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We consider the random deposition of objects of variable width and height over a line. The
successive additions of these structures create a random interface. We focus on the regime of heavy
tailed distributions of the structure width. When the structure center is chosen at random, the
problem is exactly solvable and the interface generically tends towards a self-affine random curve.
The asymptotic behavior reached after a large number of iterations is universal in the sense that it
depends on only three parameters: the shape of the added structure at its maximum, the power-law
exponent of the width distribution and the exponent that relates height and width. The parameter
space displays several transitions that separate different asymptotic behaviors. In particular for a
set of parameters, the interface tends towards a fractional Brownian motion. Our results reveal the
existence of a new class of random interfaces which properties appear to be robust. The mechanism
that generates correlations at large distance is identified and it explains the appearance of such
correlations in several situations of interest such as the physics of earthquakes or the propagation
of energy through a diffusive medium.

The evolution of an interface that is modified by the
successive addition of objects is an iconic problem of sta-
tistical physics with applications ranging from the de-
posit of a granular [1] to the growth of a stable phase
into a metastable one or to the propagation of a flame
to quote but a few [2]. In the past decades, the com-
petition between randomness and diffusion was shown
to be modelled by the Edwards-Wilkinson (EW) equa-
tion and, when nonlinearity is taken into account, by the
Kardar-Parisi-Zhang (KPZ) equation [3]. The quest for
their understandings drove a variety of efforts both on
the theoretical front [4] or the experimental one [5]. The
additive term in these equations is a Gaussian white noise
both in time and space and is thus uncorrelated. In a one
dimensional geometry, the solutions tend at long time to-
wards a Brownian motion [2]. Gaussian correlated noise
has also been considered [6].

There are very few studies that consider the case of
the random addition of objects of varying size and they
are restricted to either a binary size distribution [7] or a
Poisson one [8]. Here, we consider objects that have an
heavily tailed distribution of size and show that such a
process leads to a new class of random interfaces display-
ing a variety of behavior. Notably, spatial correlations at
large distance appear even when the individual steps of
the process are uncorrelated.

The initial motivation for this problem comes from the
physics of earthquakes (EQ) [9]. We will thus describe
the models in this context. However, the addition of
objects of variable size is a quite general situation and
applications in the context of interaction of a wave with
a diffusive medium will be given at the end of this article.

We have shown in several models that the statistical
properties of the EQ result from the stress field being a

self-affine random curve [9]. More precisely, in a 1D ge-
ometry, the large scales of the stress field tend towards a
Brownian motion or a fractional Brownian motion (fBm).
This property originates in the stress field evolution that
results from the successive stress changes caused by the
EQ. The mechanism is the following iterative sequence:
the stress field at a given time controls the properties
of the next EQ and in particular the amount of slip
caused by the event; the slip is in turn responsible for
the modification of the stress. After a large number of
iterations, this process builds up a self-affine stress field.
We identified this process in several models and showed
that it is responsible for the intriguing properties of EQ
[9, 10], such as the distribution of the released energy (the
Gutenberg-Richter law) or the distribution of aftershocks
after a main shock (the Omori law). It is thus expected
that this process is generic, robust and can be observed
in idealized models of EQ. Nevertheless, the origin of the
large distance correlations, as displayed by the self-affine
stress field, is unclear. The purpose of this article is to
identify why and when such large distance correlations
appear. To achieve this goal, we consider two models,
solve rigorously one of them and study them numerically.

The simplest model of evolution of a stress field is to
consider that it is a scalar function of space and that suc-
cessive EQ change its value. Between events, the stress
increases due to tectonic loading and this is usually con-
sidered as a spatially uniform linear in time increase of
the stress. When the stress reaches a threshold, an EQ is
initiated. After the event, the stress in the domain that
has moved is decreased.

In order to deal with positive quantities, we define h(x)
as the opposite of the stress and assume that each event
results in the addition of a value δh(x) to h(x). The
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linear in time loading between events is not considered
here as it only amounts to a change in the spatial average
of h. The problem is thus turned into the evolution of an
interface h(x) that drifts towards positive values because
of the successive deposition of objects that change its
value by a quantity δh(x).

An EQ affects the fault property over a size which is
distributed as a power-law [9, 12] and we thus assume
that δh is non zero over a width similarly distributed.

We consider two variations of this process. Earth-
quakes are usually initiated at locations at which the
stress is maximum, which corresponds to the minimum
value of h: this is the min-model. We also consider a sim-
pler situation, the rand-model in which the stress drop or
equivalently the change of h occurs at a random position,
independent of the value of h.

In a more formal way, we consider positions on a line
x ∈ [0, D]. We use periodic boundary conditions to main-
tain homogeneity in the statistical properties of the sys-
tem. We are interested in hN (x) the height after N it-
erations. An iteration consists in the addition of δh(x)
defined as follows. Let ψ : [0, 1] 7→ R+ be a continuous
function, such that ψ(0) = 1 and ψ(1) = 0, and let n
be the index of its first non zero derivative at 0+. For
n = 1, ψ is locally a triangle, for n = 2 a parabola...
Let s be the center of the structure which is either drawn
at random over [0, D] for the rand-model or which is the
minimum of h(x) for the min-model. Let U be the width
of the structure. It is a random variable distributed as a
Pareto law with parameter β−1 (β > 1), i.e., with density
1[1,∞)(u)(β−1)/uβ . Let vs(x) = min{|s−x+jD|, j ∈ Z}
be the distance between the center and the position x,
where we use the periodicity of the system. We then
define

δh(x) = Uα−1 1[0,U [(vs(x)) ψ
(vs(x)

U

)
. (1)

In other words, at each iteration, we add a structure
of shape ψ of width 2U and of amplitude Uα−1. The
structure is even with respect to its center and its width
is random and distributed as a power-law of exponent
−β.

These processes can be simulated numerically and we
display in fig. 1 profiles of h = hN (x) calculated over
a grid of spacing ∆x = 1 when ψ is linear so that the
added structure is a triangle (n = 1).

For both models, several results can be proven rig-
orously using probabilistic methods applied to random
curves. Details are provided in the appendix but we fo-
cus here on the results. Interestingly, they depend exclu-
sively on n, α and β.

The spatial average of h increases with N either lin-

early (ballistic) for β > α or as N
α−1
β−1 (super-ballistic)

for β < α. More precise estimates are given in Eq. 8, 9
and 10.

For the rand-model, we are able to fully describe the
spatial fluctuations of h. Let fN (x) = hN (x)− hN (0).
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Figure 1. Numerically simulated interface h(x) = hN (x) for
a segment of length D = 200, α = 1.5 and β = 1.5. Top:
rand-model after N = 3 iterations starting from a straight
line. Middle: rand-model after 5 105 iterations. Bottom: min-
model after 5 105 iterations.

1. For α > 1 + n and 1 < β ≤ βc := 2α− 1− 2n

N−α−1−n
β−1 fN ⇒N µ, (2)

where µ is the distribution of a random function
which can be expressed as the limit of a sum of ran-
dom functions, see Eq. 11, 12 and 13. In particular
the fluctuations of h are not a Gaussian process.

2. For α ∈ [1, 1 + n] or for α > 1 + n and β > βc

N− 1
2 fN ⇒N Y, (3)

where Y is a centered Gaussian process.

In this case, we are able to derive an analytical expres-
sion for the covariance r(s, t) = Cov (Y (s), Y (t)). We
verified by estimating the quantities numerically that for
β ≥ βf := 2α − 2 and for D ≫ s, t ≫ 1, r(s, t) ∝
|s|2H+ |t|2H−|s−t|2H with 2H = 2α−β. When β ≤ βf ,
the covariance is dominated by quadratic terms in s or t.
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We draw the parameter space of the rand-model in
fig. 2. It contains 3 transitions separating 6 different
behaviors.
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Figure 2. Parameter space describing the behavior of the
interface hN (x) at large N for the rand-model. The red line
is β = α and separates between a ballistic (domain 1, 2 and
3) and a super-ballistic (4, 5 and 6) behavior of the mean
position of the interface. The cyan line is βc = 2α−1−2n and
separates between a Gaussian (1, 2, 4, 5) and a non Gaussian
(3, 6) behavior of the field fluctuations. The blue line is βf =
2α− 2 and separates between a x2α−β behavior (1 and 4) of
the correlations of the fluctuations and a x2 one (2, 3, 5, 6).
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Figure 3. For the rand-model and for β = 2, normalized
height profile as a function of position afterN = 107 iterations
for a triangular added structure (n = 1) and for (red) α = 1.5,
(yellow) α = 2 and (light blue): α = 3.

A particularly interesting regime concerns 0 ≤ 2α−β ≤
2. Then the process generates a fBm of Hurst exponent

H with

H = α− β/2 . (4)

The value of the Hurst exponent can be understood as
follows. The difference of height ⟨fN (l)2⟩ between two
sites distant of l is due to events of size L larger than l
which center is within a neighborhood of one of the two
sites over a width proportional to l. These events pro-
vide a height difference of order lα−1. When the integral
is dominated by the smaller values of L, we obtain the
estimate

⟨fN (l)2⟩ ≃ l l2α−2

∫ ∞

l

L−βdL ≃ l2α−β .

It is worth noting that this result does not depend on n
and is thus independent of the shape of the added struc-
tures.
Examples of profiles are presented in fig. 3. We cal-

culate from these profiles the power spectrum density
(PSD) of fN/N

1/2. The power law of the PSD, K−1−2H

for a fBm, allows to calculate H, which is displayed in
fig. 4. It verifies the prediction of Eq. (4).
It is worth noting that the phenomenology differs from

the one of the KPZ solutions in 1D which tend towards a
Brownian motion (with H = 1/2) when the noise term is
uncorrelated [2] or that transitions between a Brownian
motion and a long range correlated regime (with H >
1/2) when the noise term is Gaussian and its correlation
at long range is increased [6]. Therefore, the models that
we present here belong to a different universality class.
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Figure 4. Hurst exponent H as a function of α for β = 2.
The straight line is the prediction H = α−β/2. Full symbols
are results of the rand model and empty symbols of the min
model. Red is for n = 1 (triangle), blue for n = 2 (parabola),
green for n = 2, parabolic at its center with negative value of
δh at its border.

The min-model is a challenging problem for its theo-
retical aspects as the dynamics relies on a non-local con-
straint. The results for the spatial average of h are the
same as for the rand-model. For the fluctuations we must
relate on numerical simulations, see fig. 1 bottom. We
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focus here on the regime 0 < 2α − β ≤ 2 for which the
rand-model generates a fBm. In contrast to the rand-
model, the moments of the fluctuations do not increase
with N but remain bounded. The skewness is small but
non zero, the flatness is slightly smaller than 3, the value
for a Gaussian. It increases with the size D. It is quite
interesting that the application of the min rule for find-
ing the location of the next earthquake is sufficient to
saturate the growth with the number of iterations of the
moments of the fluctuations of the stress profile.

The value of H obtained from the PSD is displayed in
fig. 4. As for the rand-model, the results are very close
to the prediction of Eq. (4). The H-exponent is thus
independent of the shape of the added structure and of
the nature of the model (rand or min).

In the models considered here, the spatial structure
of the stress change is the same at each event, up to a
change of its width and height. The shape, the width and
the height are independent of h whereas in a fault, it is
the spatial variations of h that determine the slip which
controls the change of stress. The independence of stress
change on the stress (for the rand-model) or of only de-
pendence for its center set by the stress maximum (for
the min-model) are simplifications that allow for theoret-
ical progresses. Yet, the observed phenomenology is rich
and similar to what is observed in more realistic models
[9, 10]. In particular, our results explain why the random
addition of structures of variable size generically gener-
ates self-affine behavior. In the context of earthquake
physics, this phenomenon provides a possible explana-
tion for the appearance of large distance correlations of
the stress field.

Several observations in natural data are consistent with
our description. It is well known that the earthquake ar-
eas are distributed as a power-law with exponent βa close
to 2 [12, 14]. This amount to a distribution of length of
the EQ with power-law exponent β ≃ 3. In addition, the
stress change at each event is independent of its length
so that α is of order 1 [12]. For what concerns the exis-
tence of large scale correlations, the topography of faults
are self-affine with their roughness associated to an Hurst
exponent of order 0.2 to 0.8 [15]. In addition, evidence
suggests that the slip itself scales with a Hurst exponent
close to 0.6. Using a 3D fault numerical model it was
predicted that the 2D frictional stress field scales with
an Hurst exponent of −0.4 [16]. All these fields in nature
thus display correlations at large scale.

This new class of random interfaces is of interest for
the physics of earthquakes but also as a new stochastic
process, different from the ones generated by the EW
or the KPZ equation. It has possible applications in a
variety of domains. For instance, the deposition of poly-
mers of variable size is expected to belong to this new
class provided the polymer size has a wide distribution.
Another application of broad interest, which might at
first sight appear quite unrelated, is the propagation of
a wave through a medium containing objects of variable
size. Consider the energy of a plane wave that propa-

gates in a straight line and study its evolution when it
interacts with a set of objects that absorb partially the
wave energy. When the absorption is proportional to the
length of the path of the wave in the object, the wave
energy after the object is decreased by a quantity pro-
portional to the width of the object along the path of
the wave. This is sketched in fig. 5. The interaction of
the wave with a set of absorbers amounts to the sum of
the interaction with each one. Therefore the expression
for the variation of the wave energy is given by the same
formula as the variation of the stress profile in eq. (1).
The results obtained here apply identically to the wave
energy.

Wave energy

(1)

(0)

(2)

(3)

D1

D2

D3

Figure 5. Schematics of the variation of a plane wave that
propagates in straight line from the top to the bottom parallel
to the black arrow. The wave energy is displayed as a green
line. It is decreased at each interaction with an absorbing
object Di sketched as a blue circle and proportionally to the
width of the absorber in the direction of propagation. The
energy after the (i)-th encounter is displayed for i = 0 to 4.

Several applications come to mind. Fragmentation
processes often produce collections of object with size
distributed as a power-law [18]. This can be the case
of drops fragmented in a turbulent flow [19]. An ex-
periment using two fluids matched in index and such
that drops of one of the two phases absorb the light at
a given frequency would realize the situation of fig. 5
[20]. A second system relies on aerosols in the atmo-
sphere which have a size distribution that can be large
[21] and in some situation is modelled by the Junge law
[22], a power-law distribution generated by coagulation
processes [23]. We expect that the absorption of light
or of UV rays through such an aerosol cloud results in
energy transmission that varies in the plane perpendicu-
lar to the direction of propagation. In the idealized limit
where we neglect scattering processes, the energy spatial
variation in the perpendicular plane is exactly obtained
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by the rand-model. Our results indicate that the pattern
of energy should display a self-affine behavior with prop-
erties controlled by the distribution of size of the aerosols
and it would be interesting to investigate how this is af-
fected when scattering cannot be neglected. Finally, we
describe a third example related to the propagation of
electromagnetic energy through the universe. Interstel-
lar clouds are domains where the density is large. These
clouds are magnetized and their emission at microwave
frequencies is polarized. The statistical characterization
of this interstellar emission is of prime importance to ex-
periments searching the signature of primordial gravita-
tional waves in the cosmic microwave background (CMB)
polarization. It has been shown that a source term as-
sumed to be a correlated Gaussian field with a prescribed
Hurst exponent leads to a realistic pattern [24]. Our re-
sults on the rand-model provide a possible explanation
for the origin of this spatially correlated source term: it
would result from the addition of randomly distributed
interstellar clouds which radius are actually known to be
distributed as a power-law [25].

The rand-model is thus expected to explain the be-
havior of systems in a variety of contexts ranging from
the absorption of light by 2-phase turbulent flows or by
aerosols to the microwave emission by interstellar clouds.
Further work will extend the results presented here to 2D
geometry and obtain quantitative predictions.
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APPENDIX

In this appendix, several results presented in the
manuscript are described rigorously and justified at a
heuristic level. We also provide formula not presented
in the article. In particular our aim is to prove that, as
the number of random transformations N becomes large,
the front hN and its fluctuations both rescaled with an
ad-hoc power of N resembles a typical trajectory of a
well identified limiting random process. Deriving these
results requires to settle some notations. This is done in
subsection A. We present the results for the mean posi-
tion of the front in subsection B and for the fluctuations
in subsection C. We combine a rigorous mathematical
presentation with short descriptions adequate for physi-
cists. These descriptions are written in bold letters.

A. Definition

We first need to define the notion of conver-
gence of a random process and in particular the
convergence in distribution. To that aim, we denote
by C the set of continuous real functions on [0, D], by
|| · ||∞ the norm of the uniform convergence on [0, D]
and by C the associated Borel σ-algebra. For µ a prob-
ability law on (C, C) and for (Xn)n≥1 a sequence of ran-
dom continuous functions (defined on a probability space
(Ω,A, P )) we will set

Xn ⇒n µ (5)

when Xn converges in distribution in (C, C) towards µ
as n → ∞. By extension if X is a random continuous
function, we will set Xn ⇒n X if Xn converges to the
law of X as n→ ∞. This convergence can be understood
as follows. Consider any bounded continuous functional
g : (C, || · ||∞) 7→ R. The latter convergence means that

lim
n→∞

∫
Ω

g(Xn(ω))dP (ω) =

∫
Ω

g(X(ω))dP (ω).

This is what mathematicians call convergence in
distribution.
Proving rigorously a convergence of type (5) on (C, C)

requires the use of mathematical tools from [26, Chapter
2] or [27, Theorem 21.42]. There are two hypotheses to
verify to conclude that Xn ⇒n X:

1. the convergence in finite dimensional distributions
of Xn towards X. To that aim, for 0 ≤ t1 <
t2 < · · · < tk ≤ 1 one has to check that the ran-
dom vector (X(t1), . . . , X(tk)) is the limit in dis-
tribution of the sequence (Xn(t1), . . . , Xn(tk))n≥1.
We note that this is equivalent to the
property that the Fourier transform of
the vector (Xn(t1), . . . , Xn(tk)) converges as
n → ∞ towards the Fourier transform of
(X(t1), . . . , X(tk)).

2. the tightness of (Xn)n≥1 in (C, || · ||∞) which pro-
vides, with a probability arbitrary close to 1, a uni-
form (in n) control on the modulus of continuity
of Xn that is of its fluctuations (in t). This tight-
ness is for instance obtained with the Kolmogorov
criterion (stated in [26, Theorem 12.3]) by prov-
ing that there exists a C > 0 such that for every
0 ≤ s < t ≤ 1

sup
n≥1

∫
Ω

|Xn(t, ω)−Xn(s, ω)|2dP (ω) ≤ C(t− s)2.

Qualitatively, the process must have spatial
variations that are not too large (uniformly
in the number of iterations).

In summary, if Xn satisfies these two properties,
then it converges in distribution towards X.
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We also use the well established equality in law be-
tween the order statistics of N independent Pareto-
distributed random variables of parameter β and the ran-
dom vector ((TN+1

T1

) 1
β−1

, . . . ,
(TN+1

TN

) 1
β−1

)
(6)

where T0 = 0 and (Ti+1 − Ti)i≥0 is a sequence of inde-
pendent and identically distributed (i.i.d.) random vari-
ables following an Exponential law of parameter 1. This,
among other properties usefull for physicists, im-
plies that the largest values of N independent

Pareto random variables are of order N
1

β−1 . We
will use this property to justify the behavior at
large N of the front as given by eq. 8.

B. Mean position of the front

Let us be more specific by defining the process hN . Let
(Zi)i≥1 be a sequence of independent random variables
following a Pareto distribution of parameter β−1. Then,
for the rand-model, we let (Yi)i≥1 be an i.i.d. sequence
of random variables following a Uniform law on [0, D]
whereas for the min-model Yi is the leftmost point on
[0, D] where the minimum of hi−1 is attained. Thus, we
set for N ≥ 1

hN (x) :=

N∑
i=1

Zα−1
i 1[0,Zi)(vYi(x)) ψ

(vYi(x)

Zi

)
, x ∈ [0, D].

(7)

We now present the results for the mean position of
the front. In the case β < α, for both the random and
the minimum processes,

N−α−1
β−1 hN ⇒N R (8)

where R is a real random variable, which by abuse of
notation is considered here as random function in C that
is constant on [0, D]. Moreover, R follows a α−1

β−1 stable-

law of characteristic function

Φ(t) =
β − 1

2α− β − 1
exp

[
Γ
(
− β−1

α−1

)
|t|−

β−1
α−1 + i π (β−1)

2 (α−1)

]
.

(9)
In the case, β > α, we obtain

N−1 hN ⇒N 2
β − 1

D

[ ∫ 1

0

ψ(u) du

∫ D/2

1

zα−βdz

+

∫ ∞

D/2

zα−1−β

∫ D/2

0

ψ
(y
z

)
dydz

]
(10)

that is to say, the limit is a non-random constant function
on [0, D].

The critical case β = α can also be analyzed rigor-
ously and for both the random and the min model, the
following convergence holds true

(N logN)−1 hN ⇒N 1,

where, as in the latter case, the convergence takes place
towards a non-random constant function that equals 1
on [0, D].
Let us give a heuristic for the growth rate of the

front (as a function of N) that becomes ballistic
for β larger than α. Recall Eq. (1) of the article
and observe that when β > α, the increments are
integrable since Zα−1 has a finite first moment.
For this reason, the Law of Large Numbers can
be applied to the spatial average of both the rand
and the min models which equal a sum of inde-
pendent identically distributed random variables
(the integrals of the increments). As a conse-
quence the spatial average of hN grows linearly in
N .

In the case α > β, we note that Zα−1 is a non-
integrable heavy-tailed random variable and so
are the increments of the front. As a consequence,
the law of large number is not applicable any-
more. However, the characterization of the order
statistics of (Z1, . . . , ZN ) displayed in (6) allows us
to assert that the sum in (7) is dominated by its
k largest increments provided k is chosen large
enough (but finite and not dependent on N). This
explains the convergence in 8 and in particular

the super-ballistic rescalling in N
α−1
β−1 .

C. Fluctuations

For the rand model, we are able to fully describe the
fluctuations of h.
We set fN (x) = hN (x)− hN (0).

1. For α > 1 + n and 1 < β ≤ βc := 2α− 1− 2n

N−α−1−n
β−1 frN ⇒N µ, (11)

where µ is the limiting law on (C, C) of the sequence
of continuous processes (γN )N∈N defined as

γN (x) : =

N∑
i=1

Gi(x)

T
α−1−n

β−1

i

, x ∈ [0, D], (12)

where for x ∈ [0, D],

Gi(x) :=
ψ(n)(0)

n!

(
vYi

(x)n − vYi
(0)n

)
, (13)

where (Yi)i∈N is a sequence of i.i.d. random vari-
ables following a Uniform law on [0, D]. Observe
that we used the results of Eq. 6 to obtain Eq. 12.
Note also that the convergence of (γN )N≥1 occurs
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almost surely if α− 1− n > β − 1, i.e., β < α− n.
The interest of this result is that Eq. 11, 12
and 13 provide an explicit formula for calcu-
lating or simulating the asymptotic behavior
of the front.

2. For α ∈ [1, 1 + n] or for α > 1 + n and β > βc

N− 1
2 frN ⇒N Y (14)

where Y is a centered Gaussian process with co-
variance function r(s, t) = Cov (X1(s), X1(t)). In
the case of a triangle (n = 1), there exists a C > 0
such that

r(t, t) := Var(X1(t)) ≤ Cmax{t2, t2α−β}, t ∈ [0, D].
(15)

For the rand model, the regime change for the
growth rate of the fluctuations of the front occurs

at βc because for β > βc, we enter the domain of
application of the Central Limit Theorem. Again,
with Eq. (1) of the article, we observe that, since n
is the index of the first non zero derivative of ψ at 0,
the fluctuations of a single increment δ(h(x)− h(0)) are
bounded above and below by a constant time to Zα−1−n

which is square integrable for β > βc only.

Finally, let us give a short explanation to the
fact that when β > βf = 2α − 2 the covariance
r(s, t) has an exponent 2α − β > 2. Let s < t. For
both s and t to be affected by the transformation it is
necessary that t − s ≤ 2Z. Moreover β > βf implies
β > βc so that Zα−1−n is square integrable and
E
[
Z2(α−1−n) 1{2Z≥t−s}

]
behaves as (t− s)2α−β which

explains our result.
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