involves training the U-
et with a single, long exposure image. This section reiterates the

ationale behind our video-based method and the potential limitations
ssociated with a long exposure input. 

Atmospheric turbulence introduces dynamic, time-varying dis-
ortions in stellar light. A video stream, comprised of numerous
hort-exposure frames, ef fecti vely captures these temporal variations
ithin the turbulence. By providing the U-Net with this sequence
f frames, we enable it to analyse the patterns of turbulence and
iscriminate between photons belonging to dif ferent stars, e ven in
ases where blurring leads to image o v erlap in single frames. 

When instead presented with a long exposure image, the U-
et receives a composite view where the effects of turbulence are

ccumulated o v er time. This obscures the finer temporal patterns of
urbulence, making it more difficult for the model to disentangle light
rom closely spaced astronomical sources. 

F or comparativ e testing, we simulate long e xposure images by
emporally averaging the frames within a video stream. This av-
raging process mimics the effect of a traditional long exposure
bservation. Fig. A1 shows a qualitative comparison of sources
etected by SExtractor – in particularly crowded regions of
andomly generated stellar fields – between output images inferred
rom either a video stream or a single temporally averaged frame. For
 more quantitative analysis, we test on several hundred simulated
tellar fields to collect statistics of the detected sources in crowded
ub-regions. As seen in Fig. A2 , inferring on video frames allows
or reco v ery of ∼2 × more stars in the fainter end of the magnitude
istribution ( m > 19). These simple tests help us to confirm that the
ideo streams enable the U-Net to better disentangle the light from
eighbouring stars and consistently reco v er more sources in crowded
egions. 

While the long exposure input approach may provide practical
enefits, such as a reduced computational cost and a simplified
ata acquisition process, our research demonstrates that the video-
ased method holds superior potential for reconstructing turbulence-
ree astronomical images. By exploiting the temporal dynamics of
tmospheric distortions, our approach enables the Residual U-Net to
ore ef fecti vely reconstruct stellar images, ultimately enhancing the

esolution of astronomical images. 

http://dx.doi.org/10.3847/1538-4357/836/1/97
http://dx.doi.org/10.1117/1.OE.53.12.126107
http://dx.doi.org/10.1146/annurev-astro-081811-125447
http://dx.doi.org/10.1093/mnras/stt885
http://dx.doi.org/10.1364/JOSA.56.001372
http://dx.doi.org/10.1093/mnras/stx2161
http://dx.doi.org/10.3390/s16040517
http://dx.doi.org/10.1109/PROC.1978.10837
http://dx.doi.org/10.1117/1.OE.60.3.033103
http://dx.doi.org/10.1038/s41592-020-01008-z
http://dx.doi.org/10.1364/JOSAA.11.000394
http://dx.doi.org/10.1086/316578
http://dx.doi.org/10.1051/0004-6361/201322302
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2207.02376
http://dx.doi.org/10.1017/pasa.2018.43
http://dx.doi.org/10.1109/TIP.2011.2121085
http://dx.doi.org/10.1051/0004-6361/201629336
http://dx.doi.org/10.1086/132592
http://dx.doi.org/10.1016/j.compmedimag.2021.101920
http://dx.doi.org/10.1051/0004-6361/201629272
http://dx.doi.org/10.1093/mnras/sts420
http://dx.doi.org/10.1086/424805
http://dx.doi.org/10.1086/133989
http://arxiv.org/abs/1505.02496
http://dx.doi.org/10.1016/j.neucom.2018.05.103
http://dx.doi.org/10.1086/152838
http://dx.doi.org/10.1109/LGRS.2018.2802944


DanceCam 419 

Figure A1. Qualitative performance comparison of source detection in crowded regions of simulated stellar fields. SExtractor is applied to the U-Net’s 
inferred output when trained on either a video stream or its temporally averaged equi v alent. The video-based approach demonstrates superior ability to 
discriminate light from nearby sources, as seen in both the source counts and the zoomed in densely-crowded sub-regions (indicated by rectangles). 
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igure A2. Quantitative performance comparison of source detection in
rowded regions of simulated stellar fields. The same process as described in
ig. A1 was performed for several hundred simulated stellar fields and the
umber of detected stars compared to the ground truth was binned according
o magnitude. The video-based approach again demonstrates a consistently
etter ability to discriminate light from neighbouring, especially faint sources.

PPENDIX  B:  RESULTS  WITH  A  SMALLER  

E M P O R A L  IN P UT  C O N T E X T  

o investigate the impact of the input temporal context on U-Net
raining and testing, we conducted experiments with a reduced
ontext window of 6 s (32 frames @ 5.25 frames per second).
his appendix presents the results of these experiments, offering
 comparison to the performance achieved with a 12-s context. We
epeated the M92 tests outlined in Section 4.2 , with results presented
elow. 
NRAS 531, 403–421 (2024) 
For simulated M92 observations, Fig. B1 shows the proportion of
tars reco v ered across different magnitudes. While a 6-s conte xt still
chieves a respectable 85.8 per cent recovery rate and 96.4 per cent

recision, the 12-s context (Fig. 7 ) demonstrates a noticeable ad-
antage (86.2 per cent reco v ery rate and 97.8 per cent precision),
specially for fainter stars. 

Fig. B2 highlights performance differences for D50 and Strehl
atio measurements when compared to 8 . The 12-s context yields su-
erior results (0.23 arcsec D50, 0.60 average Strehl ratio) compared
o the 6-s context (0.32 arcsec D50, 0.51 Strehl ratio). Again, these
enefits are most pronounced for fainter sources. 

igure B1. Percentage of stars reco v ered by magnitude range for simulated
92 observations given a 6-s temporal input to the U-Net (only rele v ant to

he inferred stack). Compare to Fig. 7 for the 12-s temporal context. 
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Figure B2. D50 and Strehl ratio performance versus magnitude for simulated M92 observations given a 6-s temporal input to the U-Net (only rele v ant to the 
inferred stack). Compare to Fig. 8 for the 12-s temporal context. 
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