
HAL Id: hal-04769843
https://hal.science/hal-04769843v1

Submitted on 12 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rep-RAID: An Integrated Approach to Optimizing Data
Replication and Garbage Collection in RAID-Enabled

SSDs
Jun Li, Balazs Gerofi, François Trahay, Zhigang Cai, Jianwei Liao

To cite this version:
Jun Li, Balazs Gerofi, François Trahay, Zhigang Cai, Jianwei Liao. Rep-RAID: An Integrated Ap-
proach to Optimizing Data Replication and Garbage Collection in RAID-Enabled SSDs. 24th ACM
SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES 2023), May 2023, Orlando (FL), United States. pp.99 - 110, �10.1145/3589610.3596274�.
�hal-04769843�

https://hal.science/hal-04769843v1
https://hal.archives-ouvertes.fr

Rep-RAID: An Integrated Approach to Optimizing Data
Replication and Garbage Collection in RAID-Enabled SSDs

JUN LI, Southwest University, China National Institute of Informatics, the Graduate University for Advanced
Studies, Japan, China
BALAZS GEROFI, Intel Corporation, USA
FRANCOIS TRAHAY, Telecom SudParis, France
ZHIGANG CAI, Southwest University, China
JIANWEI LIAO∗, Southwest University, China

Redundant Array of Independent Disks (RAID) technology has been recently introduced to flash memory
based SSDs to enhance their data reliability. Although RAID increases reliability, it doubles the number
of write operations and requires additional parity computation as every write operation on a data chunk
leads to another update on the corresponding parity chunk. Data replication has been proposed to mitigate
the overhead of write requests in RAID enabled SSDs, however, replication increases the cost of garbage
collection (GC), which in turn limits the improvement of I/O performance compared to the baseline RAID
implementation.

This paper introduces Rep-RAID, an improved data replication management scheme accompanied with
optimized GC for RAID-enabled SSDs. Guided by a mathematical model, Rep-RAID only replicates frequently
updated data chunks. Furthermore, Rep-RAID reorganizes new data stripes during the GC process by utilizing
replicated data to replace invalid data chunks caused by data replication in old stripes. As a result, it decreases
I/O latency for both read and write requests and significantly reduces the GC overhead induced by data
movement. Experimental results show that the proposed scheme can improve I/O performance by 16.7%,
and reduce tail latency by up to 17.9% at the 99.99th percentile, when compared to the state-of-the-art
RAID-enabled SSDs.

CCS Concepts: • Computer systems organization→ Embedded software.

Additional Key Words and Phrases: SSDs, RAID-5, Replication, Garbage Collection, Stripe Reorganization.

1 INTRODUCTION
NAND Flash memory-based SSDs have become the dominant storage devices due to their attributes
of small size, high energy efficiency, low latency, and collectively massive parallelism [1, 2]. In
order to cut down unit price, the cell density of flash has been increased from SLC (1 bit/cell) to
MLC (2 bit/cell), TLC (3 bit/cell), and even to QLC (4 bit/cell). On the other hand, high density SSDs
are prone to errors caused by disturbs [3]. Error correction codes (ECCs) (e.g., low density parity
code) have been applied to SSDs for correcting read errors and for preventing uncorrectable bit
errors [4].
As ECCs cannot recover corrupted data from device-level failures, the Redundant Array of

Independent Disks (e.g., RAID-5) technology has been recently applied to SSDs [5], or called
Redundant Array of Independent NAND (RAIN) [6]. The vendors have supported RAID technology
in SSD products [7, 8] and several researches have studied RAID-enabled SSDs to optimize access
performance and endurance [9–12]. Specifically, RAID-5 organizes the data as stripes, where each
stripe consists of N data chunks and 1 parity chunk that is XORed with the corresponding data
chunks. Although enabling RAID-5 increases SSD reliability, it doubles the number of writes and
causes additional XOR computations, as every write on a data chunk leads to another update on
the corresponding parity chunk1 (termed as write penalty) [13].
∗Corresponding author, e-mail: liaotoad@gmail.com.
1A (data/parity) chunk is normally referred to as a page in RAID-enabled SSDs. Namely, the size of a chunk is equal to that
of a page.

1

HTTPS://ORCID.ORG/0000-0001-5235-6496
HTTPS://ORCID.ORG/0009-0004-8585-6031
HTTPS://ORCID.ORG/0000-0001-7329-1812
HTTPS://ORCID.ORG/0000-0002-8406-8461
HTTPS://ORCID.ORG/0000-0001-6149-6650

Jun Li, Balazs Gerofi, Francois Trahay, Zhigang Cai, and Jianwei Liao

More importantly, each SSD block can only bear a limited number of erase operations, and the
extra parity updates cause unexpected erases which impacts the endurance of the SSD device [14].
Furthermore, the XOR computations for generating parity chunks occupy the main controller of
the SSD and thus delay the scheduling of normal I/O requests. In order to mitigate write penalty,
RAID implementations are often accompanied by a DRAM buffer to absorb overwrites or writes to
a single data chunk [9, 15, 16]. Certain data updates can be fulfilled in the buffer, to avoid direct
data and parity writes in SSD blocks [17]. As a consequence, I/O responsiveness can be improved
and SSD lifetime can be extended. On the other hand, DRAM is expensive, which limits the size of
the DRAM buffer inside SSDs [18], rendering parity updates on the SSD pages inevitable.

Due to the excess writes in RAID systems, the average and tail latency of I/O operations indicate
performance degradation compared to raw SSDs without a RAID module [20]. The software
overhead of the RAID controller becomes a major component in the latency of write requests,
which may postpone I/O scheduling and thus affect I/O responsiveness [24]. Thus, mitigating the
impact of servicing write operations in RAID-enabled SSDs is a major concern [25].

Recently, introducing replication functionality inside RAID SSDs or SSD RAID [24, 25] has been
proposed. These designs store the data of small requests temporally in the underlying flash cells and
mirroring them into multiple cells to ensure data reliability. Such approaches can avoid certain XOR
computations and also reduce software overhead caused by updating RAID stripes in I/O intensive
periods [24]. When the storage system becomes idle, it periodically converts the replicated data
into RAID stripes. However, such replication scheme introduces additional page moves during
garbage collection (GC), as dirty (obsolete) data chunks must be retained in the original stripe to
protect the rest of the data chunks. Consequently, the large number of obsolete data chunks heavily
affect GC, adversely impacting the tail latency of I/O requests of application [28].

To address the aforementioned issue that alleviates tail latency and improves I/O performance, we
propose an integrated approach of a model-based replication method for boosting I/O performance
of RAID-enabled SSD system, and a novel stripe reorganization scheme for decreasing the number
of dirty (obsolete) data chunks that are only held to protect the rest data chunks in the original
stripe. In brief, this paper makes the following three contributions:

- We propose a model-based data replication scheme that directs the replication of frequently
updated data chunks. In particular, we construct a cost-evaluation model to determine whether
or not making a replica is favorable by comparing its benefits with the overhead of garbage
collection in RAID-enabled SSDs. Moreover, to improve the flexibility of the model, we adjust the
update frequency threshold based on the I/O features of user applications.

- We propose a stripe reorganization scheme to minimize the overhead of page moves in GC
operations. The scheme reorganizes a new data stripe by coupling the cold replicated data with
the valid data chunks in existing stripes when performing garbage collection. Consequently, the
number of page moves in GC can be greatly reduced, as certain data chunks no longer need to be
migrated when their (cold) replicas have been reorganized as new stripes.

- We present a comprehensive evaluation on several disk traces of real-world applications. The
experimental results show that our method can not only cut down the overall I/O time by 14.7%,
but it also decreases the number of page moves by 20.9% during GC process and thus reduces
tail latency by 4.1% at the 99.99th percentile on average, compared to state-of-the-art methods.

2 BACKGROUND ANDMOTIVATION
2.1 Background Knowledge
Figure 1 illustrates an example of GC process. It first selects the victim SSD block that has the least
number of valid pages (e.g. 𝐵𝑙𝑜𝑐𝑘𝑖), by following the greedy policy [38]. Then it migrates all valid

2

Rep-RAID

P0

P1

P255
…

Blocki Blockj

SSD Controller
❶Page	moveRead Write

Write in
8KB page

Erase in
2MB block

256 pages
in a block

SSD Controller
❷Erase

P0

P1

P255

…

P1

P255

…

Blocki Blockj

P0

P1

P255

…

free valid invalid

Fig. 1. The work flow of GC process in an SSD device. In which the data page size is 8KB [26] and each block
holds 256 pages [27].

Ch 0

D0 D1 P

Ch 1 Ch 2

Incoming update request: D0’

Ch 0

D0 D1 P

Ch 1 Ch 2

P’D0’

P’ = D0’ ⊕ D0 ⊕ Pfree valid invalid

Fig. 2. The illustration of stripe update process in an RAID-enabled SSD device. Note that we use three
channels (Ch0-Ch2) and each data stripe has two data chunks and one parity chunk, for simplicity of
illustration.

pages in the GC block to another available block (e.g., the data of 𝑃0 in 𝐵𝑙𝑜𝑐𝑘𝑖 is moved to the free
page in 𝐵𝑙𝑜𝑐𝑘 𝑗). Finally, the victim block of 𝐵𝑙𝑜𝑐𝑘𝑖 is erased to reclaim space. The issue is, however,
that I/O requests targeting at the same channel cannot be served when performing GC, which
places negative effects on I/O responsiveness of incoming requests [22, 23, 33].
On the other hand, while the increasing cell density of flash memory chip cuts down the unit

price, it brings more bit errors and poses increased threats to data reliability. Error correction codes
(ECCs) are widely used to deal with read errors and to ensure data correctness, but they cannot
help in chip/channel/SSD-level errors [10, 25].
In response to the above limitations, RAID has been successfully applied in SSD devices, and

many corrective RAID implementations have been proposed [9, 17]. In principle, all (data/parity)
chunks that belong to the same data stripe will be distributed across all associated chips/channels
of the SSD device. In case a chip/channel becomes unavailable, the device can still restore all the
lost data/parity chunks by reading other relevant RAID components accompanying with certain
XOR computations.

When an update request comes, the corresponding stripe needs updating both data chunk and
parity chunk on their original RAID channels. As the example illustrated in Figure 2, besides
renewing the data chunk to 𝐷0′, it computes the newest parity chunk of P’, through XORing the
updated data chunk of D0’, the old data chunk of D0, and the old parity chunk of P.

2.2 Replication-Based RAID SSD
Because all updates on data chunks and parity chunks have to be completed on their original
RAID components, which may cause imbalanced I/O workloads across all RAID components [25].
Figure 3 shows the difference of write latency across channels in conventional RAID5-enabled SSDs.
As seen, the tail latency of write latency unveils significant dissimilarity among all RAID channels.
We also recorded the standard deviation of tail latencies at 99.99th percentile in multiple channels.

3

Jun Li, Balazs Gerofi, Francois Trahay, Zhigang Cai, and Jianwei Liao

0 400 800 1200

CH0(0.33) CH1(0.32)
CH2(0.44) CH3(0.41)

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

0 250 500 750 1000

CH0(0.82) CH1(0.50)
CH2(0.58) CH3(0.64)

0 2000 4000 6000

CH0(0.91) CH1(1.00)
CH2(0.96) CH3(1.15)

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Latency (ms)

(f) trace: src1_2

(h) trace: hm_0

0 1000 2000 3000

CH0(1.54) CH1(1.61)
CH2(1.60) CH3(1.56)

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

0 100 200 300 400

CH0(0.36) CH1(0.29)
CH2(0.29) CH3(0.34)

(a) trace: wdev_0
0 250 500 750 1000

CH0(0.72) CH1(0.69)
CH2(0.77) CH3(0.78)

(b) trace: stg_0

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

0 200 400 600 800

CH0(0.45) CH1(0.42)
CH2(0.42) CH3(0.39)

(d) trace: ts_0

0 250 500 750 1000

CH0(0.33) CH1(0.32)
CH2(0.29) CH3(0.26)

(c) trace: stg_1

0 400 800 1200

CH0(0.76) CH1(0.86)
CH2(0.69) CH3(1.14)

(e) trace: web_0

(g) trace: src2_0 (i) trace: mds_0

Fig. 3. CDF of write latency on multiple channels of the same stripes in conventional RAID5-enabled SSDs.
The unit of write in this figure is the size of page. The number of channel written chunks is shown in the
legend (unit: 106).

It shows that the values of standard deviation of tail latencies at the 99.99th percentile are ranged
between 7.0 and 1644.2, proving that the latency dissimilarity of multiple channels exists in
certain application workloads. We argue that the frequently updated chunks congest their located
channels, especially when the I/O accesses are extremely intensive, thus significantly impacting
the tail latency. Furthermore, it has been verified that the software and XOR overhead account for
a major part of write latency when updating a data stripe in SSD-based RAID systems [24].

With respect to the aforementioned issues, replication-based RAID implementations, CR5M [25]
and FusionRAID [24], have been proposed in both RAID-enabled SSDs and SSD RAID systems. In
which, CR5M prefers replicating the data chunk in a dedicated chip of the same channel associating
with the original data chunk, meanwhile FusionRAID distributes the replicated data chunks into
multiple units with the highest parallelism that can benefit both write and read. More specifically,
replication-based RAID does not renew the stripe immediately for servicing small requests. It
temporarily organizes the updated chunks as replication pairs, for avoiding from exacerbating I/O
intensity, as well as reducing the software and XOR overhead.

Figure 4 shows an example of data replication in RAID-enabled SSD systems, in which the stripe
consists of data chunks (D0, D1) and a parity chunk P. When the update request of D0 arrives, the
newest data chunk is selected to make replicas, i.e., R0 and R0’ in two independent channels that are
the highest parallel unit in SSDs, and then the old data chunk D0 will be labelled as semi-invalid,
in both CR5M and FusionRAID implementations.
For recording physical addresses of the replication data and the semi-invalid data, a replica

table is introduced in such RAID-enabled SSDs. The replica table holds the old physical page address
(OPPN) and replica physical page address (RPPN). When a data chunk is replicated, the replica
address (RA) will be pointed to the position of relevant entry in the replica table. As the example

4

Rep-RAID

Ch 0

D0 D1 P

Ch 1 Ch 2

Incoming update
request of D0

Ch 0

D0 D1 P

Ch 1 Ch 2

R0 R0’

Stripe Replicasemi-invalidfree valid

LPN PPN RA
D0 20 NULL
D1 800 NULL
… … …

Mapping Table
LPN PPN RA
R0 30
D1 800 NULL
… … …

Mapping Table
OPPN RPPN

20 900
… …

… …

Replica Table

.

Fig. 4. Data replication and mapping table illustration in channel-level RAID-enabled SSD storage [24, 25]. In
which, it creates a mirror pair of 𝑅0 and 𝑅0′ for servicing the update request on the data chunk of 𝐷0. Then,
the obsolete chunk of 𝐷0 is marked as semi-invalid to protect the original data stripe, though it is not the
latest.

shown in Figure 4, the RA of D0 is NULL, and indicates the data chunk of D0 does not have any
replica. If the data chunk of D0 is replicated for the first time, a new entry consists of OPPN and
RPPN will be appended to the replica table. In addition, the physical page address (PPN) of D0 is
copied to OPPN, since this obsolete data chunk is still a component of the stripe of (D0, D1, P), and
should not be reclaimed in the process of garbage collection. Once the replicated data chunk is
updated again, only the information of PPN and RPPN should be renewed, and the relevant entry
in the replica table will be removed if the data chunk is transferred into the RAID format.

2.3 Motivation
Enabling the replication functionality in RAID systems can boost the I/O performance and achieve
a balanced workload across all RAID components. However, existing replication-enabled RAID
implementations only consider the size information of update request, and fail to take other natures
of data chunks, such as update frequency into account. As discussed, the frequency difference of
data chunks induces imbalanced data access and software overhead over all RAID components,
and thus degraded tail latency.
More importantly, we understand semi-invalid chunks are not up-to-date, but they are still

useful for protecting other chunks in the same stripe. Thus, we need cope with them in GC processes
that must increase the GC overhead and thus impact I/O processing. In order to disclose how many
negative effects in GC processes, caused by migrating semi-valid chunks in replication-enabled
RAID implementations in SSD contexts, we performed an experimental study. In the study, we
compare the conventional RAID-5 implementation with two existing replication-enabled RAID
implementations of CR5M and FusionRAID.

Figures 5(a) and 5(b) show the number of page moves during GC and its overall runtime overhead,
respectively. As illustrated, CR5M and FusionRAID yield more page moves by over than 4.4X and
2.5X in contrast to RAID-5, which is the main cause of the increase in GC overhead, as shown
in Figure 5(b). In other words, increased page move operations delay the processing of regular
application I/O requests [28].
Such observations drive us to propose a new replication policy by considering the update

frequency of data chunks to boost replication efficiency, as well as a new stripe re-organization
scheme to decrease the number of semi-valid data chunks during GC processes, for replication-
enabled RAID implementations in SSD scenarios.

5

Jun Li, Balazs Gerofi, Francois Trahay, Zhigang Cai, and Jianwei Liao

0

100

200

300

wd
ev_
0

stg
_0

stg
1 ts

0
we
b_
0
src
1_
2
src
2_
0

hm
_0

md
s_0

Pa
ge

 m
ov

e
nu

m
be

r (
K

) RAID-5 CR5M FusionRAID
446.3

(a) Page move statistic

(b) GC time statistic

779.6

711.5

0

200

400

600

wd
ev_
0

stg
_0

stg
1 ts

0
we
b_
0
src
1_
2
src
2_
0

hm
_0

md
s_0

G
C

 ti
m

e
(s

ec
on

ds
) RAID-5 CR5M FusionRAID

Fig. 5. The increased page moves and GC time in two typical replication-enabled RAID implementations of
CR5M and FusionRAID.

3 DESIGN AND IMPLEMENTATION OF REP-RAID
3.1 Overview of Rep-RAID

H
os

t I
nt

er
fa

ce

RAID (SSD) Controller Channel0 Flash
blocks

Channeln-1 Flash
blocks

…
…

Less updated

Frequently updated

Distinguish	write	
requests	(§3.2)

D0 D1 P

R1 R1’

RAID Stripe

Replicated pair

Normal read

Parallel read

Reorganize	
stripes	(§3.3)

Rep-RAID

W
rit

e
R

eq
ue

st
s

R
ea

d
R

eq
ue

st
s

Pr
op

os
ed

 M
od

el

Fig. 6. Architectural overview on Rep-RAID.

We propose a new replication scheme for RAID-enabled SSDs called Rep-RAID, where the basic
idea is to replicate the most frequently written chunks. Figure 6 illustrates the architecture
of Rep-RAID. As seen, we first construct a model to direct the replication of data chunks when
servicing an update request. We primarily refer to the factors of the update frequency of data
chunks and the implied GC overhead (see Section 3.2 for more information). We then propose
a stripe reorganization scheme that adaptively rebuilds data stripes during the GC process by
combining the replicated chunks with valid data chunks of existing stripes in GC-targeted blocks
(explained in Section 3.3).

To guarantee the reliability of data pairs that are not protected by RAID, Rep-RAID distributes
the chunks of a data pair to different RAID components (i.e., channels). To put it another way,
the original data stripe has both valid and invalid chunks, so we refer to it as a semi-stripe, and
its valid and invalid data chunks are labelled as semi-valid and semi-invalid, respectively. Note
that, semi-invalid data chunks should be kept for protecting the rest of valid data chunks in a
semi-stripe, even though their data are not up-to-date.

3.2 Model-Based Replication
Replicating data chunks can save the time needed for XOR computation and the software overhead
of the SSD controller caused by updating data stripes in a RAID system. In addition, read parallelism
can be exploited by accessing the data replica that resides on an idle SSD channel for enhancing
read performance. However, replicating data chunks may adversely impact the endurance of SSDs

6

Rep-RAID

D0

PR1’
D1

R1
D0

PR1’
D1

Ch 0

R1
Blk i

Blk m

D0

Ch 1 Ch 2

(a)

(b)

❷Matched

Invalid Stripe ReplicaValidFree

❶Move	valid	page

GC	candidate	block Semi-invalid

D0

P
P

R1’
D1

R1
D0

Page	move ReorganizeCh 0 Ch 1 Ch 2 Ch 0 Ch 1 Ch 2

❸Rewrite	
new	parity

❹ Erase	block

PD1
R1’

Ch 0

D0
Blk i

Blk m

R1

Ch 1 Ch 2

❶Move	valid	page

R1

PD1
R1’

D0
R1

❷Matched

Ch 0 Ch 1 Ch 2Page	move Reorganize

R1

P
P

D1
R1’

D0
R1

Ch 0 Ch 1 Ch 2

❹Erase	block
❸Rewrite	
new	parity

Semi-valid

Fig. 7. Example of stripe reorganization with the replicated chunks and valid chunks of semi-stripe. (a) the
reorganization starting from semi-valid chunks. (b) the reorganization starting from replicated chunks. Note
that we use three channels (Ch0-Ch2) and each data stripe has two data chunks and one parity chunk, for
simplicity of illustration.

since more space is needed for storing replicas, which in turn leads to more erase operations on
SSD blocks.

To balance the benefits and the overhead of data replication in RAID-enabled SSDs, we construct
a mathematical model to steer replication on update requests. Using the notations in Table 1, we
trigger the replication process for servicing an update request when the following formula holds:∑︁

𝑖∈𝐴
𝑓 (𝑖) · (𝑡𝑋𝑂𝑅 + 𝑡𝑆𝑜𝑓 𝑡) + 𝑡𝑅 · |𝐴| ≥ 𝛿 · |𝐴| · 𝑡𝐺𝐶 + 𝛼 · |𝐴| · 𝑡𝑅𝑒𝑜𝑟𝑔 (1)

Although each replication can save 𝑡𝑋𝑂𝑅+𝑡𝑆𝑜 𝑓 𝑡 , the parameter 𝑡𝑅 cannot be accurately determined
that is related to the idle/busy degree of the RAID system and its hardware configuration (e.g., the
total number of SSD channels).
Equation 1 unveils that Rep-RAID only replicates data chunks with high update frequency for

maximizing the benefits of the replication functionality in the context of RAID-enabled SSDs. In
other words, we only replicate data chunks that meet the requirement of access frequency according
to Equation 2:

𝑓 (𝑖∗) =
𝛿 · 𝑡𝐺𝐶 + 𝛼 · 𝑡𝑅𝑒𝑜𝑟𝑔 − 𝑡𝑅

𝑡𝑋𝑂𝑅 + 𝑡𝑆𝑜𝑓 𝑡
(2)

The primary principle of Rep-RAID is to replicate frequently written data for eliminating 𝑡𝑋𝑂𝑅 +
𝑡𝑆𝑜𝑓 𝑡 , and the perfect situation of GC is about no replicated chunks in the target block (i.e. the cost
of 𝛿 · 𝑡𝐺𝐶), and thus no stripe reorganization (i.e. the cost of 𝛼 · 𝑡𝑅𝑒𝑜𝑟𝑔). We analyze the history
information in the last time window to dynamically estimate the value of 𝑓 (𝑖∗) in Equation 2, for
directing data replication in the current time window [29, 37].

To periodically adjust the value of 𝑓 (𝑖∗) in a real-time manner, we adaptively tune the size of time
window for counting the access frequency of data chunks by following Equation 3. Consequently,
only the accesses that occur in the time window of 𝑇 ∗ are considered for determining the value of
𝑓 (𝑖∗).

7

Jun Li, Balazs Gerofi, Francois Trahay, Zhigang Cai, and Jianwei Liao

Table 1. Notation descriptions in the replication model

Notations Explanation Descriptions

𝑓 (𝑖) The write access frequency of the block 𝑖
during the fixed time window 𝑇

𝐴 Set of replicated data chunks
|𝐴| Element number of set 𝐴

𝛿
The increasing GC number induced by
replication data

𝛼
The increasing number of reorganizing
stripes induced by replication data

𝑡𝑋𝑂𝑅 Time of each XOR computation
𝑡𝑆𝑜𝑓 𝑡 Software time by managing update chunks
𝑡𝐺𝐶 Average time of each GC processing

𝑡𝑅
Average time saved by reading replicated
data chunks

𝑡𝑅𝑒𝑜𝑟𝑔 Average time of reorganizing stripes
𝑓 (𝑖∗) The least value of 𝑓 (𝑖) for replication

𝑇 ∗ =
𝑇

𝑓 (𝑖∗) (3)

where 𝑇 is the size of the default time window, whose unit is the number of request. We use 1024
in our design by referring to [36, 37]. Note that, the access frequency counter should be renewed
when entering in the next time window.

3.3 Stripe Reorganization in GC
Because of the replication feature in RAID-enabled SSDs, the storage system holds data stripes
that contain valid chunks, semi-stripes that contain semi-valid chunks and semi-invalid chunks,
and replication pairs that contain valid chunks and their replicas at the same time. Based on
this classification, we propose a stripe reorganization scheme to build new data stripes during
garbage collection by combining the valid chunks of semi-stripes and the replicated chunks to
confine the number of replication pairs and semi-stripes. By referring to Figure 7(a), we describe
these terms with examples. Because of previously being updated as replicas, D1 is now an obsolete
semi-invalid data chunk, whose stripe is a semi-stripe, and other valid data chunks (e.g., D0) are
labelled as semi-valid. The replication pair of R1 and R1’ that are stored in the different channel,
to ensure data reliability.
After determining a GC candidate block by following the GC policy, (e.g. greedy policy [38]),

Rep-RAID performs page moves in the following order:

(1) Semi-valid chunks. Rep-RAID first selects to migrate semi-valid chunks. Then it searches
replicated chunks in the GC candidate block, and the components of stripe reorganization
matches when the mirror data of replicated chunk and the semi-invalid chunk in the semi-stripe
are in the same channel. Finally, it can build the new stripe through combining the mirror data
of replicated chunks and the other chunks in the matched semi-stripe.
Figure 7(a) shows a reorganization example triggered by migrating the semi-valid chunk of
𝐷0. It first migrates 𝐷0 to a new block, and then searches data chunks on other channels for
building a new stripe. Rep-RAID prefers to find a replicated data chunk (e.g. 𝑅1′) in the block
that has a semi-invalid data chunk (e.g. 𝐷1) belonging to the same stripe as 𝐷0. Then, 𝐷0 and
𝑅1′ can be reorganized as a new data stripe, and 𝑅1 in the GC block can be directly set as invalid

8

Rep-RAID

data, to avoid migration in GC. After the new data stripe is built, the semi-invalid chunks 𝐷1 on
the other channel can be converted into invalid chunks, which can be reclaimed in future GC
execution.

(2) Replicated chunks. After all semi-valid chunks in the GC block have been moved out, Rep-RAID
handles the replicated chunks. We can obtain a match for the replicated chunk, once there is
a semi-invalid chunk in the GC candidate block. Then, we can construct a new data stripe by
utilizing the replicated chunk to replace the position of semi-invalid chunk in the GC candidate
block.
Figure 7(b) demonstrates the reorganization case triggered by migrating the replicated chunk
of 𝑅1. Different from the case in (1), the matching process only searches the semi-invalid data
chunk (e.g., 𝐷0) in the GC block, and it can be directly reclaimed without migration once the
new stripe is built. At last, the mirror chunk of replicated chunks 𝑅1′ can be reclaimed in a
future GC process.

(3) The rest of not invalid chunks. After migrating the semi-valid chunks and the replicated
chunks, both semi-invalid chunks and valid chunks, are moved out from the GC block with the
default migration scheme.

Note that, it traverses semi-valid chunks and replicated chunks in the GC target block, and
performs two matched cases of stripe reorganization, as illustrated in Figure 7. At last, the rest of
unmatched data chunks are mandatorily moved as default.

3.4 Implementation
Algorithm 1 shows the implementation details of the model-based replication and stripe reorgani-
zation of Rep-RAID. Lines 18-21 depict the workflow of servicing an update request. If the update
frequency of target data is not smaller than the threshold of 𝑓 (𝑖∗), Rep-RAID conducts a replication
process by calling Function replica_write(). Otherwise, it carries out a write process by calling
Function stripe_write().

The value of 𝑓 (𝑖∗) is initially set to 1, and the write requests will be replicated at the first update.
Moreover, Rep-RAID enables adjusting the value of 𝑓 (𝑖∗) in an adaptive manner after the GC process
according to I/O characteristics of applications. Line 16 indicates the rules of modifying the value
of 𝑓 (𝑖∗). Note that the update count of data chunks will be cleared when the time window 𝑇 ∗ is
reached.
Lines 1-14 describe the process of stripe reorganization during the GC process. It traverses the

replicated chunks and the semi-valid chunks in the GC target block, and performs two matched
cases of stripe reorganization that are previously introduced in Figure 7.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Environment
We have performed experimental evaluation using the widely studied SSD simulator SSDSim [42],
which has been modified to support RAID-5. We use a local ARM-based machine as SSD controllers
have usually limited computation power and memory capacity [11]. The machine has an ARM
Cortex A7 Dual-Core with 800MHz, 128MB of memory and 32-bit Linux (ver 3.1). We simulated an
128-GB SSD and configured the performance parameters based on the values used in [40]. To reflect
the impact of garbage collection before replaying traces, the simulated SSD is aged so that valid
data and invalid data occupy 80% and 10% of its capacity, respectively. We obtain these settings by
referring to previously published studies such as [11, 41]. The value of XOR latency is tested by the
local ARM-based machine, which has been used for evaluation in RAID-enabled SSDs [11], and

9

Jun Li, Balazs Gerofi, Francois Trahay, Zhigang Cai, and Jianwei Liao

Algorithm 1: I/O and GC processes in Rep-RAID
Input: args of pages, replicated pages, semi-stripe;
Output: null;

1 Function stripe_reorganization()
2 for semi-valid_page in block do
3 for replica_page in block do
4 if semi-invalid_page.channel
5 ==replica_page.mirror_channel then
6 /*the case in Figure 7(a)*/
7 page_migrate (semi-valid_page);
8 build_new_stripe();
9 break;

10 for replica_page in block do
11 /*the case in Figure 7(b)*/
12 if semi-invalid_page then
13 page_migrate (replica_page);
14 build_new_stripe();

15 /*update 𝑓 (𝑖∗)*/
16 𝑓 (𝑖∗) = 𝛿 ·𝑡𝐺𝐶+𝛼 ·𝑡𝑅𝑒𝑜𝑟𝑔−𝑡𝑅

𝑡𝑋𝑂𝑅+𝑡𝑆𝑜𝑓 𝑡 ;
17 /*main function*/
18 if update request & req.update_num ≥ 𝑓 (𝑖∗) then
19 replica_write();
20 else
21 stripe_write();
22 if GC then
23 stripe_reorganization();

24 page_migrate(); //the rest valid pages
25 erase();
26 if t > 𝑇 ∗ then
27 reset page.update_num;

the setting of software latency is referred to [24]. Table 2 shows the values of parameters in our
evaluation.

With respect to the benchmarks, we utilized a set ofMSR Cambridge block I/O traces [43], which
are often used in the domain of SSD optimization [38, 39] as workloads for RAID-5 system. Table 3
presents the detailed specifications on the traces, where the metric of Update R indicates the update
ratio of write requests.

We compare Rep-RAID to three RAID based mechanisms:
• RAID-5 indicates the conventional RAID-5 implementation inside SSDs without replication, as
the baseline method.

• CR5M [25] is a mirroring-assisted channel-level RAID5 architecture for a single SSD. It mirrors
the requests with small sizes into a dedicated chip (called mirroring chip) in the same channel of

10

Rep-RAID

Table 2. Experimental SSD-related parameters

Parameters Values Parameters Values
Channel Size 8 Read latency 0.045ms
Chip Size 4 Write latency 0.7ms
Plane Size 4 Erase latency 3.5ms
Block per plane 512 GC threshold 10%
Page per block 256 XOR latency 0.019ms
Page size 8KB Software latency 1.82ms
FTL scheme Page Wear-leveling Static

Table 3. The Characteristics of Evaluated Workloads

Trace Write Ratio Write Volume Update R
wdev_0 79.9% 7.1GB 82.7%
stg_0 84.8% 5.1GB 81.9%
stg_1 36.3% 6.0GB 69.2%
ts_0 82.4% 11.3GB 65.9%
web_0 70.1% 11.7GB 79.0%
src1_2 74.6% 44.1GB 66.5%
src2_0 88.7% 9.3GB 70.2%
hm_0 64.5% 20.5GB 67.1%
mds_0 88.1% 7.4GB 79.6%

original data chunk. CR5M is the most related work to our proposal that supports replication in
channel-level RAID5-enabled SSDs.

• FusionRAID [24] temporally replicates data chunks of small write requests to underlying flash
memory and later converses the replicated chunks into RAID stripes during idle periods. To
evaluate FusionRAID in the context of RAID-enabled SSDs, we apply FusionRAID in the default
channel-level RAID-5 implementation.

4.2 Results and Discussions
To characterize our proposed mechanism, we use the following two performance metrics: (a) I/O
latency that is the average I/O duration and (b) long tail latency that is the distribution of the
duration of the slowest 1% of the I/O requests.

4.2.1 I/O Latency. We replayed the I/O traces and collected results on I/O latency with the selected
RAID implementations. Because I/O latency greatly varies from case to case, we count the normal-
ized I/O latency of all selected traces. Figure 8 presents the average latency of write requests, read
requests, and all I/O requests.

Figure 8(a) shows the results of average write latency. As seen, CR5M, FusionRAID and Rep-RAID
yield better performance on write responsiveness by 6.5%, 22.5% and 34.7%, respectively, when
compared to the baseline of RAID-5. This fact verifies that replicating data chunks can avoid XOR
computations and software overhead of updating the relevant data stripes, ultimately benefiting
the write latency.

Another observation is that, while CR5M and FusionRAID both utilize the replication method to
boost the responsiveness of write requests, CR5M cannot perform better than FusionRAID, even
worse than RAID-5 in the some cases (i.e., src1_2 and hm_0). This is because CR5M replicates the
small update requests but stores them in two chips of the same channel in channel-RAID5 SSDs.

11

Jun Li, Balazs Gerofi, Francois Trahay, Zhigang Cai, and Jianwei Liao

0

50

100

wd
ev_
0

stg
_0

stg
1 ts

0
we
b_
0
src
1_
2
src
2_
0

hm
_0

md
s_0

N
or

m
al

iz
ed

I/O

 la
te

nc
y

(%
)

0

50

100

wd
ev_
0

stg
_0

stg
1 ts

0
we
b_
0
src
1_
2
src
2_
0

hm
_0

md
s_0

N
or

m
al

iz
ed

re

ad
 la

te
nc

y
(%

)
0

50

100

wd
ev_
0

stg
_0

stg
1 ts

0
we
b_
0
src
1_
2
src
2_
0

hm
_0

md
s_0

N
or

m
al

iz
ed

w

rit
e

la
te

nc
y

(%
) RAID-5 CR5M FusionRAID Rep-RAID

(a) Average write latency

(c) Average I/O latency

(b) Average read latency

159.8

166.8196.0

163.2

Fig. 8. I/O latency of evaluated RAID implementations.

Although this replication layout can protect the replication in the chip level, the access to these
replication cannot exploit the parallelism of channel level inside SSDs.
More importantly, Rep-RAID decreases the write latency by 16.3% on average compared to

FusionRAID. This is because Rep-RAID methods selectively replicate frequently written chunks
by referring to the replication threshold and support organizing data stripes by combining the
replicated chunks and the semi-invalid chunks of existing stripes. As a result, it can minimize the
number of semi-invalid data chunks and thus reduce the GC time that is the major factor in the I/O
processing delay.

Figure 8(b) presents the results of average read latency. As seen, CR5M does not perform well in
the most cases, in contrast to FusionRAID, even worse than the baseline of RAID-5. This is because
the setting of all experimental methods are based on channel-level RAID-5, but the design of CR5M
utilizes different chips in the same channel to hold the replication pair, which results in not only
the lower parallelism, but also the worse load balance at the channel level.

Similar to the results of write latency, FusionRAID and Rep-RAID outperform the baseline RAID-5
in read performance as well. Moreover, Rep-RAID does better than FusionRAID, since the different
selection of replication data and the decreased GC time reduce the interference towards the response
of read requests, i.e., read/write interference [19] and read/GC interference [20].

In summary, Rep-RAID achieves the best I/O performance across the selected workloads. Specifi-
cally, Rep-RAID reduces the total I/O latency by 33.7%, 28.7% and 16.7% (see Figure 8(c)), when
compared to conventional RAID-5, replication-enabled CR5M and FusionRAID, respectively.

4.2.2 Long-Tail Latency. The measure of long-tail latency is another critical indicator of SSD I/O
performance, which is commonly expressed in the form of the Cumulative Distribution Function

12

Rep-RAID

0 500 1000 15000 4000 8000 12000
99.0%
99.2%
99.4%
99.6%
99.8%

100.0%

0 400 800 1200

99.0%
99.2%
99.4%
99.6%
99.8%

100.0%

0 400 800 1200

99.0%
99.2%
99.4%
99.6%
99.8%

100.0%

0 200 400 600

RAID-5 CR5M FusionRAID Rep-RAID

(g) trace: src2_0

(b) trace: stg_0

(e) trace: web_0

(a) trace: wdev_0

(h) trace: hm_0

(c) trace: stg_1

(f) trace: src1_2

(i) trace: mds_0

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

I/O Latency (ms)

(d) trace: ts_0

0 500 1000 1500 0 500 1000 1500

0 500 1000 1500 0 1000 2000 3000

Fig. 9. CDF of long-tail latency of the selected methods.

0

200

400

wd
ev_
0

stg
_0

stg
1 ts

0
we
b_
0
src
1_
2
src
2_
0

hm
_0

md
s_0

Pa
ge

 m
ov

e
nu

m
be

r (
K

)

RAID-5 CR5M FusionRAID Rep-RAID

446.3779.6

Fig. 10. The comparison of valid page migrations.

(CDF). We collected the results of long-tail latency after replaying the selected traces. Figure 9
reports the CDF of the slowest 1% of the I/O requests.

As seen, though the I/O performance of CR5M performs similarly as FusionRAID when running
the most workloads, it does not yield an attractive tail latency. Specifically, CR5M shows the worse
tail latency by 39.6% on average at the 99.99th percentile, compared with RAID-5. This is because,
the access parallelism cannot be well utilized especially when the I/Os are intensive, and the
increased number of page move heavily impacts the I/O response.
On the other hand, FusionRAID can improve the tail latency compared to RAID-5, since it can

mitigate the negative impact of I/O requests caused by bursty requests. Thus, the tail latency can
be further improved. On the other hand, Rep-RAID further reduces long-tail latency by 7.8% on
average at the 99.99th percentile in contrast to FusionRAID. This is because Rep-RAID relieves the
negative impact of page migration during garbage collection.

4.3 GC Statistics
This section further profiles the GC operations and each GC consists of multiple page moves and one
erase. GC is a significant cause of delaying I/O processing in the SSD device [28], though replication
methods can mitigate the software overhead that becomes the major component of postponing I/O
servicing in such RAID-enabled SSD. We record the number of valid page movements, the number
of erase operations caused by all GC operations, and the time required for completing GC.

13

Jun Li, Balazs Gerofi, Francois Trahay, Zhigang Cai, and Jianwei Liao

4.3.1 Valid Page Moves. Figure 10 presents the amount of page moves during the GC process.
RAID-5 yields the least number of valid page moves, but it suffers from the overhead of software
and xor in RAID-enabled SSDs when servicing I/O requests. The RAID implementations that utilize
replication (i.e., CR5M, FusionRAID and Rep-RAID) require more page moves. This is because all
these schemes induce a number of semi-invalid chunks in existing stripes after making replicas for
them. Such semi-invalid chunks are still useful to protect other valid chunks in the stripe, and thus,
they need to be migrated during GC. CR5M has the most number of valid page moves in case of
the most workloads, caused by the placement of replication data in the same channel, that leads to
an imbalanced data distribution.
More importantly, Rep-RAID reduces the number of valid page moves by 31.9% on average

compared to FusionRAID. This is because Rep-RAID combines the valid chunks in semi-stripes
with the replicated chunks to reorganize new data stripes, which, in turn, minimizes the numbers
of semi-invalid chunks and replicated chunks.

Table 4. The number of erase operations induced by GC

Trace RAID-5 CR5M FusionRAID Rep-RAID
wdev_0 10932 11023 10965 10961
stg_0 23657 24394 24042 23874
stg_1 9326 9342 9327 9324
ts_0 17509 17921 17729 17655
web_0 23365 23966 23689 23583
src1_2 51429 51836 51675 51567
src2_0 15975 16302 16120 16059
hm_0 35011 37361 36068 35638
mds_0 12219 12306 12262 12258

4.3.2 Erase Statistics. Table 4 reports the results of erase numbers when using the four RAID
implementations. As seen, RAID-5 unveils the least number of erases, and Rep-RAID, FusionRAID
and CR5M increase the erase number by 0.69%, 1.08% and 2.15% in contrast to the baseline of
RAID-5. This is because although replication-enabled methods can distribute the chunks more
evenly that can reduce the erase number, less space can be reclaimed after each GC operation in
replication-enabled schemes and more GC operations are triggered. Furthermore, Rep-RAID leads
to a slight reduction in erase operations compared to FusionRAID and CR5M, as it can minimize the
number of semi-stripes by reorganizing stripes during garbage collection, i.e., a fewer page move
number presented in Figure 10.

4.3.3 GC Time Overhead. Figure 11 demonstrates the overall time needed for completing all GC
operations and stripe reorganization processes. Both RAID-5 and CR5M do not have the process of
stripe reorganization, so they do not has the organization part of time overhead. As seen, Rep-RAID
reduces the GC time by 12.1% compared to FusionRAID, though it proactively does athe stripe
organization associated with GC processes.

4.4 Overhead Analysis
This section presents the spatial and runtime overhead caused by our proposal. Because Rep-RAID
focuses on the replication of frequently accessed data chunks, it requires recording the update
count of data chunks. More specifically, the spatial overhead is 2bit × 16,777,216 = 4MB, which
we believe is an acceptable amount of memory space in the case of a 128-GB SSD. Note that
16,777,216 is the total number of chunks in the 128-GB SSD.

14

Rep-RAID

0

300

600

wd
ev_
0

stg
_0

stg
1 ts

0
we
b_
0
src
1_
2
src
2_
0

hm
_0

md
s_0

G
C

 ti
m

e
(s

ec
on

ds
) RAID-5 CR5M FusionRAID Rep-RAID

711.5

Fig. 11. The comparison of GC time.

0

10

20

0

20

40

wde
v_

0
stg

_0
stg

1 ts
0

web
_0

src
1_

2
src

2_
0

hm
_0

mds
_0

R
at

io
 (1

0-
7)

C
om

pu
tin

g
tim

e
(m

ili
se

co
nd

s)

Time overhead
Ratio to total I/O time

74.8

Fig. 12. Time overhead in the proposed Rep-RAID.

In addition, the replication-enabled methods, i.e., CR5M, FusionRAID and our proposed Rep-RAID
need holding the replica table. As the entries in replica table are dynamically appended and removed,
the related work needs 452.3KB at most, while our proposed Rep-RAID requires a maximum of
485.8KB, when running the evaluated workloads.

Except for these spatial overhead, Rep-RAID needs recording three parameters in Equation 2, i.e.,
increased GC cost 𝛿 · 𝑡𝐺𝐶 , stripe reorganization cost 𝛼 · 𝑡𝑅𝑒𝑜𝑟𝑔, and replica read benefit 𝑡𝑅 , which
consumes 3 × 4B = 12B.

For adjusting the replication threshold of 𝑓 (𝑖∗) and reorganizing data stripe, Rep-RAID methods
need renewing the update count of chunks in every time window of𝑇 , determine the GC candidate
block in a plane followed by proposed GC policy, and traversing all semi-invalid chunks and
replicated chunks associated with the GC candidate block.

We recorded the time overhead while running the benchmarks, and Figure 12 shows the results.
As seen, the computation overhead in Rep-RAID methods accounts for less than (1.3e-4)% of the
total I/O processing time, varying from 3.6 to 74.8 milliseconds, which we believe is negligible,
even on a resource-limited ARM platform.

5 RELATEDWORK
Write penalty is the main issue of RAID systems, which becomes more severe in the context of
RAID-enabled SSDs due to the nature of out-of-place updates of SSDs [30]. To address this
shortcoming, a RAID buffer can be introduced to reduce the quantity of writes forwarded to the
underlying flash cells. Lee et al. [15] proposed flash-aware redundancy array (FRA) to cut down
parity updates in RAID-enabled SSDs. Their technique can absorb a number of write requests by
holding the updated data in the RAID buffer. For absorbing even more write requests, Li et al. [11]
introduced a patch-based data management scheme for dual-copy buffers in RAID-enabled SSDs,
which only stores the updated part of data chunks in the buffer. Besides, a patch-based read/write
mode is proposed for correctly servicing I/O requests. By further considering the stripe information,
Tang et al. [34] presented a stripe-aware buffer policy to coalesce consecutive writes to the same
file. Their proposal prefers evicting the data chunks that belong to the same stripe, by taking the
factor in the reduction of parity updates into account.
Considering that the parity chunks are the most frequently updated parts in RAID stripes, a

dedicated parity buffer, which decreases the write operations on parity chunks, is introduced
in [31]. Moreover, Im and Shin [32] presented a partial parity technique to minimize the number

15

Jun Li, Balazs Gerofi, Francois Trahay, Zhigang Cai, and Jianwei Liao

of read operations required for calculating a parity chunk by exploiting the implicit redundant
data of flash memory. Based on the partial parity update approach, Kim et al. [10] introduced a
RAID scheme that allows flexible stripe sizes and parity placement to minimize parity updates.
Their technique, however, comes at the expense of more SSD pages for parity chunks. For further
eliminating updates on the parity chunks, Li et al. [14] proposed to form data stripes by using
the same level hotness of data chunks. Then it may have more full-stripe writes in a short period,
and thus multiple data chunks in the same stripe can update the parity chunks only once. These
methods succeed in utilizing the DRAM buffer to absorb writes of data and parity chunks. However,
limited size of DRAM buffer cannot avoid these writes onto the underlying flash blocks.

RAID requires XOR computations and software overhead, which inevitably impact the scheduling
of normal I/O requests. Some recent studies introduce the replication (mirror) technique into the
SSD-related RAID systems for relieving the additional write traffic caused by RAID. Pan et al. [25]
proposed a mirroring method for small write/update requests using an extra mirror chip per channel
to avoid parity calculations and updates. In particular, it writes the updated data chunks in the
original SSD chip and makes a replicated chunk in the reserved mirror chip to ensure data reliability.
However, it needs to reserve extra chips of SSD for holding the replicated data. In addition, it will
reorganize all replicated (up-to-date) chunks into data stripes if-and-only-if all relevant chunks in
the original data stripe have been replicated or updated.
To accelerate the write responsiveness in bursty application workloads, Jiang et al. [24] have

proposed a similar replication method (called FusionRAID) targeting small write requests. Instead
of directly updating the data stripe, FusionRAID temporally replicates data chunks of small write
requests to lighten I/O congestion, and later it converts the replicated chunks into RAID stripes
according to various configurable thresholds. Because of the nature of out-of-place update,
obsolete data chunks must be kept as ‘valid’ to protect other valid data chunks in the original stripe.
After a certain period of time, replicated data chunks will be reorganized as new data stripes when
predefined conditions are met. However, data chunks in new stripes may have different levels of
access frequency which renders some data chunks obsolete but ‘valid’ and thus it increases the
overhead of GC.

6 CONCLUSION
We have proposed and evaluated an integrated data replication and garbage collection scheme
for RAID-enabled SSDs that mitigates the negative impact caused by write penalty. To this end,
our proposal enables a mathematical model to guide the replication of frequent update requests.
Furthermore, it reorganizes the cold replicated chunks with the semi-stripes to build the new data
stripes, which in turn decreases data movement during garbage collection. Experimental results
show that the proposed approach reduces the overall I/O latency and tail latency by 16.7% and
7.8%, respectively, when compared to state-of-the art methods.

ACKNOWLEDGMENTS
This work was partially supported by Chongqing Graduate Research and Innovation Project (No.
CYB21110), and China Scholarship Council (No. 202106990042).

REFERENCES
[1] Bryan S. Kim, Jongmoo Choi and Sang Lyul Min. Design tradeoffs for SSD reliability. In USENIX Conference on File and

Storage Technologies (FAST), 2019: 281–294.
[2] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin Lee, Changwoo Min and Sam H. Noh. Alleviating garbage

collection interference through spatial separation in all flash arrays. In USENIX Annual Technical Conference (ATC),
2019: 799-812.

16

Rep-RAID

[3] Mahesh Balakrishnan, Asim Kadav, Vijayan Prabhakaran, and Dahlia Malkhi. Differential raid: Rethinking raid for ssd
reliability. ACM Transactions on Storage, Vol. 6(2): 1-22, 2010. https://doi.org/10.1145/1807060.1807061

[4] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu. Error characterization, mitigation,
and recovery in flash-memory-based solid-state drives. Proceedings of the IEEE, Vol. 105(9): 1666-1704, 2017.
https://doi.org/10.1109/JPROC.2017.2713127

[5] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. 2016. Flash reliability in production: The expected and the
unexpected. In USENIX Conference on File and Storage Technologies (FAST). 67–80.

[6] NAND Flash Media Management Through RAIN. Retrieved from https://www.micron.com/-
/media/client/global/documents/products/technical-marketing-brief/brief_ssd_rain.pdf

[7] P320h 2.5-Inch PCIe NAND SSD Features. Retrieved from https://www.micron.com/-
/media/client/global/documents/products/data-sheet/ssd/p320h_2_5.pdf

[8] Huawei Tecal ES3000. Retrieved from https://www.storagereview.com/review/huawei-tecal-es3000-application-
accelerator-review

[9] Soojun Im, and Dongkun Shin. Improving SSD reliability with RAID via elastic striping and anywhere
parity. In Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2013.
https://doi.org/10.1109/DSN.2013.6575359.

[10] Jaeho Kim, Eunjae Lee, Jongmoo Choi, Donghee Lee, and Sam H. Noh. Chip-level raid with flexible stripe size
and parity placement for enhanced ssd reliability. IEEE Transactions on Computers, Vol. 65(4): 1116-1130, 2016.
https://doi.org/10.1109/TC.2014.2375179

[11] Jun Li, Zhibing Sha, Zhigang Cai, François Trahay, and Jianwei Liao. Patch-Based Data Management for Dual-Copy
Buffers in RAID-Enabled SSDs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 11, pp. 3956-3967, 2020. https://doi.org/10.1109/TCAD.2020.3012252

[12] Zhibing Sha, Jun Li, Zhigang Cai, Min Huang, Jianwei Liao, and Francois Trahay. Degraded Mode-benefited I/O
Scheduling to Ensure I/O Responsiveness in RAID-enabled SSDs. ACM Transactions on Design Automation of Electronic
Systems, 2022. https://doi.org/10.1145/3522755

[13] Jiguang Wan, Wei Wu, Ling Zhan, Qing Yang, Xiaoyang Qu, and Changsheng Xie. DEFT-Cache: A cost-effective and
highly reliable SSD cache for RAID storage. In International Parallel and Distributed Processing Symposium (IPDPS), pp.
102-111, 2017. https://doi.org/10.1109/IPDPS.2017.54

[14] Yongkun Li, Biaobiao Shen, Yubiao Pan, Yinlong Xu, Zhipeng Li, and John C. S. Lui. Workload-aware elastic striping
with hot data identification for SSD RAID arrays. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 36(5): 815-828, 2016. https://doi.org/10.1109/TCAD.2016.2604292

[15] Yangsup Lee, Sanghyuk Jung, and Yong Ho Song. FRA: a flash-aware redundancy array of flash storage devices. In
IEEE/ACM international conference on Hardware/software codesign and system synthesis (CODES+ISSS), pp. 163-172,
2009. https://doi.org/10.1145/1629435.1629459

[16] Soojun Im and Dongkun Shin. Delayed partial parity scheme for reliable and high-performance flash
memory SSD. In IEEE Symposium on Mass Storage Systems and Technologies (MSST), pp. 1-6, 2010.
https://doi.org/10.1109/MSST.2010.5496997

[17] Yubiao Pan, Yongkun Li, Yinlong Xu, and Zhipeng Li. Grouping-based elastic striping with hotness awareness for
improving SSD raid performance. In Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pp. 160-171, 2015. https://doi.org/10.1109/DSN.2015.51

[18] Youmin Chen, Youyou Lu, Pei Chen, and Jiwu Shu. Efficient and Consistent NVMM Cache for SSD-Based File System.
IEEE Transactions on Computers, Vol. 68(8): 1147-1158, 2018. https://doi.org/10.1109/TC.2018.2870137

[19] Suzhen Wu, Weiwei Zhang, Bo Mao, and Hong Jiang. HotR: Alleviating Read/Write Interference with HotRead Data
Replication for Flash Storage. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2019: 1367-1372.
https://doi.org/10.23919/DATE.2019.8715100

[20] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman, Andrew A. Chien, and
Haryadi S. Gunawi. Near-perfect elimination of garbage collection tail latencies in NAND SSDs. In USENIX Conference
on File and Storage Technologies (FAST), pp. 15-28, 2017.

[21] Myoungsoo Jung, Ramya Prabhakar, and Mahmut Taylan Kandemir. Taking garbage collection overheads off the
critical path in SSDs. In International Conference on Distributed Systems Platforms and Open Distributed Processing,
2012: 164-186.

[22] Wonkyung Kang, Dongkun Shin, and Sungjoo Yoo. Reinforcement Learning-Assisted Garbage Collection to
Mitigate Long-Tail Latency in SSD. In ACM Transactions on Embedded Computing Systems, 2017, 16(5s): 1-20.
https://doi.org/10.1145/3126537

[23] Wonil Choi, Myoungsoo Jung, Mahmut Kandemir, and Chita Das. 2018. Parallelizing garbage collection with I/O to
improve flash resource utilization. In International Symposium on High-Performance Parallel and Distributed Computing
(HPDC). https://doi.org/10.1145/3208040.3208048

17

Jun Li, Balazs Gerofi, Francois Trahay, Zhigang Cai, and Jianwei Liao

[24] Tianyang Jiang, Guangyan Zhang, Zican Huang, Xiaosong Ma, Junyu Wei, Zhiyue Li, and Weimin Zheng. FusionRAID:
Achieving Consistent Low Latency for Commodity SSD Arrays. In USENIX Conference on File and Storage Technologies
(FAST), 2021: 355-370.

[25] Wen Pan and Tao Xie. Amirroring-assisted channel-RAID5 SSD for mobile applications.ACMTransactions on Embedded
Computing Systems, 2018, 17(4): 1-27. https://doi.org/10.1145/3209625

[26] Wenhui Zhang, Qiang Cao, Hong Jiang, and Jie Yao. Improving overall performance of TLC SSD by exploit-
ing dissimilarity of flash pages. IEEE Transactions on Parallel and Distributed Systems, 2019, 31(2): 332-346.
https://doi.org/10.1109/TPDS.2019.2934458

[27] Congming Gao, Liang Shi, Kai Liu, Chun Jason Xue, Jun Yang, and Youtao Zhang. Boosting the performance of SSDs
via fully exploiting the plane level parallelism. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(9):
2185-2200. https://doi.org/10.1109/TPDS.2020.2987894

[28] Wonkyung Kang and Yoo Sungjoo. Dynamic management of key states for reinforcement learning-assisted garbage
collection to reduce long tail latency in SSD. In Proceedings of the 55th Annual Design Automation Conference (DAC),
pp. 1-6, 2018. https://doi.org/10.1145/3195970.3196034

[29] Zhibing Sha, Jun Li, Lihao Song, Jiewen Tang, Min Huang, Zhigang Cai, Lianju Qian, Jianwei Liao, and Zhiming Liu.
2021. Low I/O Intensity-aware Partial GC Scheduling to Reduce Long-tail Latency in SSDs. ACM Transactions on
Architecture and Code Optimization, 18, 4, Article 46 (December 2021), 25 pages. https://doi.org/10.1145/3460433

[30] Sergey Hardock, Petrov Ilia, and Gottstein Robert et al. From in-place updates to in-place appends: Revisiting out-of-
place updates on flash. In proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD), pp.
1571-1586, 2017. https://doi.org/10.1145/3035918.3035958

[31] Soojun Im and Dongkun Shin. Delayed partial parity scheme for reliable and high-performance flash memory SSD. In
IEEE Symposium onMass Storage Systems and Technologies (MSST), 2010: 1-6. https://doi.org/10.1109/MSST.2010.5496997

[32] Soojun Im and Dongkun Shin. Flash-aware RAID techniques for dependable and high-performance flash memory SSD.
IEEE Transactions on Computers, 2010, 60(1): 80-92. https://doi.org/10.1109/TC.2010.197

[33] SuzhenWu,Weidong Zhu, Guixin Liu, Hong Jiang, and BoMao. GC-aware request steering with improved performance
and reliability for SSD-based RAIDs. In IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2018:
296-305. https://doi.org/10.1109/IPDPS.2018.00039

[34] Chenlei Tang, Jiguang Wan, Yifeng Zhu, Zhiyuan Liu, Peng Xu, Fei Wu, and Changsheng Xie. RAFS: A RAID-Aware
File System to Reduce the Parity Update Overhead for SSD RAID. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2019: 1373-1378. https://doi.org/10.23919/DATE.2019.8714938

[35] Youngjae Kim, Sarp Oral, Galen M. Shipman, Junghee Lee, David A. Dillow, and Feiyi Wang. Harmonia: A glob-
ally coordinated garbage collector for arrays of solid-state drives. IEEE Symposium on Mass Storage Systems and
Technologies (MSST). IEEE, 2011: 1-12. https://doi.org/10.1109/MSST.2011.5937224

[36] Jun Li, Xiaofei Xu, Xiaoning Peng, and Jianwei Liao. Pattern-based write scheduling and read balance-oriented wear-
leveling for solid state drivers. In IEEE Symposium on Mass Storage Systems and Technologies (MSST), 2019: 126-133.
https://doi.org/10.1109/MSST.2019.00-10

[37] Xiaofei Xu, Zhigang Cai, Jianwei Liao, and Yutaka Ishiakwa. Frequent access pattern-based prefetching inside
of solid-state drives. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2020: 720-725.
https://doi.org/10.23919/DATE48585.2020.9116382

[38] Congming Gao, Min Ye, Qiao Li, Chun Jason Xue, Youtao Zhang, Liang Shi, and Jun Yang. 2019. Constructing
Large, Durable and Fast SSD System via Reprogramming 3D TLC Flash Memory. In Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). Association for Computing Machinery, New York, NY, USA, 493–505.
https://doi.org/10.1145/3352460.3358323

[39] Chun-Yi Liu, Yunju Lee, Myoungsoo Jung, Mahmut Taylan Kandemir, and Wonil Choi. 2021. Prolonging 3D NAND
SSD lifetime via read latency relaxation. In ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). Association for Computing Machinery, New York, NY, USA, 730–742.
https://doi.org/10.1145/3445814.3446733

[40] Jinhua Cui, Junwei Liu, Jianhang Huang, and Laurence T. Yang. SmartHeating: On the Performance and Lifetime
Improvement of Self-Healing SSDs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2020, 40(1): 52-65. https://doi.org/0.1109/TCAD.2020.2990896

[41] Wenhui Zhang, Qiang Cao, Hong Jiang, and Jie Yao. 2018. PA-SSD: A Page-Type Aware TLC SSD for Improved
Write/Read Performance and Storage Efficiency. In International Conference on Supercomputing (ICS). Association for
Computing Machinery, New York, NY, USA, 22–32, 2018. https://doi.org/10.1145/3205289.3205319

[42] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Chao Ren. Exploring and exploiting the multilevel parallelism
inside SSDs for improved performance and endurance. IEEE Transactions on Computers, 2013, 62(6): 1141-1155.
https://doi.org/10.1109/TC.2012.60

18

Rep-RAID

[43] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh Elnikety, and Antony Rowstron. 2009. Migrating
server storage to SSDs: analysis of tradeoffs. In European conference on Computer systems(EuroSys). Association for
Computing Machinery, New York, NY, USA, 145–158. https://doi.org/10.1145/1519065.1519081

Received 2023-03-16; accepted 2023-04-21

19

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background Knowledge
	2.2 Replication-Based RAID SSD
	2.3 Motivation

	3 Design and Implementation of Rep-RAID
	3.1 Overview of Rep-RAID
	3.2 Model-Based Replication
	3.3 Stripe Reorganization in GC
	3.4 Implementation

	4 Experimental Evaluation
	4.1 Experimental Environment
	4.2 Results and Discussions
	4.3 GC Statistics
	4.4 Overhead Analysis

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

