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Abstract: We investigate a method to retrieve full-complex models (Transmission Matrix and Neural 

Network) of a highly multimode fiber (140 LP modes/polarization) using a straightforward machine 

learning approach, without the need of a reference beam. The models are first validated by the high 

fidelity between the predicted and the experimental images in the near field and far field output planes 

(Pearson correlation coefficient between 97.5% and 99.1% with our trained Transmission Matrix or 

Neural Network). Their accuracy was further confirmed by successful 3D beam shaping, a task 

achievable only with a true full complex model. As a prospect, we also demonstrate the ability of our 

neural network architecture to model nonlinear Kerr propagation in gradient index multimode fiber 

and predict the output beam shape. 

Keywords: Multimode fiber, Transmission matrix, Neural network, Machine learning, Beam shaping, 

Full complex model 

 

1. Introduction 

Over the past decade, numerous studies have demonstrated that multimode fibers (MMF) with single 

or multiple cores hold significant potential for a wide range of applications including optical 

telecommunications [1-3], bio-imaging [4-6], fiber-based sensors [7] high power lasers or delivery 

systems [8,9] and optical manipulation [10,11]. These applications take advantage of the multiple 

modes and their interactions as degrees of freedom that can be harnessed within a single fiber. At low 

power, the MMF performs a deterministic linear transformation which depends on the opto-

geometrical characteristics of the fiber, its packaging and the launching conditions of the input field 

into the MMF. Consequently, any coherent beam injected into an MMF produces a complex random 

pattern (speckle) very different from that at the fiber input. The induced aberrations can be typically 

controlled by a spatial light modulator (SLM) which pre-compensates the wavefront of the input beam 

[12]. The linear transformation effected by the MMF which accounts for the propagation and the 

interactions between the guided modes can be simply modelled by a transmission matrix (𝑇𝑀). This 

matrix links the complex field at the fiber input to the field at its output, thereby describing the 

intermodal coupling [13]. Many studies and applications exploiting an MMF rely on this model, 

particularly for image transmission or projection [14-15], and optical communication channels [16]. 

The full complex TM of an MMF is typically measured using off-axis holography with a reference beam 

[14], which adds complexity to the setup, especially for characterization of a long MMF. Recently, a 

new paradigm has emerged for characterizing the 𝑇𝑀 of an MMF without a reference beam, using 

machine learning. Instead of measuring the relationship between coherent fields coupled into the fiber 

and the resulting output speckle intensity patterns, the methods learn this relationship directly from 

datasets made of intensity patterns from the MMF, and their corresponding input fields shaped by an 

SLM. Various optimization processes have been developed to solve the non-linear equations relating 

these data pairs, and retrieve the 𝑇𝑀. Methods such as gradient descent [17], alternating projection 

[18], Bayesian inference [19,20] and semi-definite programming [21] have been used to obtain the 𝑇𝑀 
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of an MMF without the need of a reference beam. However, because these processes compute the 

𝑇𝑀 row by row independently, without any phase constraint, there remains an unknown phase bias 

between its rows. As a result, these 𝑇𝑀 can only be used to optimize the shape of the MMF output 

beam and do not provide any information on mode coupling for instance. Very recently, V. Tran et al. 

proposed to eliminate the phase bias of the 𝑇𝑀 by measuring phase shifts between experimentally 

established focal points. However, this method is prone to error diffusion between the rows of the 

matrix, which can have detrimental effects on the usability of the 𝑇𝑀 [22]. These last years, artificial 

neural networks (𝑁𝑁) have emerged as a promising alternative to the 𝑇𝑀 approach, particularly 

because these digital twins have demonstrated resilience to environmental perturbations [23] and are 

well-suited to describe nonlinear transformations [24]. They have been applied to three main types of 

application: image transmission, image projection and mode decomposition. In the first two cases, the 

𝑁𝑁 learns the nonlinear backward mapping relationship between the MMF output speckle and the 

corresponding image displayed at the fiber input. The 𝑁𝑁 is used either to retrieve an MMF input 

information from the scrambled output beam [25,26] or to predict the input wavefront that will 

produce a targeted image at the MMF output [27]. It is worth noting that for image projection, in [25], 

the authors needed to learn two models: one for the backward mapping (from MMF output intensity 

to input wavefront shape) and one for forward propagation (from SLM to MMF output). Additionally, 

𝑁𝑁 can also decompose the output speckle of an MMF into its modal basis, to retrieve the 

corresponding complex field [28]. However, these modal decompositions by 𝑁𝑁s are limited to a small 

number of modes. Whatever the digital twin (𝑇𝑀 or 𝑁𝑁) learnt by machine learning, without 

interferometer setup and reference beam, these models are most of the time not fully complex, i.e. 

does not link the input and output complex fields and consequently cannot predict the complex output 

field from the input complex field. In what follows, we report on original learning processes providing 

full complex digital twins of both 𝑇𝑀 and 𝑁𝑁 types. Our objective was to develop processes which can 

be implemented with a simple setup only based on a SLM at the MMF input and no more than standard 

two intensity detections at the output. We validated these models by successfully achieving 3D beam 

shaping through a highly multimode fiber and examined their inference capability, specially their 

capability to produce target shapes that were not induced during the training phase. 

2. Data set and setup for training the MMF full complex models  

The models we developed, link the input field 𝑥 ∈ ℂ𝑛𝑥×𝑛𝑥 structured by the SLM, and the output field 

𝑦 ∈ ℂ𝑚𝑦×𝑚𝑦 (see Fig. 1). Without any reference beam, these models are typically trained using a set 

of data pairs [𝑋, |𝑌|2], where 𝑋 ∈ ℂ𝑛𝑥×𝑛𝑥×𝑁 and |𝑌|2 ∈ ℝ∗
+𝑚𝑦×𝑚𝑦×𝑁

, with 𝑁 being the number of data 

pairs. Numerical simulations have shown that the number of data pairs 𝑁 depends not only on the 

model architecture, but also on the number of phase modulating pixels on the SLM. For a TM-type 

model, 𝑁 > 20𝑛𝑥
2, whereas for a NN-type model, 𝑁 > 40𝑛𝑥

2. The set of intensity speckles |𝑌|2 are 

recorded by a camera over a region of interest of 𝑚𝑦 × 𝑚𝑦 pixels, generated by the corresponding set 

of data 𝑋 randomly structured by an SLM. 𝑇𝑀 or 𝑁𝑁 learnt with these pairs of data, produce output 

intensity patterns |𝑦|2 close to the ground truth. Actually, they compute a complex field with a random 

phase bias between each sample of the field, because no phase constraint is applied on the data |𝑦|2 

that feed these models. To obtain the full complex models, we added measurements |𝑧|2 ∈ ℝ∗
+𝑚𝑧×𝑚𝑧

 

in the far field of the MMF output beam to eliminate the phase bias.  



We tested the two-plane measurement process with the experimental setup shown in Fig. 1. This setup 

included a 50µm-core, 0.22 numerical aperture MMF (step index), guiding up to 140 LP modes per 

polarization at 1064nm. The laser source was a CW DFB laser diode (QLD1061 from QDLaser), linearly 

polarized, delivering a fundamental Gaussian beam. It illuminated an SLM of segmented deformable 

mirror type with 952 independent actuators adjusting piston phase only (round shape, 34 

actuators/diameter, Kilo-CS-0.6-SLM from Boston Micromachines Corporation). The SLM plane was 

imaged on the input fiber facet by a couple of afocal optical systems and the MMF output near and far 

fields were imaged on two 16-bit CMOS cameras (ThorCam CS2100). We considered a single linear 

polarization state at the fiber output. 

 

Figure 1: Experimental setup designed for learning TM or NN models and beam shaping. Lia-Lib: imaging system “i"; PBS: 
Polarizing Beam Splitter; QWP: Quarter wave plate; SLM: Spatial Light Modulator; CMOSi: CMOS camera “i"; M: plane mirror; 
MMF: Multimode fiber; BS: Beam Splitter; Lia,b: lens of the ith afocal. 

3. Full-complex Transmission Matrix model of the MMF computationally estimated by 

machine learning 

For 𝑇𝑀 learning, the 2D data (𝑥, |𝑦|2, |𝑧|2) are reduced to vectors of respective dimensions 𝑛 =  𝑛𝑥
2, 

𝑚 =  𝑚𝑦
2  and 𝑚 The first equation to solve is of the form: 

 |𝑦|2 = |𝐴. 𝑥|2       (1) 

where (𝐴 ∈ ℂ𝑚×𝑛) is the 𝑇𝑀 to retrieve. This equation has got an infinite number of solutions as any 

matrix �̂� verifies: 

�̂� =  𝐷𝑖𝑎𝑔(exp(𝑗𝜓)). 𝐴      (2) 

(𝐷𝑖𝑎𝑔 a diagonal matrix and 𝜓 ∈ ℝ𝑚 a random phase bias between each line of the matrix 𝐴.   

We first optimized the 𝑇𝑀 coefficients of the MMF with a mini-batch gradient descent algorithm 

described in the reference [29] minimizing the loss function ℒ1: 

𝑚𝑖𝑛
𝐴∈ℂ𝑚×𝑛

ℒ1 = ‖|𝑌|2 − |𝐴. 𝑋|²‖2    (3) 



The dataset consisted of 𝑁𝑐 phase maps and their related near field intensity patterns at the MMF 

output, 80% of this dataset was used for training the 𝑇𝑀 while the remaining 20% was allocated for 

validation. All data are recorded in a single experimental session, then randomly shuffled and divided 

in both groups of training and testing sets. We numerically demonstrated that an efficient model of 

the 𝑇𝑀 requires a dataset size 𝑁 > 9𝑛𝑥
2. Results shown in the following were obtained with 𝑁 =

17340 ~18𝑛𝑥
2 (𝑛𝑥

2 = 952 𝑆𝐿𝑀 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟𝑠). Figure 2 shows the learning dynamics that converges in 

less than 25 epochs of 32-mini batch size. Figure 3 compares, for the same example of input field 

(identical phase map on the SLM), the output speckles computed with the retrieved 𝑇𝑀 �̂� and the 

ones measured by the camera on both output planes (near field and far field). As expected, the 

intensity pattern in the near field obtained with �̂� closely matches the actual pattern (Pearson 

correlation coefficient 𝛤(|𝑦|2, |�̂�. 𝑥|
2

) = 99% between the ground truth |𝑦|2 and |�̂�. 𝑥|
2

 computed 

Figure 3 : Learning dynamics of the MMF TM 

Figure 2 : Example of ground truth (experimental) and computed output beam with 𝐴ො in near field and far field (normalized gray 

scale in intensity). Zoom of the phase structure given by �̂� (complex amplitude colorbar). Pearson correlation coefficients are 

indicated for intensity prediction from �̂� . 



with the 𝑇𝑀 �̂� (see Fig. 3), while the beams in the far field do not. As illustrated in Fig.3, the phase in 

the near field is pixel to pixel randomly distributed.  

We corrected the phase biases 𝜓 by recording 𝑘 = 20 additional images in the Fourier plane to 

minimize the loss function ℒ2: 

 𝑚𝑖𝑛
𝜓∈[−𝜋,+𝜋[𝑛

 ℒ2 = ∑ (1 − 𝛤(|𝐹𝑇(Â. 𝑥𝑖)|, |𝑧𝑖|))𝑘
𝑖=1    (4) 

𝐹𝑇 the 2D fast Fourier transform. The phase bias 𝜓 is retrieved by gradient descent algorithm [29] in 

less than 500 iterations. The new retrieved full complex TM can be rewritten as: 

 𝐴𝑓 =   𝐷𝑖𝑎𝑔(exp(−𝑗𝜓)). �̂�.      (5) 

This full complex 𝑇𝑀 can now compute both near and far fields with a high accuracy as demonstrated 

in Fig.4.  

This figure shows statistical similarities between ground truths and computed beams in both planes, 

with a very high Pearson correlation coefficient (medians: 99,1% in near field and 97.6% in far field). 

An example of complex field obtained with the 𝐴𝑓 matrix is shown as an inset in Fig. 4. Contrary to the 

Figure 4 : Distribution of Pearson correlation coefficients between the computed speckles and the corresponding ground 

truth patterns in the near field (𝛤(|𝑦|2, |𝐴𝑓. 𝑥|
2

, 𝑏𝑙𝑢𝑒 𝑏𝑎𝑟𝑠) and far field (𝛤(|𝑧|2, |𝐹𝑇(𝐴𝑓. 𝑥)|
2

, 𝑟𝑒𝑑 𝑏𝑎𝑟𝑠) from the 

validation set of data. 

Figure 5 Left: reshaped 𝐴𝑓, mapping each column of the learned matrix 𝐴𝑓 as a complex field and assigning it to the 

position of the related actuator on the SLM (34x34 actuators, ROI of the camera: 256x256 pixels) - Upper right: zoom on 
4 fields from the central actuators (4 columns of 𝐴𝑓 related to 4 actuators from the central part of the SLM) - Lower right: 

zoom on 4 fields from the peripheral actuators (4  columns of 𝐴𝑓 related to 4 actuators from the peripheral part of the 

SLM).  



image of the Fig. 3, each speckle grain exhibits a more realistic smooth phase. We transformed the 𝐴𝑓 

matrix to visualize the complex field generated by each actuator of the SLM through the MMF. Each 

column of 𝐴𝑓 was reshaped as an image and positioned to the area of the related actuator (Fig. 5) 

displaying the SLM as a combination of these complex fields. We can note that some actuators of the 

SLM are inactive and appear dark on this figure. As expected, the central actuators more likely excited 

low-order modes (Fig.5 upper right) while the peripheral actuators excited high-order modes (Fig. 5 

lower right). To further validate the full complex matrix beyond comparing computed and measured 

beams in both near field and far field, we used 𝐴𝑓 to shape the MMF output beam in additional planes. 

This was first achieved by selecting a Rayleigh plane to place the target shape, which can be of complex 

value, then back-propagating this field to the output MMF facet and multiplying the resulting field by 

the inverse 𝑇𝑀. However, since we can only adjust the phase of the input field, this method results in 

a poor similarity between the target field and the one produced by the model using phase-only 

modulation. This is why we finally used 𝐴𝑓 to optimize the SLM phase map and to achieve a shaped 

beam as close as possible to the target field. To accomplish this, 𝐴𝑓 needs to be refined by removing 

its unrealistic singular values and prevent non-physical beam shape optimization with excessively high 

resolution. First, we set to zero the normalized singular values (obtained through Singular Value 

Decomposition) whose indexes are higher than the number of modes (280 for both polarizations) 

guided by the MMF, thus minimizing noise channels (Fig. 6).  

We then used this filtered transmission matrix for 3D beam shaping. As a demonstration, we 

simultaneously optimized two different beam shapes in two different planes, outside those where the 

learning data for 𝐴𝑓 were collected at the MMF output. In the first plane, 𝐿1 = 35µ𝑚 from the fiber 

output, we selected a digit as target shape, while in the second plane, 𝐿2 = 70µ𝑚 from the fiber 

output, we chose a letter. We minimized the loss function ℒ3 to determine the phase map 𝜙 that 

would generate the target shapes in both planes simultaneously: 

 𝑚𝑖𝑛
𝜙∈[−𝜋,+𝜋[𝑛

ℒ3 = ∑ (1 − 𝛤(|ℱ𝑟𝐿𝑖
(𝐴𝑓 . |𝑥|𝑒𝑗𝜙)|, |𝑧𝐿𝑖

|))2
𝑖=1   (6) 

, where ℱ𝑟𝐿𝑖
 is the Fresnel transform to reach the plane 𝐿𝑖 from the MMF output. The couples of beam 

shapes ([1,a], [2,b] .. [9,i]) obtained experimentally exhibit a good similarity with those computed using 

𝐴𝑓 (Fig.7), providing another validation of the full complex model of the MMF measured without any 

reference beam. This experiment also demonstrates the ability of the process to perform 3D beam 

shaping, which is not feasible with a standard phase biased TM retrieved by machine learning.  

It is worth noting that we retrieved a pixel-basis 𝑇𝑀, from actuators of the SLM to pixels of the camera. 

Since this 𝑇𝑀 is full complex, it can be converted to a modal basis. This conversion requires 

transformations at both side of the fiber, that consider the projection of the beam, through the optical 

Figure 6 : Normalized singular values of the TM 𝐴𝑓. Singular values of index larger than the number (red dot line) of 

the MMF LP modes (both polarizations) were filtered before using the TM to compute the target phase map for beam 
shaping 



imaging systems and their aberrations, to the modal basis of the MMF [30]. While this additional 

operation is beyond the scope of this article, it may be valuable for certain applications that involve 

analyzing modal coupling in the fiber.  

In addition to traditional transfer matrices, several digital models of MMFs have been developed using 

neural networks of various architectures. However, to date, these 𝑁𝑁 models in the MMF context, 

designed for tasks like image transmission or image projection through MMFs, are rarely providing 

with complex field predictions. In the following section, we detail our dedicated work on training 𝑁𝑁𝑠 

specifically aimed at predicting complex fields. This work paves the way for generalizing MMF models 

to manage 3D propagation more effectively. 

 

4. Convolutional Neural Network as a full-complex MMF model 

We extracted the Generator 𝑁𝑁 of the conditional Generative Adversarial Neural network (cGAN) 

used in the reference [31] and adapted it to our complex images. This Generator is a Convolutive 

Neural Network (𝐶𝑁𝑁) that transforms images made of 3 channels dedicated to the red, green and 

blue colors into other RGB images. We modified this configuration to exploit these channels for 

complex data. This 𝐶𝑁𝑁 is a U-Net network learned to predict the complex field  𝑦 ∈ ℂ𝑛×𝑛 at the fiber 

Figure 7: Examples of shaped beams at the MMF output in two distinct planes simultaneously, arbitrary chosen at 
35µm and 70 µm from the fiber exit, to be compared with the target shapes (inset) 

Figure 8 : 3-channel C𝑁𝑁 architecture (U-NET) 



output (𝑛 × 𝑛 samples) from a complex field 𝑥 ∈ ℂ𝑛×𝑛 at the fiber input: 𝑦 = 𝐶𝑁𝑁(𝑥). The complex 

field 𝑥 was decomposed in modulus, sine and cosine functions, and used as the 3 𝐶𝑁𝑁 input channels 

[|𝑥|, Cos(arg(𝑥)) , Sin(arg(𝑥))]. Two of the three output channels of the 𝐶𝑁𝑁 are selected as the real 

and imaginary parts [𝑅𝑒𝑎𝑙(𝑦), 𝐼𝑚(𝑦)] of the output complex field (the remaining channel is unused). 

In our data management process, the neural network handles only real data (images of size 𝑛x𝑛x3), 

and outputs the real and imaginary parts of the complex data used to reconstruct the complex field. 

The depth of the initial 𝐶𝑁𝑁 was reduced to 5 down-sampling and up-sampling blocks to consider a 

64x64 complex images of 12-bit discretization (camera bit-depth). The architecture of the 𝐶𝑁𝑁, 

detailed in [32], is depicted on Figure 8, showing the size and composition of the different blocks. In 

an original way, this 𝐶𝑁𝑁 is trained using triplets of data [𝑥, |𝑦|2, |𝑧|2]. They correspond respectively 

to the known complex fields at the fiber input, structured by the SLM, and to the intensity images in 

the near field and far field at the fiber output recorded by a couple of cameras. This setup is identical 

to the one used to measure the 𝑇𝑀 (Fig. 1). Unlike the learning process for retrieving the full complex 

𝑇𝑀, the 𝐶𝑁𝑁 was trained in a single step. However, it requires knowledge of the corresponding far 

field intensity image for each near field intensity. The global loss function ℒ𝐶𝑁𝑁 was minimized using 

the ADAM (ADAptative Moment estimation) optimizer, considering the experimental set of images 

from both near field and far field planes as well as the numerical aperture (𝑁𝐴) of the MMF (Fig. 9). 

ℒ𝐶𝑁𝑁 is defined as: 

  ℒ𝐶𝑁𝑁 = 3 − [𝛤(|𝐶𝑁𝑁(𝑥)|2, |𝑦|2) + 𝛼 SSIM (|𝐹𝑇(𝐶𝑁𝑁(𝑥))|
2

, |𝑧|2) +

𝑃𝐼𝐵NA (|𝐹𝑇(𝐶𝑁𝑁(𝑥))|
2

)]      (7) 

 𝛤 is the Pearson Correlation Coefficient between measured |𝑦|2 and predicted |𝐶𝑁𝑁(𝑥)|2 patterns, 

𝑆𝑆𝐼𝑀 is the Structural Similarity Index Measurement between measured |𝑧|2 and predicted 

|𝐹𝑇(CNN(𝑥))|
2
 intensities. 𝑃𝐼𝐵NA is the ratio of the predicted energy within the numerical aperture 

of the fiber over the whole computed energy |𝐹𝑇(𝐶𝑁𝑁(𝑥))|
2

. ℒ𝐶𝑁𝑁 is an adaptive loss function 

weighted by the factor 𝛼 ∈ [0, 1], as explained in [32]. At the start of the CNN training process, 𝛼 was 

close to 0 and gradually increased to 1 as 𝛤(|𝐶𝑁𝑁(𝑥)|2, |𝑦|2) approached 1. This is a quasi-sequential 

process that significantly enhances the convergence speed of the optimizer. Initially, it focuses on 

intensity prediction in the near field, and then progressively refines the phase content by improving 

the far field prediction. In the training process, we fed the 𝐶𝑁𝑁 with a set of intensity patterns 

measured in both planes at the fiber output and the related phase maps displayed on the SLM 

([𝑥, |𝑦|2, |𝑧|2], using triplets of 64x64 images). The input field 𝑥 was sampled by the 34x34 actuators 

of the SLM to which we added some extra pixels to fill a 64x64 image. The amount of data (10 000 

Figure 9: CNN learning process highlighting the triplet of data in the loss function ℒ𝐶𝑁𝑁 of the U-Net-type convolutional 
neural network computed to model the MMF. ℒ𝐶𝑁𝑁 is computed using three parameters: 𝛤(Pearson Correlation 
Coefficient), SSIM (Structural Similarity Index Measurement) and PIBNA (Power ratio in the bucket, i.e contained in the 
MMF numerical aperture). The output “green” channel with a “question mark” is not used to train the 𝐶𝑁𝑁 and can be 
removed without consequence on the results. 



triplets) required to train the 𝐶𝑁𝑁 is similar to that needed for training the 𝑇𝑀. However, the 

computing time is longer and lasted about 3h (NVIDIA RTX A1000 Laptop GPU), because of the 

convolutional operations and the large number of 2D Fast Fourier Transform used in the loss function. 

The 𝐶𝑁𝑁 was optimized in less than 50 epochs (mini-batch size of 64 and learning rate 1e-3) and 

accurately predicted the near field |𝑦|2 and far field |𝑧|2 as shown Figure 10. The Pearson correlation 

coefficients comparing ground truth (experimental patterns) and predicted intensity images in both 

near and far fields reach a very high level of respectively 98.5% and 97.5% (median values). Figure 11 

shows with an example, the great similarity between the intensity images experimentally measured 

and those predicted by the 𝐶𝑁𝑁 in both plane for the same input field 𝑥. 

As for the TM, we confirmed the good accuracy of the 𝐶𝑁𝑁 model with a second experiment by 

showing that the same model can be used to shape the MMF output beam in any plane, including 

Figure 10 : Left - 𝐶𝑁𝑁 training dynamics – Right - Statistical distribution of the Pearson correlation coefficient between 
predicted and measured speckle patterns in the 𝑦 (near field - blue) and 𝑧 (far field - red) planes with the validation dataset. 

Figure 11 : Example of intensity patterns obtained with a same input field x, in both 𝑦 (left-hand column) and 𝑧 (right-
hand column) planes; Top row – experimental intensity patterns; middle row - corresponding intensity patterns 
predicted by 𝐶𝑁𝑁; Bottom row - corresponding complex fields predicted by 𝐶𝑁𝑁. Pearson correlation coefficients are 
indicated 



planes different from those in which the learning data were measured. We optimized the input field 𝑥 

(the SLM phase map 𝜙) with a gradient descent algorithm using the following loss function ℒ4: 

𝑚𝑖𝑛
𝜙∈[−𝜋,+𝜋[𝑛

ℒ4 = 1 − 𝛤 (|ℱ𝑟𝐿 (𝐶𝑁𝑁(|𝑥|𝑒𝑗𝜙))| , |𝑧𝐿|)    (8) 

 to produce a target pattern at a position 𝐿  from the fiber output. We conducted this optimization 

with the same 𝐶𝑁𝑁 for two image projection distances: 𝐿 = 0 (MMF exit) and 𝐿 = 30µ𝑚.  The target 

shapes varied widely, encompassing symbols such as double dots, triangles, squares, crosses, spirals, 

and even words. Some experimental examples are shown in both planes Fig. 12. They are very similar 

to the predicted ones by the 𝐶𝑁𝑁, demonstrating its accurate ability to model the true complex 

transformation of the MMF. 

In a prospective work, we explored our 𝐶𝑁𝑁 architecture to model a graded-index multimode fiber 

(GMMF) in a non-linear Kerr regime. In [33], U. Tegin et al. have investigated a recurrent neural 

network for prediction of spatiotemporal dynamics in GMMFs. In particular, their numerical work 

demonstrates that their NN can closely mimic the 2D spatial evolution along the fiber, in comparison 

with the outcomes of time-dependent beam-propagation method simulations. In our experimental 

study, we learned a 𝐶𝑁𝑁 model with conventional data (input field 𝑥 of random phase and 

corresponding output intensity |𝑦|2) aiming at predicting output scrambled intensities and we tested 

its generalization ability. In particular, we investigated self-cleaning on low order modes that was 

demonstrated in [34] using an optical feedback loop. In the setup of Fig. 1, we replaced the laser diode 

by an Nd:YVO4 ultrafast laser, delivering 6.5ps pulses at 1064 nm and 1 MHz repetition rate (Sirius 

Spark Laser), with a peak power of 50kW. The GMMF of two-meter-long has a 26µm radius and a core-

cladding index difference corresponding to a 0.21 numerical aperture. The fiber carries about 56 

modes at 1064 nm per polarization. Compared to training the 𝐶𝑁𝑁 in the linear regime, we adapted 

the loss function to fit a relationship between the complex input fields illuminating the GMMF and 

their speckled patterns after propagation through the GMMF: 

 ℒ𝐶𝑁𝑁𝑁𝐿
= 1 − 𝛤(|𝐶𝑁𝑁(𝑥)|2, |𝑦|2)     (9) 

Figure 12 : Examples of experimental shaped beams generated -Left – at the MMF output, -Right – 30µm away from 
the MMF output, -Insets - computed by the 𝐶𝑁𝑁; 𝛤 between computed and measured beams are indicated. 



Fig. 13 highlights the very good speckle predictions of the 𝐶𝑁𝑁𝑁𝐿 with a median Pearson coefficient 

correlation of 99.2% between the ground truths and the intensities computed by the 𝐶𝑁𝑁𝑁𝐿. These 

first results demonstrate the 𝐶𝑁𝑁𝑁𝐿 ability to accurately mimic non-linear transformations. We 

further investigated beam self-cleaning by computing the input field using the previously employed 

optimization process (see equation 8 with 𝐿 = 0). We determined the phase to be imprinted onto the 

Figure 14 Left – example of experimental (ground truth) and predicted intensity patterns. Top right – the corresponding 
experimental spectra (black: from the laser before seeding in the MMF – Blue: from the MMF. Bottom right: Pearson 
correlation distribution between the intensity predictions of the CNN and the experimental ground truth (validation set) 

Figure 13 : Examples of experimental LP modes generated by an input phase map optimized via the non-linear CNN -Top 
row: LP01 mode (experimental near field and far field) and the related spectrum density (Black: seeding the GMMF, Blue: 
from the GMMF), - Bottom row LP11 mode (experimental near field and far field) and the related spectrum density (Black: 
seeding the GMMF, Blue: from the GMMF), Insets: Target patterns computed by the non-linear 𝐶𝑁𝑁; 𝛤 between 
computed and experimental beams are indicated. 



SLM, targeting a GMMF mode at the fiber exit that was not used during the training process. The 

computed phases for the LP01 and LP11 targets applied to the SLM generated the near and output fields 

of Fig. 14. The resulting images closely resemble to the targeted modes indicating beam cleaning was 

achieved despite this non-linear transformation not being explicitly learned. Notably, the non-linearity 

level involved during the training process was less than that in the shaping step. Specifically, the power 

coupled into the GMMF is lower for fine structuration of the SLM in case of speckle generation than 

for fostering low order mode emission (LP01 and LP11). This can be observed in Fig.13 and 14 by 

comparing the spectra widths after non-linear propagation in the GMMF. Thus, within the range of 

induced non-linearities in the experiments, our 𝐶𝑁𝑁𝑁𝐿 was effective both in predicting output 

speckles and as part of beam shaping in the context of a Kerr self-cleaning. This is a proof of its 

generalization capability across various output beam profiles as well as various Kerr non-linearity 

levels. 

 

5. Conclusion 

We proposed a new method to retrieve full-complex models (Transmission Matrix and Neural 

Network) of a highly MMF (140 LP modes/polarization) with a machine learning approach, without the 

need of a reference beam. The models were optimized using triplets of data consisting of complex 

input fields, intensity images of the output fields, and corresponding far field patterns. The input field 

was structured by a segmented deformable mirror of 952 actuators. The full-complex models were 

first validated by the high similarity between the intensity images measured experimentally and 

predicted by the models at the fiber output in both near and far fields. The Pearson correlation 

coefficient reached 99.1% in the near field and 97.6% (median values) in the corresponding far field 

with the 𝑇𝑀 and respectively 98.5% and 97.5% with the 𝐶𝑁𝑁. The accuracy of the models was also 

confirmed through their application in 3D beam shaping. This task is only feasible with a true full 

complex model. Using the retrieved 𝑀 , we demonstrated its ability to find an input phase map that 

generates diverse arbitrary shapes (“digit” at 35µm from the MMF output and “letter” at 75µm), 

simultaneously in two output planes. With the 𝐶𝑁𝑁, we also demonstrated the possibility to shape 

the beam away from the MMF output even in planes where data had not been previously recorded. 

These abilities are not achievable with standard models (TM or NN) trained solely on a single plane 

with speckled patterns. There are some differences between the two models in terms of the amount 

of data needed for training and the computation time required. The main advantage of the 𝑇𝑀  lies in 

its ability to characterize essential features of the MMF such as transmission channels via the SVD 

operation. It also requires less data to learn, particularly when dealing with a limited number of phase-

modulation actuators. The 𝑇𝑀 can also easily be inverted to compute the input field that generates 

any arbitrary output beam shape. In return, the MMF characteristics cannot be extracted from the 

𝑁𝑁. It requires more data to learn, but becomes competitive with the 𝑇𝑀  training process as the 

number of actuators increases significantly. However, the 𝑁𝑁 model is less sensitive to noise and non-

linearity of the setup (SLM modulation, detection non-linearities). We also demonstrated that this 

architecture of 𝑁𝑁 can model strong non-linearities such as Kerr effect. In contrast with the 𝑇𝑀, the 

𝑁𝑁 also can accommodate minor perturbations in the setup, either by incorporating them during the 

training or ugh a short process of transfer learning. Depending on the intended application and the 

experimental conditions, one or the other of these true full-complex models can be selected. 
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