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Abstract: The efficient solution (fast and accurate) of parametric partial differential equations (pPDE)
is of major interest in many domains of science and engineering, enabling evaluations of the quantities
of interest, optimization, control, and uncertainty propagation—all them under stringent real-time
constraints. Different methodologies have been proposed in the past within the model order reduction
(MOR) community, based on the use of reduced bases (RB) or the separated representation at the heart
of the so-called proper generalized decompositions (PGD). In PGD, an alternate-direction strategy is
employed to circumvent the integration issues of operating in multi-dimensional domains. Recently,
physics informed neural networks (PINNs), a particular collocation schema where the unknown
field is approximated by a neural network (NN), have emerged in the domain of scientific machine
learning. PNNs combine the versatility of NN-based approximation with the ease of collocating
pPDE. The present paper proposes a combination of both procedures to find an efficient solution for
pPDE, that can either be viewed as an efficient collocation procedure for PINN, or as a monolithic
PGD that bypasses the use of the fixed-point alternated directions.

Keywords: proper generalized decomposition; physics informed neural network; machine learning;
parsimonious learning; separated representation

MSC: 90C08; 90C10

1. Introduction

Parametrized partial differential equations are typical in the domain of science and
engineering. The solution of such equations allows accessing the problem solutions for
any value of the parameters involved in those PDEs. However, pPDE induces the curse of
dimensionality when many parameters are involved in the problem model and solution [1].

Addressing the efficient solution of these multi-parametric pPDEs is of great interest
in engineering because, as soon as the parametric solution is known, its evaluation for any
combination of parameters is almost instantaneous. Such a solution would pave the way
towards possible simulation, optimization, control, or uncertainty propagation, all under
the stringent real-time constraint [2].

For this purpose, different model order reduction techniques have been proposed
and extensively applied, among them being the reduced basis [3–7] and the so-called
proper generalized decomposition (PGD) [1,8,9]. PGD computes the parametric solution by
operating directly on the PDE, without requiring the usual pre-calculations of a posteriori
MOR techniques, for instance the reduced bases method.

If we consider field u, depending on space x and time t, and we can assume that the
field satisfies the following equation

L(u(x, t)) = f (x, t), (1)

Mathematics 2024, 12, 2365. https://doi.org/10.3390/math12152365 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12152365
https://doi.org/10.3390/math12152365
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7100-3813
https://doi.org/10.3390/math12152365
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12152365?type=check_update&version=3


Mathematics 2024, 12, 2365 2 of 13

where L is the differential operator (here assumed linear), with parameter µ (here, it is
a single parameter for the sake of simplicity, but without any loss of generality) in the
model, field u will depend parametrically on it; that is, u(x, t; µ). Even if the loading term f
involves parameters, here, it is assumed for the sake of simplicity that it is not the case.

The PGD framework treats the parameter as an extra coordinate (or as many extra-
coordinates as parameters) and then expresses the solution u as u(x, t, µ), representing the
solution at each point x ∈ Ωx ⊂ Rd (d = 1, 2, 3), at each time t ∈ Ωt ⊂ R+, and for each
value of the parameter µ ∈ Ωµ ⊂ R.

With the choice of considering the model parameters as extra coordinates, the prob-
lem’s dimensionality increases, leading to the curse of dimensionality in mesh-based
approximations. In order to circumvent this issue, PGD assumes a separated representation
of the unknown field u(x, t, µ), according to

u(x, t, µ) ≈
N

∑
i=1

Xi(x)Ti(t)Mi(µ), (2)

where functions Xi, Ti and Mi must be computed.
For this purpose, we assume a greedy construction method. By assuming that at

step n − 1 (where n > 1 and n − 1 < N), the approximation of the solution at that step is
expressed by

un−1(x, t, µ) ≈
n−1

∑
i=1

Xi(x)Ti(t)Mi(µ), (3)

the solution update un is

un(x, t, µ) ≈
n

∑
i=1

Xi(x)Ti(t)Mi(µ) = un−1(x, t, µ) +Xn(x)Tn(t)Mn(µ). (4)

In order to compute the three unknown functions—Xn, Tn, and Mn—the weak form
of pPDE is considered∫

Ωx×Ωt×Ωµ

u∗ L(u) dxdtdµ =
∫

Ωx×Ωt×Ωµ

u∗ f (x, t) dxdtdµ (5)

Now, within a Galerkin setting, the test function u∗(x, t, µ) is expressed as follows

u∗(x, t, µ) = X ∗(x)Tn(t)Mn(µ) +Xn(x)T ∗(t)Mn(µ) +Xn(x)Tn(t)M∗(µ), (6)

when introduced into Equation (5), it results in the following three equations at step n:∫
Ωx×Ωt×Ωµ

X ∗TnMn L(un−1 +XnTnMn) dxdtdµ =

∫
Ωx×Ωt×Ωµ

X ∗TnMn f (x, t) dxdtdµ, (7)

∫
Ωx×Ωt×Ωµ

XnT ∗Mn L(un−1 +XnTnMn) dxdtdµ =

∫
Ωx×Ωt×Ωµ

XnT ∗Mn f (x, t) dxdtdµ (8)

and ∫
Ωx×Ωt×Ωµ

XnTnM∗ L(un−1 +XnTnMn) dxdtdµ =

∫
Ωx×Ωt×Ωµ

XnTnM∗ f (x, t) dxdtdµ. (9)
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Being nonlinear, the updating problem is usually solved through an alternate direction
fixed-point algorithm, which iterates by solving the three aforementioned equations. If the
iteration is denoted by the superscript •r, the previous equations can be rewritten as:∫

Ωx×Ωt×Ωµ

X ∗T r−1
n Mr−1

n L(un−1 +X r
nT r−1

n Mr−1
n ) dxdtdµ =

∫
Ωx×Ωt×Ωµ

X ∗T r−1
n Mr−1

n f (x, t) dxdtdµ, (10)

which updates Xn from Tn and Mn from the previous iteration,∫
Ωx×Ωt×Ωµ

X r
nT ∗Mr−1

n L(un−1 +X r
nT r

n Mr−1
n ) dxdtdµ =

∫
Ωx×Ωt×Ωµ

X r
nT ∗Mr−1

n f (x, t) dxdtdµ, (11)

which updates Tn from the recently updated Xn and from Mn obtained in the previous
iteration; and ∫

Ωx×Ωt×Ωµ

X r
nT r

n M∗ L(un−1 +X r
nT r

n Mr
n) dxdtdµ =

∫
Ωx×Ωt×Ωµ

X r
nT r

n M∗ f (x, t) dxdtdµ, (12)

which finally updates Mn from the two updated functions Xn and Tn.
Applying the differential operator and then integrating Ωt × Ωµ into Equation (10),

Ωx × Ωµ into Equation (11), and Ωx × Ωt into Equation (12), the three equations are
reduced to: 

∫
Ωx

X ∗ Gx(X r
n) dx =

∫
Ωx

X ∗ hr
x(x)∫

Ωt
T ∗ Gt(T r

n ) dt =
∫

Ωt
T ∗ hr

t(t)∫
Ωµ

M∗ Gµ(Mr
n) dµ =

∫
Ωµ

M∗ hr
µ(µ)

, (13)

where (Gx,Gt,Gµ) refer to the resulting single-coordinate differential operations, and simi-
larly to functions (hx, ht, hµ).

The fixed point of the these equations determines the updated search, i.e., Xn, Tn,
and Mn. Further updates are computed until obtaining a small enough residual for
the differential equation, at iteration N, which determines the solution approximation
u(x, t, µ) ≈ uN(x, t, µ).

For additional details, the interested reader can refer to [9,10] and the references therein.
The main drawbacks of such a procedure are as follows:

• The alternate direction iteration algorithm can become computationally expensive and
exhibits low convergence.

• Implementation requires expressing the domain as the Cartesian product of the
domains related to the different coordinates. This becomes a challenging issue in
the multi-parametric case. To avoid the curse of dimensionality, the decomposition
Ωµ = Ωµ1 × ... × ΩµP is needed, where P is the number of parameters considered as
extra coordinates.

• Optimal implementation requires an affine decomposition for all of the terms involved
in the weak form.

• The solution to nonlinear models becomes challenging because the nonlinearity can
compromise the affine decompositions.

Recently, PINN was proposed as a versatile procedure for solving pPDE. The main
salient points are as follows:

• A general approximation provided by a deep neural network: u = NN (x, t, µ).
• A collocation scheme that computes the derivatives involved in the differential opera-

tor L(·) at different collocation points using automatic derivatives.
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• A training procedure for calculating the neural network NN parameters based on the
residual evaluated at the C collocation points (xi, ti, µi), where i = 1, ..., C. Using the
p-norm, the residual is expressed as:

R =
C

∑
i=1

|L(u(xi, ti, µi))− f (xi, ti, µi)|p, (14)

where L(u(xi, ti, µi)) ≡ L(u(x, t, µ))|xi ,ti ,µi .

PINNs are used in multiple applications to solve complex problems, with multiple
researchers working on the injection of physical laws [11]. It is used to solve physical prob-
lems, while overcoming the complexity of the computation time and stability conditions
required by classical techniques, while having their own stability conditions in transient
problems [12]. It is used for innovative approaches where more usual techniques cannot be
applied, like when determining the optimal path or velocity of a drone [13,14].

Despite its conceptual simplicity, PINNs are a valuable procedure for addressing
general linear and nonlinear pPDE; however, like traditional discretization techniques,
they encounter difficulties when dealing with highly multi-parametric models due to the
challenge of defining appropriate collocations that enable comprehensive coverage of the
multi-dimensional domain.

The present paper proposes a parsimonious PINN–PGD that takes profit of the ad-
vantages of both techniques, the separated representations, at the heart of PGD-based
discretization and the collocation and NN-based approximation that characterize PINN-
based discretizations.

2. Parsimonious PINN–PGD

First, in order to circumvent the curse of dimensionality, a separated representation, at
the heart of the PGD, is retained. In the case discussed above, this reads again as:

u(x, t, µ) ≈
N

∑
i=1

Xi(x)Ti(t)Mi(µ), (15)

where we assume the n − 1 first modes are already computed, looking at the present step
for the update Xn(x)Tn(t)Mn(µ).

Now, inspired by PINN, three neural networks (as many as problem coordinates—
including the so-called extra-coordinates) are defined in the present step:

Xn = NN x
n(x)

Tn = NN t
n(t)

Mn = NN µ
n(µ)

. (16)

Then, three sets of collocation points are defined: (i) xi, i = 1, . . . , A; (ii) tj, j = 1, . . . , B;
and (iii) µk, k = 1, . . . , D. By using automatic differentiation, the different derivatives of the
neural networks can be calculated using the defined collocation points, in order to evaluate
all of the terms involved in the differential operator.

Now, the residual at step n, Rn, can be defined in two ways:

1. Adding the collocation point residuals

R =
C

∑
m=1

|L(un(xm, tm, µm))− f (xm, tm, µm)|p, (17)
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where m refers to each of the collocation points resulting from the Cartesian product
of xi, tj, and µk, with C = A× B× D. It is important to note that in step n, the term
involved by the differential operator reads

L(un(xm, tm, µm)) ≡ L(un−1(xm, tm, µm) +Xn(xi)Tn(tj)Mn(µk))) (18)

with the indexes (i, j, k) corresponding to m.
2. When considering the L2-norm and a fully affine decomposition, we can express

(L(u(x, t, µ))− f (x, t, µ))2 =
S

∑
s=1

Fs(x)Gs(t)Hs(µ), (19)

which allows for writing the residual from

R = ∥L(u(x, t, µ))− f (x, t, µ)∥2 =

S

∑
s=1

(∫
Ωx

Fs(x)dx
)
×

(∫
Ωt

Gs(t)
)
×

(∫
Ωµ

Hs(µ)

)
. (20)

The Parametric Transient Heat Equation as an Example

For the sake of illustrative purposes, the parsimonious PINN–PGD mentioned here is
applied first to solve the one-dimensional transient and parametric heat equation involving
the temperature field u(x, t; µ)

∂u
∂t

− µ
∂2u
∂x2 = Q (21)

with x ∈ Ωx = [0, L] and t ∈ Ωt = [0, T), where T is large enough to ensure that
the transient problem reaches the steady state, µ is the thermal diffusivity, and Q is the
heat source uniformly distributed in Ωx × Ωt. The initial and boundary conditions are
u(x, t = 0) = u0 and u(x = 0, t) = u(x = L, t) = ud.

As discussed before, after introducing the diffusivity µ as a problem extra coordinate,
the temperature field is searched in the separated form

u(x, t, µ) ≈
N

∑
i=1

Xi(x)Ti(t)Mi(µ). (22)

The loss function consists of the PDE residual, that at step n reads

Rn =

∥∥∥∥∥ n

∑
i=1

Xi
∂Ti
∂t

Mi − µ
n

∑
i=1

∂2Xi
∂x2 TiMi − Q

∥∥∥∥∥
2

. (23)

The problem is solved with the architecture depicted in Figure 1. The network is built
such that, at every iteration, the three networks are trained simultaneously

Xn = NN x
n(x)

Tn = NN t
n(t)

Mn = NN µ
n(µ)

. (24)

When training the three networks, Xn, Tn, and Mn, the previously trained networks
Xj, Tj, and Mj for j < n are frozen and set as non trainable.
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Figure 1. The architecture of the network used to build the parsimonious PINN–PGD.

The training in this example is easy to perform and exhibits fast convergence with
a low number of required vectors N. However, the construction of the loss function (23)
requires the reconstruction of the whole multidimensional domain Ωx × Ωt × Ωµ, fact that
compromise the strategy efficiency when operating in highly multi-parametric settings.

To circumvent this difficulty, instead of the L2-norm considered in the loss (23), one
could consider the alternative loss given by Equation (17) or the one given by Equation (20).

3. Numerical Results

This section solved the heat transfer problem (21), using the proposed PINN–PGD
approach just introduced.

The used neural networks are resumed in Table 1. We note the need to use a larger
network in time, when compared to the other networks, to achieve the convergence of the
PINN–PGD. All the biases in the PINN–PGD networks are set to zero, since the solution of
a differential equation doesn’t include biases. The layers were initialized using the Glorot
uniform approach [15]. The gradient descent applies in two steps:

1. First, the ADAM algorithm with cosine decay is used, where the learning rate is
reduced from 10−3 to 10−6 over 150 epochs.

2. A second step of fine tuning, where the ADAM algorithm is used again, with a
constant learning rate of 10−6 over 150 epochs.

The optimizer is initialized after training every layer of the parsimonious network.
Here, 100 uniform collocation points are selected in x ∈ [0, 1] m, 200 in t ∈ [0, 5] s, and 40 in
µ ∈ [0.1, 1] m2s−1.

The boundary conditions are enforced by construction through the change in variables:
Xn = (x − x0)(x − xL)×NN x

n(x)
Tn = t ×NN t

n(t)
Mn = NN µ

n(µ)
, (25)

with x0 and xL being the minimum and maximum values of x, respectively.
The problem is solved for homogeneous boundary conditions in this case. However,

the same transformation can be used for non homogeneous boundary conditions, by first
considering a mode satisfying the required boundary conditions [16,17].
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Table 1. For the neural networks used in PINN–PGD modeling, all of the layers had the same structure.

X Networks Layer Input Layer Type Activation

ax x Dense with 60 neurons tanh
bx ax Dense with 60 neurons relu
cx bx Dense with 60 neurons relu
dx cx Dense with 1 neurons linear

T Networks Layer Input Layer Type Activation

at t Dense with 120 neurons tanh
bt at Dense with 120 neurons relu
ct bt Dense with 120 neurons relu
dt ct Dense with 1 neurons linear

M Networks Layer Input Layer Type Activation

aµ µ Dense with 60 neurons tanh
bµ aµ Dense with 60 neurons relu
cµ bµ Dense with 60 neurons relu
dµ cµ Dense with 1 neurons linear

Ten modes were computed using the PINN–PGD approach and the solution was com-
pared with the finite element one for the selected diffusivity µ values. Figures 2, 3, and 4
show the PINN–PGD computed modes in x, t, and µ, respectively. As expected, the first
mode computed in x is almost a quadratic curve; in time, it increases to reach a steady
state, and in the parametric domain µ, a decreasing trend is observed with an increasing
µ. It is also noted, especially in the time domain, that the modes’ amplitude decreases
with increasing n. The decrease in the total amplitude of the modes demonstrates the
convergence of the algorithm when increasing the number of modes n.

Figure 5 shows, for µ = 0.1 m2s−1, both the solution obtained using 10 PINN–PGD
modes and the one obtained using the finite element method (FEM) with an implicit time
integration scheme, using the same mesh in space and time. The relative error E between
both solutions is shown in Figure 6. The relative error is computed using:

E =
∥uPINN−−PGD − uFEM∥1

∥uFEM∥∞
(26)

Figure 2. The space modes Xn found by the Parsimonious PINN–PGD in the space dimension x, for
n = 1, · · · , 10.
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Figure 3. The time modes Tn found by the Parsimonious PINN–PGD in the time dimension t, for
n = 1, · · · , 10.

Figure 4. The diffusivity modes Mn found by the Parsimonious PINN–PGD in the diffusivity
dimension µ, for n = 1, · · · , 10.

(a) PINN–PGD solution (b) FEM solution

Figure 5. PINN–PGD solution and FEM solution for µ = 0.1 m2s−1.
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Figure 6. Relative error between the 10-modes for PINN–PGD and FEM solutions, for µ = 0.1 m2s−1.

The relative error is large at the beginning of the time integration, where the solution
still has a small amplitude. This is expected as the neural network converges using an
average loss, first fitting the large amplitudes, and, later on, the lower amplitudes of the
solution. Figure 7 shows the solutions for PINN–PGD and FEM for µ = 1 m2s−1, and
Figure 8 shows the relative errors map. The same observation applies for low amplitudes
with a larger relative error. Both of the solutions illustrate some small oscillations in time for
the PINN–PGD problem. The oscillations can be reduced using further fine tuning and/or
more modes in the solution.

(a) PINN–PGD solution (b) FEM solution

Figure 7. PINN–PGD solution and FEM solution for µ = 1 m2s−1.

The problem complexity scales in the proposed PINN–PGD linear approach as a
function of the number of nodes per dimension. For instance, in the problem at hand, the
number of unknowns to calculate is Nx for the x dimension, Nt for the time dimension, and
Nµ for the diffusivity. There are a total of

(
Nx + Nt + Nµ

)
× n variables to compute, with n

stating the total number of PGD modes. However, for the finite element problem, a problem
of dimension Nx needs to be solved for every time step and each selected value of the
parameter µ, resulting in a total of

(
Nx × Nt × Nµ

)
problems. Thus, the problem complexity

scales linearly with the problem dimensionality when using the proposed PINN–PGD
approach, while it scales exponentially when using the usual finite element discretization.
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Figure 8. Relative errors between the 10 PINN–PGD modes and the FEM solutions, for µ = 1 m2s−1.

4. Additional Examples
4.1. 2D Steady State Example

In this section, we solve the steady state heat transfer equation in (x, y), illustrated below:

−
(

∂2u
∂x2 +

∂2u
∂y2

)
= 10 (27)

The problem is solved in the rectangular domain x ∈ [0; 1] and y ∈ [0; 2] along with
100 collocation points in x and 200 in y. The problem is also solved using 2D finite elements
in a mesh involving 100 × 200 = 20,000 nodes in the 2D domain. The results are compared
in Figure 9. The relative errors increase where the temperature is close to zero, but it is,
in general, below 5% (as a consequence of the relative error definition), as illustrated in
Figure 9.

(a) PINN–PGD solution for n = 5 (b) FEM solution

Figure 9. Cont.
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(c) Absolute error (d) Relative error

Figure 9. Steady state 2D PINN–PGD solution and FEM solution for µ = 1 m2s−1 and Q = 10.

4.2. Nonlinear Example

We propose the following 1D nonlinear problem in (x, t):

∂u
∂t

− ∂

∂x

(
µ(u)

∂u
∂x

)
= 10 (28)

The problem is solved for x ∈ [0; 1] and t ∈ [0; 5], along with 100 collocation points in x and
200 in t, using µ = 1 + 0.1u. In this section, the loss given in Equation (18) is used, as the
separation of loss in a sum of products in x and t dimensions becomes difficult.

The problem is also solved using incremental finite elements using 100 nodes in x
and 200 time steps, while linearizing the problem using, for time step i, µi = µ(ui−1). The
results are compared in Figure 10. Again, we note the relative errors increase where the
temperature is close to zero (as a consequence of the relative error definition), but it is, in
general, below 5%, as illustrated in Figure 10.

(a) PINN–PGD solution for n = 10 (b) FEM solution

(c) Absolute error (d) Relative error

Figure 10. Nonlinear transient PINN–PGD solution and FEM solution for µ = 1 + 0.1u and Q = 10.
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5. Conclusions

This work proposed a parsimonious PINN–PGD approach, able to construct the
separated representation solution of a pPDE in a separated manner, without the need to
reconstruct the full collocation points quadrature.

A novel monolithic method to learn the networks simultaneously computing the
modes in different dimensions is proposed.The choice of the loss function being the square
of the residuals allows for learning without the need to reconstruct the full dimensional
space. The proposed approach allows for learning larger parametric problems without
computer memory issues, alleviating the so-called curse of dimensionality.

The proposed formulation is parsimonious. The solution is built incrementally, on the
fly, without prior need to know the involved number of modes in the solution. Moreover,
only small networks can be used, as the solution can be continuously improved in a
parsimonious manner by adding new networks after reaching the convergence of the
previous ones.
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