Well-posedness of a non local ocean-atmosphere coupling model

Sophie THERY, 28th May 2024

University of Augsburg, Germany

S. Thery (2023). Well-posedness of a non local ocean-atmosphere coupling model: study of a 1d ekman boundary layer problem with non local kpp-type turbulent viscosity profile

Application of ocean-atmosphere coupling

- Various physical phenomena are governed by the ocean-atmosphere (OA) interaction
- OA models have originally been constructed separately, by two distinct communities
 - \Rightarrow mathematics coherence of such coupling?

Modelisation

- Translate the realistic OA model in mathematical terms
- Construct a model that take into account account the specificities brought by the numerical models

Work by: Eric Blayo (UGA), Florian Lemarié (Inria-UGA), Charles Pelletier (ECMWF)

Mathematical study of this model

Conditions for the well-posedness (existence and unicity of solutions)

A simplified OA model

- Navier-stokes + Simplification hypothesys : (hydrostatic, ect...)
- 1D vertical,
 u horizontal wind/current
 C_f Coriolis force
 u^g source term
- Boussinesq hypothesys : subgrid-scale parametrisations ⇒ ν turbulent viscosity

Boundaries layer

parametrisation: Interface is a "buffer-zone" where solutions are parameterized

Our local OA model

- Friction law at the interface
- Viscosity parameterized by u* and z

Our non-local OA model

- Friction law at the interface
- Viscosity parameterized by u* and z
- Boundary layer parametrisation: computation of u* (Pelletier et al. 2021)
- u* wears the non-locality

Our non-local OA model

- Friction law at the interface
- Viscosity parameterized by u* and z
- Boundary layer parametrisation: computation of u* (Pelletier et al. 2021)
- u* wears the non-locality

Our goal

- Study the well-posedness of this problem
- Application to OA framework (specific viscosity and order of magnitude)

- Ocean-atmosphere coupling model
 - Context
 - A non-local OA model
- Well-posedness of the non local problem
 - A fixed point problem
 - The stationary problem
 - The non stationary problem
- 3 Application to OA order of magnitude
 - Specific viscosity profile
 - A necessary and sufficient criteria for stationary problem
- 4 Conclusion

Existing work and our approch

- Ocean-Atmosphere coupling model: Lions and al. (1993)
 - coupling of primitive equations (local problem)
 - not taking into account real numerical scheme in realistic model
- Fluid dynamic community: Bernardi and al. (2002)
 - coupling of two turbulent fluids
 - stationary and non local problem
 - very close problem with other kind of viscosity
 - well-posedness depending on the viscosity profile and its variations.

Our approach:

- Use fixed point method on our simplified problem (viscosity parametrized)→ well-posedness criteria
- Extend the method to non-stationary problem

A fixed point formulation

$$\begin{cases} \begin{array}{ll} \partial_t \mathbf{u}_\alpha + \mathbf{C}_f \mathbf{u}_\alpha - \partial_z \left(\nu_\alpha(\mathbf{u}^*, z) \partial_z \mathbf{u} \right) &= \mathbf{C}_f \mathbf{u}_\alpha^g & \text{on } (\delta_\alpha, z_\alpha^\infty) \times]0, T[\\ \mathbf{u}_\alpha(z_\alpha^\infty) &= \mathbf{u}_\alpha^g|_{z_\alpha^\infty} \\ \mathbf{u}_\alpha(z, t = 0) &= \mathbf{u}_\alpha^0(z) \\ \\ \nu_o \, \partial_z \mathbf{u}_o(\delta_o) &= \lambda^2 \nu_a \, \partial_z \mathbf{u}_a(\delta_a) \\ \nu_a \, \partial_z \mathbf{u}_a(\delta_a) &= C_D \left\| \mathbf{u}(\delta_a) - \mathbf{u}(\delta_o) \right\| \left(\mathbf{u}(\delta_a) - \mathbf{u}(\delta_o) \right) \\ \\ \mathbf{u}^* &= \sqrt{C_D} \left\| \mathbf{u}(\delta_a) - \mathbf{u}(\delta_o) \right\| \end{cases}$$

Strategy for mathematical studying

Write as a fixed point problem :

Show $P: u^* \to \sqrt{C_D} \|\mathbf{u}(\delta_a) - \mathbf{u}(\delta_o)\|$ is a contracting mapping.

Our point of view

Sufficient well-posedness criteria on viscosity profile

First step: study the local problem

Suppose u^* is given, the stationary local problem is :

$$\begin{cases} \mathbf{C}_{f}\mathbf{u}_{\alpha} - \partial_{z} \left(\nu_{\alpha}(\mathbf{u}^{*}, z)\partial_{z}\mathbf{u}\right) &= \mathbf{C}_{f}\mathbf{u}_{\alpha}^{g} & \text{on } (\delta_{\alpha}, z_{\alpha}^{\infty}) \\ \mathbf{u}_{\alpha}(z_{\alpha}^{\infty}) &= \mathbf{u}_{\alpha}^{g}|_{z_{\alpha}^{\infty}} \\ \nu_{o} \, \partial_{z}\mathbf{u}_{o}(\delta_{o}) &= \lambda^{2}\nu_{a} \, \partial_{z}\mathbf{u}_{a}(\delta_{a}) \\ \nu_{a} \, \partial_{z}\mathbf{u}_{a}(\delta_{a}) &= C_{D} \left\|\mathbf{u}(\delta_{a}) - \mathbf{u}(\delta_{o})\right\| \left(\mathbf{u}(\delta_{a}) - \mathbf{u}(\delta_{o})\right) \end{cases}$$

Property: Well-posedness of the stationary local problem

Weak formulation of the stationary local problem is well-posed in $H^1(\Omega)$, with $\Omega := \Omega_0 \cup \Omega_2$

Proof: Using Galerkine method.

Apriori estimate on $\|\cdot\|_{\mathrm{OA}} \approx \|\cdot\|_{L^2(\Omega_2)} + \|\cdot\|_{L^2(\Omega_3)}$

Fixed point problem

For a given \mathbf{u}^g with "good" regularity, there exist u_{max}^* such that

$$P: \left\{ egin{array}{ll} [0,u_{\mathsf{max}}^*] &
ightarrow & [0,u_{\mathsf{max}}^*] \ u^* &
ightarrow & \sqrt{C_D} \left\| \mathbf{u}(\delta_a) - \mathbf{u}(\delta_o)
ight\| \ \mathbf{u} \; \mathrm{sol.} \; \mathrm{local} \; \mathrm{pb} \; \mathrm{with} \;
u(u^*) \end{array}
ight.$$

Sufficient well-posedness criteria

P is contractant if $\forall u^*, v^* \in [0, u_{\max}^*]$:

$$\max_{z \in \Omega_{\alpha}} \left| \frac{\nu_{\alpha}(z, u^*) - \nu_{\alpha}(z, v^*)}{\sqrt{\nu_{\alpha}(z, u^*)\nu_{\alpha}(z, v^*)}} \right| \leq C \left(\mathcal{M}^{e} \right)^{-1} |u^* - v^*|$$

with \mathcal{M}^e an upper bound of $\|\sqrt{\nu}\partial_z \mathbf{u}\|_{\mathrm{OA}}$ for all \mathbf{u} solution of the local problem.

Fixed point problem

For a given \mathbf{u}^g with "good" regularity, there exist u^*_{\max} such that

$$P: \left\{ egin{array}{ll} [0,u_{\mathsf{max}}^*] &
ightarrow & [0,u_{\mathsf{max}}^*] \ u^* &
ightarrow & \sqrt{C_D} \left\| \mathbf{u}(\delta_a) - \mathbf{u}(\delta_o)
ight\| \ \mathbf{u} \; \mathrm{sol.} \; \mathrm{local} \; \mathrm{pb} \; \mathrm{with} \;
u(u^*) \end{array}
ight.$$

Sufficient well-posedness criteria

P is contractant if $\forall u^*, v^* \in [0, u^*_{\mathsf{max}}]$:

$$\max_{z \in \Omega_{\alpha}} \left| \frac{\nu_{\alpha}(z, u^*) - \nu_{\alpha}(z, v^*)}{\sqrt{\nu_{\alpha}(z, u^*)\nu_{\alpha}(z, v^*)}} \right| \leq C \left(\mathcal{M}^e \right)^{-1} |u^* - v^*|$$

with \mathcal{M}^e an upper bound of $\|\sqrt{\nu}\partial_z\mathbf{u}\|_{\mathrm{OA}}$ for all \mathbf{u} solution of the local problem. Another more restrictive condition can be derived as

$$\|\partial_{u^*} \nu_{\alpha}\|_{\mathcal{L}^{\infty}(\Omega,[0,u_{\max}^*])} \leq C \min(\nu_{\alpha}) (\mathcal{M}^e)^{-1}$$
 C cst obtain via trace thm

Same criteria for the non stationary problem

For a given \mathbf{u}^{g} with "good" regularity, there exist u_{\max}^{*} such that

$$P: \left\{ \begin{array}{ccc} \mathcal{V}^* & \rightarrow & \mathcal{V}^* \\ u^*(t) & \rightarrow & \sqrt{C_D} \left\| \mathbf{u}(\delta_a) - \mathbf{u}(\delta_o) \right\|(t) \\ & \mathbf{u} \text{ sol. local pb with } \nu(u^*) \end{array} \right.$$

with $\mathcal{V}^*:=\left\{u^*\in\mathcal{C}^1([0,T]),0\leq u^*(t)\leq u^*_{\mathsf{max}}
ight\}$

Property: Well-posedness criteria

P is contractant if $\forall u^*, v* \in [0, u^*_{\mathsf{max}}]$:

$$\max_{z \in \Omega_{\alpha}} \left| \frac{\nu_{\alpha}(z, u^*) - \nu_{\alpha}(z, v^*)}{\sqrt{\nu_{\alpha}(z, u^*)\nu_{\alpha}(z, v^*)}} \right| \leq C \left(\mathcal{M} \right)^{-1} |u^* - v^*|$$

with \mathcal{M} an upper bound of $\sup_{t \in [0,T]} \|\sqrt{\nu} \partial_z \mathbf{u}\|_{OA}$ for all \mathbf{u} solution of the local problem.

Justification of the choice of space $\mathcal{V}^*:\mathcal{M}$ exist if $\|\partial_t \nu\| \in \mathcal{L}^\infty(\Omega \times]0, T[)$

- $lue{1}$ Ocean-atmosphere coupling model
 - Context
 - A non-local OA model
- Well-posedness of the non local problem
 - A fixed point problem
 - The stationary problem
 - The non stationary problem
- Application to OA order of magnitude
 - Specific viscosity profile
 - A necessary and sufficient criteria for stationary problem
- 4 Conclusion

KPP viscosity

- Turbulent part : influenced by u^* Free part : $\nu_{\alpha} = \nu_{\alpha}^m$
- Turbulence layer thickness : $h_{\alpha}(u^*) = c_{\alpha}u^*$
- Coherence with interface boundary parametrisation : $\nu(\delta_{\alpha}) \approx \kappa u^* |\delta_{\alpha}|$

$$u_{\alpha}(u^*, z) = \kappa u^* |z| \left(1 - \frac{z}{h_{\alpha}}\right)^2 H\left(1 - \frac{z}{h_{\alpha}}\right) + \nu_{\alpha}^m$$

with H heaviside function

Application to OA order of magnitude

Example with stationary state and \mathbf{u}_{α}^{g} constant : $\mathcal{M}^{e} = \frac{\mathcal{C}_{D}}{2} \|\mathbf{u}_{a}^{g} - \mathbf{u}_{o}^{g}\|^{3/2}$

Criteria of well-posedness :

$$\|\partial_{u^*} \nu_{\alpha}\|_{\mathcal{L}^{\infty}(\Omega,[0,u_{\max}^*])} \le 2.5 \times 10^{-5} \|\mathbf{u}_{\mathsf{a}}^{\mathsf{g}} - \mathbf{u}_{\mathsf{o}}^{\mathsf{g}}\|^{3/2}$$

- OA order of magnitude $\|\mathbf{u}_a^g \mathbf{u}_o^g\| \approx 10 \mathrm{ms}^{-1}$ give very small upper bound for $\|\partial_{u^*} \nu_{\alpha}\|$
- KPP O'Brien viscosity : $h_{\alpha}(u^*) \leq 2.5 \times 10^{-5} \|\mathbf{u}_a^g \mathbf{u}_o^g\|^{3/2}$ that is possible if $\|\mathbf{u}_a^g \mathbf{u}_o^g\| < 10^{-4} \mathrm{ms}^{-1}$

Cause of non unicity?

- Due to the too large bounding in the criterion?
- ullet Due to the profile of u and OA order of magnitude ?

A necessary and sufficient criteria for stationary problem

Property

We we can solve the ODE:

$$\begin{aligned} \mathbf{C}_{f}\mathbf{u}_{\alpha} - \partial_{z} \left(\nu_{\alpha}(\mathbf{u}^{*}, z)\partial_{z}\mathbf{u}\right) &= \mathbf{C}_{f}\mathbf{u}_{\alpha}^{g} & \text{on } \left(\delta_{\alpha}, z_{\alpha}^{\infty}\right) \\ \mathbf{u}_{\alpha}(z_{\alpha}^{\infty}) &= \mathbf{u}_{\alpha}^{g}|_{z_{\alpha}^{\infty}} \\ \nu_{o} \, \partial_{z}\mathbf{u}_{o}(\delta_{o}) &= \lambda^{2}\nu_{a} \, \partial_{z}\mathbf{u}_{a}(\delta_{a}) \\ \nu_{a} \, \partial_{z}\mathbf{u}_{a}(\delta_{a}) &= C_{D} \left\|\mathbf{u}(\delta_{a}) - \mathbf{u}(\delta_{o})\right\| \left(\mathbf{u}(\delta_{a}) - \mathbf{u}(\delta_{o})\right) \\ \mathbf{u}^{*} &= \sqrt{C_{D}} \left\|\mathbf{u}(\delta_{a}) - \mathbf{u}(\delta_{o})\right\| \end{aligned}$$

We can write

$$|\mathbf{u}_a^g - \mathbf{u}_o^g|| = F(u^*)$$

Sufficient and necessary well-posedness criteria

If F in continuous and injective on I^* then non-local problem is well-posed on $u^* \in I^*$

No unicity of solution in OA order of magnitude

Exemple

KPP viscosity profile approximate by $P^2(z)$ polynomial.

- $I^* := [u_{\min}^*, u_{\max}^*]$ depending of z_{α}^{∞} and δ_{α} .
- F is combination of Legendre polynomial (complicated formula)
- OA order of magnitude : we can prove that we have a inflexion point when $u^* \approx 2 u_{\min}^*$

Conclusion

Wellposedness criteria :

- Problem re-write as a fixed point formulation
- Sufficient well-posedness condition depending on viscosity profile and its variation
- ▶ Variation $\|\partial_{u^*}\nu\|$ small compare to min (ν)

Non unicity of solution in OA frame work

- Sufficient well-posedness criteria non verify in the OA order of magnitude
- Necessary and sufficient condition for stationary state with KPP viscosities
 - \rightarrow non unicity of solution for small value of u^*

Improvement

- Use alternative boundary conditions
- ▶ More realistic boundary layer parametrisation $\rightarrow C_D$ depending on u^*
- ▶ Find another method than the fixed point formulation