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Abstract—This paper introduces additional systematic steps,
actions, and technical considerations intending to extend con-
ventional Functional Safety Management (FSM) for developing
safety-critical systems that integrate Artificial Intelligence (AI).
The proposed approach begins by outlining a safety lifecycle for
safety-critical systems incorporating AI, based on the tradition-
ally adopted V-model lifecycle. This encompasses essential phases
associated with AI integration that require careful attention. To
achieve this goal, the paper defines the fundamental procedures
of AI-FSM, aiming to facilitate systematic failure avoidance in
AI-based safety-critical systems.

Index Terms—Artificial Intelligence, Functional Safety, Func-
tional Safety Management, Lifecycle

I. INTRODUCTION

The development of safety-critical systems follows a well-
known V-model, moving from safety goals to safety re-
quirements, system architecture design, Software (SW) and
Hardware (HW) architecture design, and implementation to
obtain a system that is intended to be safe by construction.
Then, the testing phase takes place from unit testing up to full
system testing against its safety requirements. The Functional
Safety Management (FSM) defines the required systematic
approach (e.g., steps, actions, technical considerations) for
developing safety-critical systems and other lifecycle phases,
from concept definition up to decommissioning and disposal.

Autonomous systems often require the use of AI, and more
particularly Deep Learning (DL), to perform advanced func-
tionalities like visual perception [1], [2]. Whenever these func-
tionalities implement safety requirements, they are also subject
to the safety-critical system certification with functional safety
standards such as IEC 61508 [3]. Thus, the DL subsystem that
implements safety requirements must adhere to the applicable
safety development and management processes [2], [4], [5].
However, the general DL-based systems development process
clashes frontally with traditional safety development processes
[2], [4]–[6]. For example:

1) DL SW is designed monolithically following empirical
training processes with example training data, rather than
implementing specific safety requirements.
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2) DL SW, as opposed to any other kind of SW in safety-
critical systems, cannot be considered as correct by
design due to the predictive nature that comes along with
mispredictions and confidence values.

3) DL SW design is no longer independent of data, and its
parameters are set empirically based on training datasets.

4) DL SW imposes high-performance demands on the un-
derlying HW and its inherent complexity (both HW and
SW) entails challenges to comply with safety standards.

Moreover, there is a lack of guidance in the development
process for safety-critical systems incorporating AI. To address
these challenges, this paper proposes a new development
process that maps the traditional lifecycle of safety-critical
systems with the AI lifecycle, addressing their interactions.
The aim is to reconcile the empirical data-dependent and pre-
dictive nature of DL with safety management and development
processes outlined in safety standards. The proposed lifecycle
extends widely adopted FSM methodologies from functional
safety standards with specific needs for DL architecture spec-
ifications, data, learning and inference management, as well
as appropriate testing steps.

The rest of the paper is organized as follows. Section II
outlines the background. Section III outlines the steps, actions
and considerations to complement a traditional FSM when
the systems involves AI. Finally, in Section IV we draw
conclusions and provide future research lines.

II. BACKGROUND

In this section, we provide an introduction to the founda-
tional aspects guiding key elements of this paper.

A. Functional Safety Management

The FSM defines a development strategy consisting of
a set of procedures, guidelines, and templates that define
how a project with functional safety considerations should
be executed (planning, involved team, activities, documents,
configuration management, modification procedures, etc.). The
main goal of the FSM is to ease the definition, organization,
and control of the information generated during safety-critical
project development while fulfilling the requirements of func-
tional safety standards.
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In the system realization phase, safety-critical systems
typically adhere to a V-model and are often organized into
the following phases: System Concept Specification (Ph1),
System Architecture Specification (Ph2), Module Detailed
Design (Ph3), Implementation (Ph4), Module Testing (Ph5),
Integrations testing (Ph6) and Validation Testing (Ph7). Tra-
ditional functional safety standards such as IEC 61508 and
ISO 26262 [7] define separate V-model based procedures for
safety-related SW and HW.

B. Artificial Intelligence Lifecycle

A key distinction in the DL development process, in contrast
to that followed by traditional functional safety systems, lies
in phases related to preparation of datasets and their utilization
to create models by optimizing error functions derived from
requirement specifications. Fig. 1 illustrates a simplified DL
lifecycle, as proposed by [2]. Following the definition of
the requirements specification, the DL workflow progresses
through data management, model training, and model verifi-
cation steps, culminating in the deployment of the model on
the target inference platform.

ML workflow
Data Management

Model Training Model Verification

Requirements
Specification

Verification
dataset

Trained model

Development
dataset

Model
Deployment

Verified model

Fig. 1. Simplified DL Lifecycle [2]

Data Management is one of the most labor-intensive and
crucial processes in DL development and includes activities
such as data collection and data preparation. During this
process, the development dataset (comprising training and
validation1) and the verification dataset are generated. Sub-
sequently, the model undergoes an iterative training process
using the training dataset until the results on the validation
dataset meet specific requirements in the model training step.
Following successful training, the model verification evaluates
the model’s ability to properly extrapolate results with new
data, utilizing the verification dataset. Lastly, the verified
model is prepared in the model deployment phase for its
implementation on the final inference platform. For an in-
depth description guiding the AI lifecycle processes, we refer
the reader to the ISO/IEC 5338 standard [8].

III. AI-FSM

The AI-FSM is grounded in state of the art practices from
functional safety according to standards such as IEC 61508
and ISO 26262 as well as in emerging initiatives in the topic

1Despite maintaining the term ”validation” in line with AI nomenclature,
it does not correspond to validation in the safety context.

of AI safety, such as EASA Concept Paper [9], AMLAS [10],
A-SPICE for ML [11] and ISO/IEC TR 5469 [5]. AI-FSM is
publicly available at [12].

The V-based lifecycle, traditionally followed by FSM, has
been expanded considering the peculiarities of the AI lifecycle,
as depicted in Fig. 2. Conventional lifecycle is represented
by white boxes, while DL phases, along with those requiring
slight modifications, are illustrated using colored boxes.

The traditional FSM defines procedures to be adhered to
throughout the development of each task within the entire
lifecycle, but it does not specifically address the nuances of the
AI lifecycle [2]. The subsequent sections delve into defining
procedures relevant to DL tasks. The established phases of
the traditional V-based development model as adopted as they
are, while for the new processes/tasks, a neutral “linear”
model is adopted. There is currently no reconciled way of
straightforwardly adopting a V-model arrangement for such
new processes/tasks, as witnessed e.g. by [9], [11].

A. Overall Lifecycle – Phase 0 (Ph0)

The Phase 0 (Ph0) is a transversal phase that collects all the
generic project information, e.g., project document list, organi-
zational chart, or tools selection. It must consider information
collected in an AI-related safety project. When addressing
a safety-critical project, all documents generated along the
project must be versioned and controlled. When AI-related
items are part of the project, their associated documents must
also be included in the management system for its versioning
and control. Similarly, when justifying the qualification of the
people involved in a safety project, describing their roles, and
ensuring independence between teams, AI-related skills and
qualifications must be considered for specific tasks.

B. DL-Related Concept Specification – Phase 1 (Ph1)

Besides the traditional description of the use case and the
definition of the operation reflected in the requirements, the
use of AI involves the specific definition of the DL Operational
Design Domain (ODD) and DL operational scenarios in which
the DL will operate. The definition of the DL ODD and the DL
operational scenarios requires a more extensive engineering
effort compared to traditional systems. The definition of ODD
is application-specific, while the operational scenarios must be
formulated with due consideration to the ODD. This process
involves constraining the environment within which the DL
operates and specifying the operational conditions.

C. DL-Requirements Specification – Phase 2 (Ph2)

This phase entails the allocation of the software require-
ments specification to the DL component. These requirements
are refined and shall encompass safety, operational, functional
and non-functional requirements specifications as well as
interface requirements. Additionally, this phase encompasses
the definition of a set of metrics to assess whether the data re-
quirements specification has been fulfilled, the test definitions,
and their corresponding outcomes.
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Fig. 2. Proposed AI Lifecycle

D. Data Management – Phase DM (PhDM)
The PhDM is responsible for ensuring the collection and

preparation of data. This phase is crucial since the behavior
of the DL components is determined by extracting patterns
from data. Therefore, this phase entails the proper formu-
lation of data requirements refined and allocated from DL
requirements specification. Since each of the datasets serves
a different purpose, the data requirements will not always be
identical. This paper proposes to differentiate between dataset
requirements (i.e., the format or data characteristics) and data
requirements associated with each dataset. The latter relate but
are not limited to completeness, representativeness, balance,
volume, or data origin. Additionally, a degree of differentiation
between the datasets should be defined. For example, the
verification dataset’s purpose is to evaluate how the trained
model extrapolates results against the training, therefore the
differentiation between them is crucial. Finally, since the data
usually are subject to preparation, there shall be a set of
requirements related to this process such as labeling annota-
tion, permissible data augmentation techniques, data cleaning
requirements, or data pre-processing requirements such as the
use of normalization or feature selection. The formulation of
the data requirements would relate to Ph3 in a traditional FSM.
Additionally, in the Data Requirements Specification step, the
data requirements verification tests shall be defined. Defining
the test corresponds with Ph3 of traditional FSM while the
implementation and the results collection relate to Ph4 and 5.

Once requirements are set, data must be collected in the
data collection step, which can be decomposed into i) data
gathering, which involves the collection of data, and ii) data

generation, which relates to generating new data to complete
i). The data collection step encompasses storing all the infor-
mation pertinent to the description of these intermediate steps.
Completing this step is analogous to Ph4 in a traditional FSM.

However, collected data is often not a valid input data as
it is. It must be cleaned (i.e., removing anomalies), processed
(i.e., performing normalization, scaling, or feature selection),
or annotated (i.e., labeling) to assure consistency with the
expected requirements. All actions and decisions taken when
preparing data shall be documented.

After generating and preparing the datasets, it is essential
to verify the fulfillment of the requirements defined in the
Data Requirements Specification step. This is done in the Data
Verification step and corresponds with the Ph5 of traditional
FSM. All the results obtained shall be documented.

PhDM generates two artifacts: a development dataset, which
includes training and validation datasets (Rhombus 1 and 2
in Fig. 2), and a verification dataset (Rhombus 3 in Fig. 2).
All development data, even in the traditional models, are
subject to the “CIA principle” of Confidentiality, Integrity, and
Accessibility, especially so for Configuration Parameters. ML
data are so vast and critical that extra levels of Confidentiality
and Security are to be defined and granted to them.

E. Learning Management – Phase LM (PhLM)

The Learning Management phase aims to optimize and get
a DL model that meets the specified DL requirements. To
achieve this, learning requirements must be specified, derived
from DL requirements. We propose to decompose the learning
requirements into qualitative and quantitative requirements.



Concerning the first, we can list, among others, a methodology
for searching the hyperparameters of the model or defining
the initial parameters of the model. Quantitative requirements
allow the evaluation of quantifiable properties of DL models.
For example, those associated with the model bias require-
ments to avoid underfitting, performance requirements (such
as accuracy, precision, or recall), and robustness requirements
(i.e., the model shall perform within the performance thresh-
olds within unseen data in the training dataset).

In addition to this, the model selection criteria shall be
defined for the model verification step in those cases in which
several candidate models provide the required performance.
For example, the model criteria can prioritize accuracy for
specific classes, the highest robustness under particular envi-
ronmental conditions or prioritize models with the highest lev-
els of explainability. The formulation of learning requirements
would relate to Ph3 in a traditional FSM.

Once the learning requirements specifications are defined,
the Model Design step focuses on the specification of a set
of DL models that best suit the application. All the decisions
conducted during this step and the different models shall be
documented. This process begins with analyzing well-known
models that have succeeded in similar task domains and it is
often subject to modifications since Learning Management is
an iterative process. Consequently, successive iterations result
in incremental versions of this documentation.

Subsequently, the model is generated from the training
dataset and evaluated employing the validation dataset, both
from PhDM. The result of the evaluation is checked (red
rhombus with letter “a” in Fig. 2). On the one hand, a scenario
may arise in which none of the previous candidates achieves
the expected performance. In such cases, an iterative repetition
of the model design, training, and evaluation becomes neces-
sary. These iterations continue until the stipulated performance
requirements are successfully met. Otherwise, a new iteration
of the PhDM should be carried out. On the other hand, if
one or multiple candidate models demonstrate the anticipated
performance levels, they will be verified in the next step.

Finally, the model verification step assesses the general-
ization capabilities, identifies potential issues using the ver-
ification dataset, and verifies compliance with requirements
specifications. The verified model, generated by the PhLM,
is then utilized as input in the PhIM. Decisions regarding its
selection should be documented and aligned with the model
selection criteria. Iterations of PhLM or even the PhDM are
necessary until requirements are achieved.

F. Inference Management – Phase IM (PhIM)

The purpose of this phase is to ensure that the target in-
ference model still fulfills the specified DL requirements after
adapting and even optimising the model for its deployment
on the target HW. As with the PhDM and PhLM, the initial
PhIM step lies in the definition of the inference requirement
specification, refining those from the PhLM and the Ph2,
and generating the verification tests. These requirements shall
encompass aspects associated with the model conversion,

optimization and deployment. The formulation of inference
requirements would relate to Ph3 in a traditional FSM.

Then, the verified model undergoes a conversion process
to transform it into a format suitable for deployment (i.e.,
elimination of training-specific operations) that shall ensure
compatibility with a specific target inference platform in the
Model Conversion step.

In the Model Optimisation step, the model may undergo
optimizations to enhance its performance, reduce its size, or
adapt it for resource-constrained environments. Optimization
aims to maintain or improve the model’s performance while
making it more efficient for deployment.

Finally, the optimized model is deployed on the target
platform (Deployment step), which is subsequently subject to
a comprehensive verification process (Inference Verification
step). This involves checking the optimized model (or the
converted model in cases where the optimization step is not
performed) against specified criteria to ensure that the model
adheres to the inference requirements specification.

Information relative to the process of converting and opti-
mizing the model, as well as the inference verification results,
shall be explicitly documented.

IV. CONCLUSIONS AND FUTURE WORK

In recent years various emerging initiatives and standards
have been developed to align the use of AI in safety-critical
systems, but it remains an open research challenge [2]. In
this context, this paper addresses the updates required in the
realization phase of traditional functional safety standards to
support the safe development of AI in safety-critical systems.

In the future, the AI-FSM may be updated to align with
upcoming iterations of emerging standards. Examples include
ISO/CD PAS 8800 [4], IEC TS 6254 [13] or ISO/IEC 5338 [8],
currently in development during the creation of this paper.
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