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GaVA-CLIP:Refining Multimodal
Representations with Clinical Knowledge and

Numerical Parameters for Gait Video Analysis in
Neurodegenerative Diseases

Diwei Wang, Kun Yuan, Cédric Bobenrieth and Hyewon Seo

Abstract— We present GaVA-CLIP, a knowledge augmen-
tation strategy for Gait Video Analysis, designed to as-
sess diagnostic groups and gait impairment. Based on
the large-scale pretrained Vision Language Model, CLIP,
GaVA-CLIP learns and enhances visual, textual, and numer-
ical representations of patient gait videos through collec-
tive learning across three distinct modalities: gait videos,
class-specific descriptions, and numerical gait parameters.
Our specific contributions are two-fold: First, we adopt a
knowledge-aware prompt tuning strategy to utilize class-
specific medical descriptions in guiding text prompt learn-
ing. Second, we integrate paired gait parameters as nu-
merical texts to enhance the numeracy of textual repre-
sentations. Results demonstrate that GaVA-CLIP not only
significantly outperforms state-of-the-art (SOTA) methods
in video-based classification tasks but also adeptly de-
codes the learned class-specific text features into natural
language descriptions using the vocabulary of quantitative
gait parameters. The code and the model will be made avail-
able at our project page: https://lisqzqng.github.io/
GaitAnalysisVLM/.

Index Terms— Pathological gait classification, MDS-
UPDRS gait score, Pretrained VLM prompt tuning, Medical
knowledge transfer, Numeracy in language models.

I. INTRODUCTION

WHILE quantitative gait impairment analysis has proven
to be an established method for assessing neurodegen-

erative diseases and gauging their severity [1]–[4], current
clinical assessments are used in highly restricted contexts,
posing significant challenges: Not only do they often require
specialized equipment, such as force plates or IMU sensors,
but they also struggle to capture moments with prominent
symptoms during clinical visits, which are somewhat special
occasions for patients. Analysing motor symptoms from video
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offers new possibilities, enabling cost-effective monitoring, re-
mote surveillance without the need of frequent in-person clinic
visits, thereby facilitating timely and personalized assessment.
Naturally, there have been many efforts to develop a single
2D-RGB-camera-based gait analysis system, with the majority
leveraging advancements in deep learning. They train classifier
models on spatiotemporal features extracted from either image
sequences [5] or 3D joint trajectories extracted from videos
[6]–[9].

However, existing works face challenges in handling insuf-
ficient pathological gait data and imbalances with normal data,
promoting strategies such as a self-supervised pretraining stage
prior to the task-specific supervision [6], or the employment
of crafted loss functions [7]. Therefore, the need for data-
efficient approaches with superior performance is crucial in
video-based pathological gait classification. Meanwhile, the
recent emergence of large-scale pretrained vision-language
models (VLMs) has demonstrated remarkable performance
and transferability to different types of visual recognition
tasks [10], [11], thanks to their generalizable visual and textual
representations of natural concepts. In the context of medical
image analysis, VLMs have been tailored to various medical
imaging tasks via finetuning [12], multimodal global and
local representation learning [13], knowledge-based prompt
learning [14], [15], knowledge-based contrastive learning on
decoupled image and text modalities [16], and large-scale
noisy video-text pretraining [17].

Inspired by these works, we propose a new approach to
transfer and improve representations of VLMs for the patho-
logical gait classification task in neurodegenerative diseases.
Given the limited size of our clinical data, and to exploit
the availability of the gait data accompanying the gait video,
we prompt our baseline model using distinct modalities.
Concretely, we model the prompt’s context with learnable
vectors, which is initialized with domain-specific knowledge.
Additionally, numerical gait parameters paired with videos
are encoded and aligned with the text representation with a
contrastive learning. As a result, we enhance the visual and
text representations of the VLM model, thereby improving
its understanding of both class-discriminating and numerical
features present in gait videos. To our knowledge, our work
represents the first attempt to deploy VLM for the analysis of
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pathological gait videos. A previous version of this work has
been presented in [18].

II. RELATED WORK

A. Gait analysis in neurodegenerative diseases
Quantitative gait impairment analysis is an established

method for assessing neurodegenerative diseases such as De-
mentia with Lewy Bodies (DLB) and Alzheimer’s Disease
(AD), and gauging their severity, even in the prodromal phase
[19]. Such pathological gait studies often rely on data collected
from wearable sensors or electronic walkways, which allows
for quantitative gait analysis. Inertial measurement unit (IMU)
sensors have been widely adopted, due to their lightweight
design, high sampling rate, and cost-effectiveness. Mannini
et al. [20] trained class-specifc Hidden Markov Models to
capture the gait motion and evaluated the log-likelihoods
of observing data, which were then combined with twelve
time and frequency domain features extracted from IMU
data and fed into a Support Vector Machines classifier to
distinguish between the gaits of healthy elderly, post-stroke,
and Huntington’s disease. Hsu et al. [21] used multiple inertial
sensors to classify gaits in stroke and neurological disorder
patients, highlighting the importance of sensor placement and
the effectiveness of combining time-domain features (e.g.,
kurtosis, variance, mean) with temporal gait parameters (e.g.,
stance time, stride time, double-limb support). More recently,
Mc Ardle et al. [3] studied the impact of walking context,
revealing that impairment differences between dementia sub-
types are more pronounced in laboratory-based gaits, while in
real-world settings, these differences are evident only in short
walking bouts. Pressure sensitive walkways are also commonly
deployed to obtain insights in the analysis of gait impairment
for neurodegenerative diseases. Merory et al. [2] showed that
individuals with AD and DLB exhibit comparable spatiotem-
poral gait characteristics that differ significantly from those of
the normal population. Somewhat contrary to their study, Mc
Ardle et al. [1] demonstrated that patients with Lewy body
disease, which includes both DLB and Parkinson’s Disease
Dementia, exhibit greater variability in step and stance times
compared to those with AD. Muller [4] utilized a decision
tree [22] to analyze gait motions of individuals with AD and
DLB, revealing that walking speed and asymmetry in left-to-
right step lengths are the primary factors for distinguishing
between dementia subtypes and estimating disease severity.

While wearable sensors or instrumented walkways can facil-
itate detailed gait analysis, they can often be costly, intrusive,
and cumbersome in terms of wearability and calibration. With
the advancement of deep learning in computer vision, recent
works have focused on vision-based impairment assessments
for pathological gait. This shift is particularly important for
monitoring diseases in real-world settings, where the cameras
are ubiquitously available. Albuquerque et al. [5] developed
a spatiotemporal deep learning approach that combines image
features extracted by convolutional neural networks (CNNs)
with a temporal encoding based on a recurrent neural network
(RNN). Interestingly, most recent works base their estimation
on 3D skeleton sequences extracted from video [23]. For ex-
ample, Lu et al. [7] extracted and tracked 3D body meshes and

poses from video frames, and performed classification on the
3D pose sequences using a temporal CNN. Additionally, Sabo
et al. [6] demonstrated that Spatiotemporal-Graph Convolution
Network models operating on 3D joint trajectories outperform
earlier models. Gaitforemer [24] introduces a transformer
model that operates on sequences of 3D human body skeletons
for the pre-training task of human motion forecasting, which
is subsequently adapted to the downstream task of MDS-
UPDRS gait score estimation. Wang et al [8] have developed
a dedicated 3D skeleton reconstructor tailored for gait motion,
incorporating a gait parameter estimator from videos and
a multihead attention Transformer for similar classification
tasks.

B. Multimodal contrastive learning in medical image
analysis

The use of multimodal data, particularly images paired with
expert annotations, is a well-established method to enhance
model performance and facilitate downstream tasks, which is
also widely adopted in medical imaging [25]. Implementations
such as BioViL [26] have introduced benchmarks to evaluate
the self-supervised biomedical VLM in chest X-ray application
settings. However, the complexity and specificity of categorical
notions in medical imaging often hinder the direct application
of models pre-trained on natural images. This necessitates ad-
vanced techniques such as informative supervisions [16], [27],
domain-agnostic descriptive attributes [28], enriched textual
descriptions [29], [30], fine-grained alignments [13], [31], and
multimodal expert annotations [32] to enhance the alignment
and understanding of medical images and texts in diagnostic
models.

Specifically, MedCLIP [16] addresses the challenge of lim-
ited paired data in the medical domain by decoupling images
and text reports from a same patient and thereby identifying
positive pairs based on semantic similarities between all im-
ages and reports. Qin et al. [28] propose to leverage expressive
medical prompts, incorporating visual descriptive attributes
that resonate across both natural and medical domains, to
effectively bridge domain gap. FLAIR [30] enriches cate-
gorical supervision with text descriptions embedding expert
knowledge, adapting the idea of [29] to the medical domain.

MedMPG [31] and GLoRIA [13] focus on addressing the
fine-grained informational needs of medical diagnostics by
enhancing the alignment within local region of image and
texts. MedKLIP [27] further develops the method for local
alignment by extracting and utilizing complex medical enti-
ties (keywords) from diagnostic text reports. This extraction
not only allows for a deeper understanding of the medical
context but also supports a more nuanced alignment between
images and reports. Additionally, Kumar and Marttinen [32]
propose integrating eye-gaze heatmaps of radiologist as expert
annotations, to diversify text-image alignment supervision with
additional positive samples.

These strategies reflect a broader move towards more
domain-specialized models that are deeply integrated with
domain-specific knowledge, thereby improving the effective-
ness and applicability of VLM in medical contexts. Drawing
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inspiration from these techniques that bridge the domain gap
between natural and medical images, our approach leverages
the knowledge transfer capabilities of the VLM, the CLIP
[10] model in particular, to analyze gait impairments in
neurodegenerative diseases.

III. METHOD

We utilize three distinct modalities to enhance the accuracy
and the reliability of the VLM in classifying gait videos:
videos, class-specific medical descriptions, and numerical gait
parameters. Our knowledge augmentation strategy consists of
two parts: First, we adopt a knowledge-aware prompt learning
strategy to exploit class-specific description in the text prompts
generation, while leveraging the pre-aligned video-text latent
space (Sec.III-B). Second, we incorporate the associated nu-
merical gait parameters as numerical texts to enhance the
numeracy within the latent space of the text (Sec.III-C). The
overview of our model is shown in Fig 1.

A. Dataset and preprocessing

1) Dataset: Our study leverages the clinical videos docu-
mented in [8], comprising 90 gait videos from 40 patients
diagnosed with neurodegenerative disorders and 3 healthy
controls. Moreover, 28 gait video clips featuring healthy
elderly individuals have been added, chosen from the TOAGA
archive [33] based on specific criteria (Berg Balance Scale
≥ 45, 0-falls during last 6 months, etc.), totaling 118 clips. All
the videos are recorded at 30 fps, each capturing a straight,
one-way walking path of an individual. The subjects in the
clinical videos were instructed to walk forth and back on
a GAITRite (https://www.gaitrite.com/) pressure-
sensitive walkway [8], which generated a set of 29 gait
parameters. From these, we identified 8 basic gait parameters
that are also available in the TOAGA dataset, as outlined in
Table I.

TABLE I: Eight basic gait parameters used in our work.

ID Gait parameter description
1 Number of steps per minute
2 Walking speed
3 Distance covered by one step
4 Time taken by one step
5 Difference in time taken between a right step and a left step
6 Difference in distance covered between a right step and a left step
7 Standard variance among step times
8 Standard variance among step lengths

2) Preprocessing: We crop the original videos based on
bounding boxes, and employ a sliding window scheme (win-
dow size: 70 frames) to generate sub-sequences, with a stride
of 25 for training and 0 for validation. This process results in
approximately 900 clips of 70 frames for each cross-validation
fold.

To effectively incorporate the gait parameters into text
space, we formulate sentences by combining gait parameters
with “and”, connecting names and values with “is”, as il-
lustrated in Fig.2. We selected four parameters per sentence,
based on our observation that neurologists typically label a

Fig. 1: Overview of our cross-modality model for video-based
clinical gait analysis. Three dashed color-blocks (pink, orange,
and green) represent the text- and video encoding pipelines,
and the text embedding of numerical gait parameters, respec-
tively.

Fig. 2: Gait parameters presented as tabular elements are
translated into sentences.

video using only a few prominent visual clues rather than ex-
haustively listing all evidences. Out of the 8 basic parameters,
we made 70 combinations, each containing 4 parameters.

B. Fine-tuning VLM with knowledge-augmented prompts

As demonstrated by ActionCLIP [34], video action recogni-
tion can effectively leverage pretrained multimodal models like
CLIP [10]. By utilizing appropriate prompts with learnable pa-
rameters, ActionCLIP performs end-to-end VLM fine-tuning
using downstream training data. In a similar spirit, we adapt
the CLIP model for video action recognition but in the context
of the pathological gait analysis. Specifically, we employ a
prompt learning strategy by creating textual prompts derived
from clinical gait notions and using additional prompts on the
visual side to manage sequential frame inputs. Note that in
our paper, we use “prompt” both as a noun and as a verb,
referring to the process of adjusting the pretrained VLM to
our gait classification tasks through prompt tuning.

https://www.gaitrite.com/
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To prompt the frozen CLIP text encoder FCLIPT , we
incorporate informative clinical knowledge by constructing
per-class learnable prompts {Ci}. We use ChatGPT-4 [35]
to generate categorical descriptions for MDS-UPDRS gait
impairment classes and different diagnostic groups. These
descriptions are then filtered, modified, and validated by a
neurologist. Table V presents an overview of thus obtained
clinical knowledge in the form of categorical descriptions. We
distill them into category description embeddings Desci using
a RoBERTa model [36]. Following the unified training strategy
introduced in KEPLER [37], the RoBERTa is initialized with
the pretrained RoBERTaBASE checkpoints, and undergoes an
additional training process with joint-objectives of knowledge
embedding (KE) and masked language modeling. The KE ob-
jective embeds entities and their relation in knowledge graphs,
helping to extract inter-class relationships from the category
descriptions. To improve contextual understanding and thereby
enhance the classification performance, we conditioned text
prompts on class names, similar to previous work [38], [39].
Specifically, {Ci} are the projections of {Desci} via a weight-
only two-layer multi-layer perceptron MLPT , added with
additional learnable vectors {Xi}:

{Ci} = MLPT ({Desci}) + {Xi}, (1)

where the index i represents the i-th class, both the MLP
and the learnable vectors are defined per-class. We refer to
this prompting strategy as Continuous Prompt Tuning (CPT).
Fig.3 compares the per-class text features {FT

i } optimized
via CPT against those derived through baseline fine-tuning.
Utilizing CPT, the relative positioning of text feature distances
in a low-dimensional space exhibits a more coherent arrange-
ment. The baseline model trained for gait score classification
misrepresents the moderate class as the most relevant to the
normal class in Fig. 3(a). Conversely, the CPT model trained
for diagnostic group classification in Fig. 3(b) effectively dis-
tinguishes gait impairments, showing AD-related impairments
as less pronounced than those of DLB. Note that this aligns
with the descriptions of clinical knowledge listed in Table V.

Recent work on knowledge-aware prompt tuning (KAPT)
[15] indicates that prompts trained on specific data may overfit
to seen data. Building on this insight, we tokenize class
descriptive texts into discrete prompts {Di} to better leverage
clinical knowledge. Considering the 77-word context length
limitation of FCLIPT , we have crafted three variants of
discrete prompts to condense the text length.

• KeyPT (Keyword-wise Prompt Tuning): Unlike the
KAPT method [15] where the summaries are extracted by
a pretrained language model, our categorical descriptions
are a list of criteria characterizing the gait motion, as
outlined in Table V. Thus we directly select names of
each criterion (such as “Normal gait pattern”) to create
the summary.

• SegKPT (Segmented Knowledge Prompt Tuning): We
divide the original descriptions presented in Table V into
segments. During contrastive training, FCLIPT encodes
prompts based on the knowledge segments containing
one or more sentences. For each class i, we compute

(a) MDS-UPDRS gait score

(b) Diagnostic groups

Fig. 3: The learned per-class text features {FT
i } are visualized

using UMAP with 2 components, comparing models prompt-
tuned with (circled dots) and without CPT (stars) in two
classification tasks.

the centroid of the text features {FT
ij } (j=1,...,Ns) to

represent the final {FT
i }.

On the video side, each frame of the input video V goes
through the tokenization of the Vision transformer (ViT) [40],
collectively forming a sequence of per-frame representations
z
(0)
t . The visual prompts for the l-th layer of the pretrained

CLIP Vision Encoder FCLIPV are derived by applying Vita-
CLIP [38]’s video prompt learner (V itaV PL) to the output
of the previous layer {z(l−1)

t }:

[S(l), G(l), L(l)]l=1,...,12 = VitaVPLθ({z(l−1)
t }), (2)

where S(l), G(l), and L(l) respectively denote the learnable
summary, global, and local prompt tokens at layer l. As sug-
gested in [38], these prompt tokens are appended to {z(l−1)

t }
and subsequently fed into FCLIPV to obtain FV :

FV = FCLIPV ([{z(l−1)
t }, S(l), G(l), L(l)]). (3)

We determine the class label of the visual feature FV by
comparing it to the per-class text features {FT

i } encoded from
text prompts. The class with the highest similarity score is
chosen as the label. The trainable components of our model are
optimized using a contrastive loss, denoted as Lk, to maximize
the cosine similarity between class description-video pairs.
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Table II shows the class imbalance present in our dataset.
To address this imbalance, we implement a multi-class focal
loss [7] designed to enhance the cosine similarity of positive
pairs. Additionally, we introduce ordinal weights to preserve
the intrinsic class ordering in MDS-UPDRS gait scores. The
loss Lk for the text-video contrastive learning is formulated
as:

Lk =

Ncls∑
i=1

[−α(1− pi)
γ + β

|i− argmax(y)|
Ncls − 1

]yilog(pi), (4)

pi =
exp(< FT

i |FV > /τ)∑Ncls

j=1 exp(< FT
j |FV > /τ)

, (5)

where y denotes the one-hot encoded label and pi the predicted
probability of class i. The cosine similarity of feature pair
(FT

i , FV ) is scaled by a learnable temperature parameter τ ,
initialized to 0.01 to balance the feature distances between
intra- and inter-class samples. We set the weighting factors
α = 0.25 and the focusing parameter γ = 2, as in Lu et al.
[7]. β is set to 0.2 for the gait score classification, while for
the classification of diagnostic groups, it is set to 0.

C. Text embedding of numerical gait parameters

Fig. 4: Our numerical text embedding (NTE) paradigm.

Using the CLIP text encoder to generate numerical text
embeddings do not yield favorable representation for our clas-
sification tasks. For instance, the text embeddings form clusters
by the textual similarity, i.e. the names of gait parameters.
Worse, it fails to effectively capture the numerical information
within sentences. When sentences vary only by numerical val-
ues, the generated embeddings do not adequately reflect these
differences. To illustrate this, we used the pretrained CLIP text
encoder to generate embeddings for 200 sentences describing
the same gait parameter but with values ranging from 1 to 200.
As shown in Fig.5(a) and Fig.5(b), the similarities among the
generated embeddings, the values are represented with digits
(e.g., “1”, “2”, etc.) or number words (e.g., “one”, “two”,
etc.), show quasi-repetitive patterns. In fact, these patterns
highlight the similarity between representations of individual
digits and number words. To improve the numerical accuracy
of the representation, we introduce a new embedding paradigm
specifically designed for gait parameters. Starting from the
set of sentences each containing four gait parameters (Sec.III-
A.2), we employ a two-step encoding process as illustrated
in Fig.4. We start by feeding sentences without numerical

values into the CLIP text encoder, resulting in a descriptive
embedding of the textual content {FT

gp}. We treat the logical
conjunction “is” separately to generate text embedding [IS].
Subsequently, number embeddings are generated by multiply-
ing the dedicated embedding base [NUM] with the associated
numerical values {ωgp}. The chosen specialized embedding
base is designed to be orthogonal to the positional encoding
[41], ensuring the efficient transmission of numerical infor-
mation through the self-attention blocks of the Transformer.
The final numerical text embedding Fnum is then obtained
by applying the FCLIPT to the concatenated sentence:

Fnum = FCLIPT ({[FT
gp, [IS], ωgp · [NUM]]}), gp ∈ {1, 2, 3, 4}.

(6)
To highlight the importance of using [NUM] for value

representation before feeding the concatenated tokens into
FCLIPT , we compare different methods for generating token
embeddings for integer values in Fig. 5(c)-(f). Our method
(Fig. 5(c)) normalizes the value to some range (Details
below), and multiplies it with the dedicated base vector
[NUM]. Notice how it produces continuous embeddings
that effectively capture numerical polarity. Fig. 5(d) is
obtained by using positional encoding, where one can
observe the repetitive similarity patterns caused by the
periodic nature of the encoding functions. Fig. 5(e) and
Fig. 5(f) again illustrate the problem of text-similarity
dependency when using the CLIP text encoder for embedding
numbers, similar to what was observed in Figs. 5(a) and Fig.
5(b). Overall, our numerical embedding scheme produces
continuous embeddings that best reflect the numerical domain.

Normalization of parameter values. Given that most
gait parameter values are positive, we designate the mean
value among healthy controls as the zero reference:

Vnorm = α · (V − V healthy)

σ
, (7)

where σ is the variance of the gait parameter values, and α is
the scaling factor to adjust the data range to [−2.5, 2.5], the
dynamic range of layer normalization within the self-attention
block [41].

D. Multimodal contrastive learning with numerical text
embeddings

In our dataset, since each set of gait parameters is assigned
a class label, we use these parameters to better align the
multimodal representation for our classification tasks. The nu-
merical text embedding as described in SectionIII-C is still in-
sufficient for our classification tasks, as shown in Fig.4(a) and
Fig.4(c). Therefore, we train the projections of the generated
text features so as to maximize the cosine similarity between
the projection of the numerical embedding of gait parameters
Pnum and the projected text feature of their ground-truth class
PT (See Fig.1), using a cross-entropy objective Lgp. With this,
the global loss function becomes: L = Lk+ω·Lgp. We set ω =
0.05 through heuristic analysis. To demonstrate the effect of
this learning on alignment of numerical embeddings with the
multi-modal space, we visualize the embedding spaces before
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(a) Digits (FCLIPT ) (b) Number words (FCLIPT )

(c) Ours (d) Positional encoding

(e) Digits (f) Number words

Fig. 5: Different embedding schemes and number representa-
tion methods are compared by measuring the cosine similar-
ities among numerical text embeddings (NTE) derived from
200 sentences: “The walking speed is [value]”, with [value]
ranging from 1 to 200. Subfigures (a) and (b) are obtained
by using the pretrained CLIP text encoder FCLIPT , while
(c) to (f) adopt our paradigm with different representation
methods for numbers: (c) Multiplication with [NUM] (ours),
(d) Positional encoding, (e) CLIP token embedding of digits,
and (f) CLIP token embedding of number words. Cosine
similarity maps are scaled to [-1, 1] which has been color-
coded from red (-1) to white (0), and to blue (1).

and after learning in Fig.6. Once the training is complete, we
run a classifier on the extracted video feature FV , obtained by
evaluating the video encoding pipeline on the input gait video.

We have attempted to integrate gait parameters into the text
modality, by encoding them through a similar pipeline as the
text branch in Fig.1. Specifically, we replace the FCLIPT

used in the step 1 of the NTE process (Fig.4) with the
RoBERTa model, and add a trainable projection for {FT

gp}
before the concatenation in step 2. However, we got only
suboptimal results in the text-video contrastive learning.

(a) The original NTE (left) and the projected embeddings on the gait
scoring (GS) classification

(b) Original NTE (left) and the projected embeddings on the dementia
group (DG) classification

Fig. 6: Feature visualization of numerical text embeddings
(NTE) derived from gait parameters using UMAP (no.
components=3). Compared to the original NTEs on the left,
the NTEs projected by the learned MLPs on the right clearly
show improved representations for both classification tasks.
Yellow points represent the projections of the learned per-class
text features. Images rendered with Polyscope.

E. Interpreting the per-class text features

By decoding the text features, we expect to effectively trans-
late the class centers {FT

i } into natural language expressions
using the vocabulary of numerical gait parameters. To this
end, we trained a text decoder independently from the GaVA-
CLIP model for classification. The role of this decoder is
to convert numerical text embeddings Fnum back into their
corresponding gait parameters, reverting the encoding scheme
shown in Fig.4. A four-layer transformer decoder DT is
employed for text decoding. In line with recent developments
in text-only decoder pre-training [42], we train DT using the
prefix language modeling. Starting with the numerical text
embedding Fnum, DT learns to reconstruct the sequence of
token IDs {tokj} which is subsequently mapped into natural
language words. During training, to obtain ground-truth token
sequences for NTE, we use the FCLIPT dictionary for words,
and expand this dictionary with Nnum additional tokens to
accommodate numerical values. More specifically, we scale
the normalized numbers to a graduated integer scale of
[0,Nnum]. The token ID tok of a number [num] is defined as:
tok = [EOS]+scale([num]), where [EOS] = 49407. Moreover,
we use an ordinal cross-entropy loss in addition to the vanilla
cross-entropy loss, to further penalize the reconstruction error

www.polyscope.run
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TABLE II: Average per-fold sequence counts for MDS-UPDRS
gait scores and diagnostic groups in our 10-fold cross-
validation.

(a) MDS-UPDRS Gait Score

Class name normal slight mild moderate
No. sequences 202.4 373.5 158.6 167.9

(b) Diagnostic Groups

Class name healthy early
DLB

early
AD

severe
DLB

severe
AD

No. sequences 98.9 159.7 306.9 156.6 180.3

of the number values:

Lnum = − | ˆtok − tok|
[EOS] +Nnum − 1

[EOS]+Nnum∑
m=1

ymlog(pm), (8)

where Nnum = 200, | ˆtok − tok| represents the absolute
distance between the ground-truth token ID tok and the
estimated ˆtok, y denotes the one-hot encoded ground-truth
label, and p the estimated probability.

Benefiting from the proposed cross-modal contrastive learn-
ing scheme, {FT

i } can be represented as a linear combination
of the numerical text embeddings Fnum, with weights com-
puted by measuring the cosine similarity between {Pi} and
Pnum. Subsequently, we apply DT on {F̂num

i } to generate
natural language descriptions: { ˆDesci} = DT ({F̂num

i }).

IV. EXPERIMENTS AND RESULTS

Our study includes two classification tests: Gait scoring
(GS) to estimate the severity of a patient’s condition based
on a 4-class gait scoring (normal–0, slight–1, mild–2, and
moderate–3) following MDS-UPDRS (part III) [43], and di-
agnostic group classification (DG) to distinguish between dif-
ferent dementia groups and the corresponding phases: normal/
early DLB (Dementia with Lewy Bodies)/ severe DLB/ early
AD (Alzheimer’s Disease)/ severe AD. See the project page
for detailed clinical gait descriptions on each class. Due to
its limited size (a total of 120 videos), we divide our video
dataset into training and validation sets and conduct 10-fold
cross-validation for each classification task.

A. Ablation studies
We conduct ablation experiments on different model con-

figurations, with different designs of knowledge-augmented
prompts and the integration of NTE. Among the variants of
KAPT, CPT model delivers better and more stable classifica-
tion performance with less cross-fold variance. This perfor-
mance improvement is especially noticeable in the GS test,
where the inter-class relationships are ordinal. However, when
incorporating texts as discrete prompts {Di} into the model,
using keywords alone does not seem to be sufficient —KeyPT
does not improve classification accuracy but helps stabilize
model performance by reducing the standard deviation of
cross-fold accuracy. This suggests that the keywords related to
clinical knowledge provide only limited information, thereby
hindering the transfer of knowledge from the pretrained VLM

to our downstream tasks. As for the SegKPT, we examined
the impact of varying segmentation granularity. Given the
number of descriptive criteria ranges from 5 to 7 (Table V),
we tried two segmentations: 1) Split the initial description
into segments based on each criterion (Ns > 5); and 2)
Form 5 segments per class (Ns = 5) by grouping 2 or 3
criteria together, maintaining an equivalent text length across
segments. Note that each criterion can be used in up to
three segments. Table III demonstrates that grouping multiple
criteria into a segment yielded higher performance compared
to per-criterion segmentation. In Fig. 8, we further analyze the
precision rates associated with each criterion for the GS classi-
fication task. The precision rate of each criterion represents the
percentage of true positives for its associated texture feature
FT achieving maximum similarity with the video feature FV .
We observe a significant percentage imbalance across different
classes, suggesting that certain criteria do not contribute to the
classification tasks. Utilizing these less effective criteria in the
discrete prompts affect the calculation of the centroid (Sec.III-
B), thereby degrading the estimation of per-class text features
{FT

i }.
The combination of NTE and SegKPT optimizes perfor-

mance better in the DG test compared to the GS test, which
can be attributed to the frequent occurrence of comparative
adjectives in the descriptions of DG class categories (Table
V). Overall, the models tend to perform better in DG test,
supposedly due to the more distinctive per-class descriptions
and more objective ground truth labeling in that classification.
Confusion matrices are provided in Fig.7.

(a) Baseline (GS) (b) Ours (GS)

(c) Baseline (DG) (d) Ours (DG)

Fig. 7: Confusion matrices for the classification tasks.

B. Comparison with state-of-the-art
We compare our model with several related state-of-the-

art (SOTA) models. Four of these models ( [6]–[8], [24])
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TABLE III: Comparative analysis on model configurations.
Model performance is evaluated using top-1 accuracy (%), F1-
score, weighted F1-score (“w.F1”), and cross-fold accuracy
standard deviation (“cf.std”). Best performances are high-
lighted in bold.

Method Gait scoring
Accuracy F1-score w.F1 cf.std

Baseline 67.59 0.636 0.668 12.39
+CPT 70.59 0.673 0.692 11.90
+KeyPT 69.77 0.668 0.697 10.51
+SegKPT (NS = 5) 73.05 0.654 0.691 12.92
+SegKPT (NS > 5) 66.47 0.602 0.639 13.03
+NTE 71.55 0.705 0.716 14.57
+SegKPT+NTE (NS = 5) 73.27 0.693 0.716 13.08

Diagnostic groups classification
Accuracy F1-score w.F1 cf.std

Baseline 80.94 0.820 0.819 11.81
+CPT 81.62 0.816 0.812 9.91
+KeyPT 80.40 0.809 0.794 8.79
+SegKPT (NS = 5) 83.00 0.843 0.835 10.33
+SegKPT (NS > 5) 81.41 0.825 0.824 11.20
+NTE 84.33 0.850 0.847 10.68
+SegKPT+NTE (NS = 5) 85.72 0.863 0.860 11.56

(a) Normal (b) Slight impairment

(c) Mild impairment (d) Moderate impairment

Fig. 8: We visualize the classification precision for each class
of SegKPT (Ns > 5) model, based on the categorical criteria
(see Table V), for the gait scoring test.

are specifically designed for the classification of Parkinsonism
severity on 3D skeletons. As shown in Table IV, our method
achieves the best overall results in both tasks with compa-
rable computational complexity (30.2M trainable parameters
compared to 48.3textM +0.6M of the VIBE and OF-DDNet
combination). This is somewhat expected, as other models are
not designed for, and do not adapt well to, the constraints of
limited data size. Note that the chosen SOTA methods operate
on 3D reconstructed poses, for which we used VIBE [44],
MAX-GRNet [8] or PoseFormerV2 [45]. Since PoseFormerV2
is designed to estimate 3D joint positions from sequential
2D joint positions, we used the 2D joint positions projected
from the MAX-GRNet 3D outputs. As shown in Table IV,
hanging among these algorithms did not result in meaningful
differences in performance.

TABLE IV: Comparison with state-of-the-art methods. Model
performance is evaluated using top-1 accuracy (“Acc.”, %)
and F1-score. The size and the complexity of each model
is measured by the total number of trainable parameters
(“#Params”). For classifiers, #Params are those specifically
used in the gait score classification task. Best performances
are in bold.

Method GS DG
Reconstructor Classifier Acc. F1-score Acc. F1-score

(#Params) (#Params)
VIBE [44] 54.73 0.486 56.35 0.517

(48.3M)
MAX-GRNet [8] OF-DDNet [7] 52.48 0.439 56.78 0.582

(32.9M) (567.7K)
PoseFormerV2 [45] 54.53 0.496 48.93 0.439

(14.4M)
VIBE [44] 46.18 0.386 60.79 0.334

MAX-GRNet [8] ST-GCN [6] 49.08 0.439 59.69 0.342
PoseFormerV2 [45] (162.8K) 49.00 0.433 43.70 0.390

VIBE [44] 53.69 0.449 50.41 0.462
MAX-GRNet [8] KShapeNet [46] 50.52 0.395 45.18 0.381

PoseFormerV2 [45] (835.9K) 57.99 0.445 42.51 0.365
VIBE [44] 42.82 0.426 34.54 0.360

MAX-GRNet [8] GaitForeMer [24] 40.65 0.418 40.67 0.398
PoseFormerV2 [45] (5.967M) 37.76 0.374 35.20 0.349

GaVA-CLIP (30.2M) 73.27 0.693 85.72 0.863

Fig. 9: MDS-UPDRS gait score descriptions generated from
per-class text features through the pretrained text decoder. Key
criteria are highlighted in the respective class color.

C. Decoding the per-class description

We apply the pretrained text decoder DT (Sec.III-E) on the
per-class text features {FT

i } obtained through the cross-modal
contrastive learning in Sec.III-C. Examples of the decoded
texts for {FT

i } leanred through the gait scoring task are shown
in Fig.9. In general, the distinctive criteria in the decoded
texts follow the ordinal relationship within the classes. Certain
criteria in the clinical knowledge have been mapped to specific
quantitative gait parameters, such as the slowness in mild
and moderate impairments. However, the decoded texts for
moderate impairment are identical to those for mild. This
issue can be attributed to the limited availability of moderate
samples during training, as shown in Fig. 6. Additionally,
using only 8 basic gait parameters, as outlined in Table I,
can hinder the effective decoding of nuanced differences.

V. CONCLUSION AND DISCUSSION

We presented a knowledge augmentation strategy to en-
hance the adaptability of a large-scale pre-trained Vision-
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TABLE V: Clinical knowledge descriptions for gait impairment based on MDS-UPDRS [43], and for different diagnostic
groups. The keywords (criteria) in the descriptions are colored in blue.

Category Clinical knowledge descriptions
Normal Normal Gait Pattern: The individual walks with a normal gait pattern, which includes regular, rhythmic steps with a typical

step length and height. No Shuffling or Dragging of Feet: There is no shuffling or dragging of feet while walking. Normal Arm
Swing: ... No Balance Issues: ... No Assistive Device Required: ... Normal Speed and Rhythm: ... No Freezing of Gait: ...

Slight impairment Minimal Impairment: It’s less severe than mild gait impairment. The individual’s walking is almost normal. Any gait abnormalities
are very subtle and may not be consistently present. Occasional Slight Issues: There might be occasional problems with gait,
such as a slight drag of one foot or a minimal reduction in arm swing, but these are not consistently observable. Normal Speed
and Rhythm: ... No Assistive Device Required: ... No Falling: ...

Mild impairment Mild Impairment: The impairment in walking is noticeable but not severe. It’s less severe than moderate gait impairment but
more severe than slight gait impairment. The person can walk without assistance, but gait abnormalities are apparent. Possible
Reduced Arm Swing: One or both arms may not swing normally while walking. There might be a reduced arm swing on one
side or both sides. Slight Slowness or Shuffling: ... Mildly Irregular Steps: ... No Need for Assistive Device: ... No Falling: ...

Moderate impairment Moderate Impairment: It’s more severe than mild gait impairment. The individual’s gait is noticeably impaired, and these
impairments are consistent and evident. Marked Slowness or Shuffling: The person may walk with a marked slowness. The
shuffling quality of the gait can be more pronounced, with reduced step height and length. Frequent Freezing Episodes:... Use
of Assistive Devices: ... Irregular Steps and Reduced Arm Swing: ... Possible Balance Problems: ... Independent Walking May
Still Be Possible: ...

Healthy General Stable Gait Patterns: Generally stable, with only minor changes compared to younger adults, ensuring consistent stride
lengths and minimal sway. Longer Stride Length than in DLB and AD: While there may be a slight decrease compared to younger
adults, healthy elderly tend to have longer stride lengths than those with DLB and AD. Regular and Consistent Cadence: Healthy
people maintain a regular and consistent cadence. Faster and More Consistent Speed than in AD and DLB: ... Even Weight
Distribution and Movement: ... Consistent Rhythm: ... Arm Swing Naturally Synchronized with Leg Movements: ...

Early DLB More Noticeable Gait Changes than in Early AD: Gait changes in early DLB are subtle and may be easily overlooked, but the
alterations are more noticeable than those in early AD. Slight Speed Reduction: There may be a slight reduction in walking
speed, which impacts the overall fluidity and pace of gait. Minor Balance Issues: Minor issues with balance are present, which
can affect stability and confidence in movement. Less Fluidity than Normal: ... Occasional Hesitations in Initiating Movement:
... Slightly Reduced Arm Swing: ... Less Severe Mobility Impairment than Severe DLB: ...

Early AD Less Pronounced Gait Changes than in Early DLB: Gait changes in early AD are generally subtle and may not be readily
apparent, especially when compared to early DLB. Slight Speed Reduction: There is a slight reduction in walking speed, which
subtly influences the overall pace. Minor Decrease in Fluidity: A minor decrease in the fluidity of movement contributes to a
less smooth walking experience. Mild Balance Problems in Complex Conditions: ... Less Pronounced Changes Compared with
early DLB: ... Less Severe Gait Impairment than Severe AD: ...

Severe DLB More Severe than Early DLB: Gait impairment in severe DLB is considerably more severe compared to early DLB with greater
problems in mobility and stability. Shuffling Gait: Individuals might exhibit a shuffling gait, characterized by taking small steps
and having difficulty lifting their feet off the ground. En Bloc Turning: Turning might involve a series of small steps, sometimes
referred to as ”en bloc” turning, instead of a fluid motion. Significant Balance Issues: ... Freezing Movement or Frequent
Hesitation: ...

Severe AD More Severe than Early AD: Gait impairment in severe AD is considerably more severe compared to early AD with greater
problems in mobility and stability. Greatly Reduced Speed and Irregular steps: Walking speed is greatly reduced, with steps
becoming irregular and uncoordinated, contributing to difficulty in maintaining a steady pace. Significant Balance Issue: The
Balance is heavily compromised, elevating the risk of falls and requiring constant vigilance and support. Loss the Ability
of Independent Walking: ... Fewer freezing episodes Compared with DLB: ... Profound Mobility Impairment and caregiver
dependence: ...

Language Model for video-based gait analysis in neurode-
generative diseases. Our knowledge augmentation strategy
consists of two parts: First, we adopt a knowledge-aware
prompt learning strategy to exploit class-specific description in
the text prompts generation, while leveraging the pre-aligned
video-text latent space. Second, we incorporate the associated
numerical gait parameters as numerical texts to enhance the
numeracy within the latent space of the text, addressing the
challenge of data scarcity in the medical domain. Notably,
on two video-based gait classifications tasks, our model sig-
nificantly outperformed other strong SOTA methods, given
only slightly more than 100 videos, and led to representations
with higher quality. Our work demonstrates how to efficiently
enhance multimodal representation learning and introduces
a novel approach for incorporating metadata, especially in
tabular form, which is common in the medical domain.

Our proposed knowledge augmentation method introduces
additional prompts and a separate modality to the CLIP model
without altering its original architecture, demonstrating gener-
alizability and compatibility with different pretrained VLMs.
However, current experiments reveal the sensitivity of GaVA-

CLIP to integrated domain knowledge, suggesting a need for
further improvements in distillation and aggregation of domain
knowledge.

The promising results in this paper, combined with the
advantages of video-based analysis, such as being sensor-free
and widely accessible, pave the way for future developments
in pathological gait analysis. Moreover, our method cur-
rently relies on limited public datasets of elderly gait videos,
highlighting the need for further community contributions
to expand data resources. Such efforts could significantly
benefit practical applications, including monitoring disease
progression, early detection of neurodegenerative diseases, and
improving care for elderly subjects in residential settings.
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